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Abstract: In the past years, scientific research in Data Science and Artificial Intelli-
gence has witnessed vast progress. The number of published papers and digital ob-
jects (e. g., data, code, models) is growing exponentially. However, not all research
artefacts fulfill the criteria of being findable, accessible, interoperable and reusable
(FAIR), contributing to a rather low level of reproducibility of experimental findings re-
ported in scholarly publications and to the reproducibility crisis. In this paper, we focus
on Data Science and Artificial Intelligence Open Science best practices, i. e., a set
of recommendations that eventually contribute to the management and development
of digital artefacts that are as FAIR as possible. While several guidelines exist, we
add best practices for the FAIR collection, processing, storing and sharing of scholarly
findings via Research Knowledge Graphs. The final list of recommendations will be
available on the NFDI4DS website as an interactive web application.
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1 Introduction

The past years have seen rapid progress in the fields of Data Science (DS), Machine
Learning (ML) and Artificial Intelligence (AI) with neural methods becoming the state-
of-the-art in a wide range of research areas such as natural language processing and
computer vision. Contemporary computational methods usually consist of code, ML
models and data used for their training and evaluation. With an ever-increasing amount
of newly appearing ML techniques and datasets, the question of how to make digital ob-
jects (especially code, data, models, software) findable, accessible, interoperable and
reusable (FAIR) [1] to ensure the transparency and reproducibility of research results
has never been more relevant and important than today [2], [3].

Recent studies demonstrated that scientific ML and AI pipelines often lack fine-
grained documentation. Details on model hyperparameters, data pre-processing steps,
evaluation metrics, dependencies, train/test splits, biases, annotation procedures, etc. are
either only documented partially or not at all [4], [5]. The absence of this information
complicates the validation, replication and improvement of previous findings, i. e., it
significantly hinders scientific progress. Furthermore, it is quite common that code,
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software and (meta)data are missing or not specified or cited at all in scientific pa-
pers [6]. Yousuf et al. [6] show that only about 30% of Computer Science papers from
arXiv include links to source code. Since academic literature and search engines are
the main data discovery sources for researchers [7], links between digital objects and
publications are crucial to guarantee accessibility. In addition, code, models or data
are not always publicly available due to privacy, legal, ethical, commercial or copyright
restrictions (e. g., medical data, Generative Pre-trained Transformer, GPT, [8] models
developed by OpenAI [9], etc.). This factor also contributes to the challenge of FAIR
research. All of the aforementioned issues contribute to the reproducibility crisis [2], [3]
because it is getting increasingly difficult – in many cases it is already impossible – to
reuse results and to reproduce state-of-the-art methods.

Reproducibility concerns gave rise to a series of workshops [10]–[15], checklists
[16]–[19] and a handbook [20] on FAIR scientific research. Moreover, the availabil-
ity of digital objects has become a common criterion for evaluating paper submissions
at conferences (e. g., NAACL [21], ACL [22]) and in journals (e. g., Nature [23]). How-
ever, despite the proposed measures, digital artefacts still tend to be published with
incomplete descriptions of their provenance, quality or dependencies [6], [24]. As an
extreme example, OpenAI’s technical report on GPT-4 [25] does not provide details on
the model’s architecture, dataset construction method or training procedure. This lack
of information affects not only research replication but also leads to ethical concerns
since it is impossible to verify the use/misuse of personal data during the model training
(e. g., private messages). It is essential to encourage scholars and companies to use
and develop open-source ML models (such as BLOOM [26]).

2 Open Science Best Practices in Data Science and Artificial
Intelligence

To promote the idea of reproducible research, we propose Open Science best prac-
tices especially geared towards Data Science and Artificial Intelligence research, i. e.,
recommendations for ensuring a FAIR lifecycle of digital objects. The best practices
were collected and summarised based on previous developments in research data and
software management (e. g., Gebru et al. [27], Lamprecht et al. [28], Barker et al. [29],
Pineau et al. [17], Rogers et al. [18], Dodge et al. [19], Rehm [30], NeurIPS 2021
Paper Checklist Guidelines [16], etc.). It is worth noting that our recommendations
are developed primarily for scholars who plan to publish their research, we encourage
credibility and findability in science. The core of our best practices constitutes topics
ranging from the FAIR collection and processing of data to the distribution, validation
and maintenance of (meta)data, code, models and software. For example, our rec-
ommendations for code, models and software distribution include but are not limited
to:

• Make your code, models or software publicly available. Publish them in an ap-
propriate, recognised and trusted [31] repository. We encourage the use of open
source and open access repositories which guarantee the persistent identifica-
tion (e. g., DOI, PID), long-term availability and authenticity protection of digital
artefacts (e. g., Software Heritage [32]);

• Publish code, models or software with rich metadata using an appropriate meta-
data format;
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• Make sure the code can be run out of the box (time and machine independent).
Make use of Docker [33] containers and eventually consider publishing them
through a community platform such as European Language Grid (ELG) [34].

In addition, the proposed best practices have guidelines for transparent management
and sharing of scientific artefacts via Research Knowledge Graphs (RKGs) [35] such as
the Open Research Knowledge Graph (ORKG) [36] or the Semantic Scholar Academic
Graph (S2AG) [37]. RKGs allow the representation of scientific results and contribu-
tions through structured, semantically rich, interlinked knowledge graphs. RKGs are
aimed to establish an efficient search across scholarly findings so that researchers can
gain an overview of recent developments and are able to compare their findings. In this
sense, it has become increasingly crucial that scientific resources are stored, shared,
harvested and processed in a FAIR way. For instance, we recommend researchers to
label their contributions (e. g., research problem, objective, method, etc.) in the LATEX
file using the SciKGTeX [38] package to allow the automatic extraction and import of
this metadata into RKGs. To the best of our knowledge, the topic of RKGs is not cov-
ered by existing resources such as The Turing Way handbook [20] or checklists for
reproducible ML and AI research [16]–[19].

To improve user experience and user adoption, especially with regard to junior re-
searchers, our recommendations are aligned with the typical research timeline associ-
ated with the development of scientific articles and split into the following four phases:

1. Before starting the research
2. During the research
3. Paper submission
4. Paper publication

The DS and AI Open Science best practices we collected are presented in the form
of an interactive Streamlit application [39] (see Figure 1). The recommendations will
be made available on the NFDI4DS website [40].

Figure 1. The Open Science Best Practices in Data Science and AI Streamlit application
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