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Abstract. The presented work explores the use of ontologies and standardized enzymatic data 
to set up enzymatic reactions in process simulators, such as DWSIM. Setting up an automated 
workflow to start a process simulation based on enzymatic data obtained from the laboratory 
can help save costs and time during the development phase. Standardized conditions are cru-
cial for accurate comparison and analysis of enzymatic data, where ontologies provide a stand-
ardized vocabulary and semantic relations between relevant concepts. To ensure standardized 
data, an electronic lab notebook (ELN) is used based on EnzymeML, an open standard XML-
based format for enzyme kinetics data. Furthermore, two ontologies are merged and the result 
is extended for the use in the Python-based workflow. The resulting data is stored in a 
knowledge graph for research data in a machine-accessible and human-readable format. 
Thus, the study demonstrates a workflow that allows for the direct translation of ELN data into 
a process simulation via ontologies. 

Keywords: Electronic Lab Notebooks, Enzymatic Catalysis, Knowledge Graph, Process Sim-
ulation 

1. Introduction

The industrial production of biocatalytic processes has significant potential [1]. However, the 
development of new bioprocesses is a challenging and highly specific task about reaction con-
ditions. Therefore, there is a high demand for tools, such as process simulators, that can help 
save costs and time during the process development phase [2]. For instance, the open-source 
process simulator DWSIM [3] enables the calculation of process streams prior to the estab-
lishment of the process in a laboratory plant. 

Standardized conditions are crucial for comparing and operating on enzymatic data in 
bioreactors set up with enzymatic reactions in process simulators. Important parameters in-
clude enzyme activities and reaction kinetics, which can vary depending on specific reaction 
conditions. Furthermore, laboratory technicians who record enzyme-specific data may not be 
the same individuals who execute process simulations. To address these challenges, ontolo-
gies can be used as they provide a standardized vocabulary and semantic relations between 
concepts relevant to the research domains, enabling accurate comparison and analysis of en-
zymatic data [4, 5]. 
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Furthermore, electronic laboratory notebooks (ELNs) help laboratory experimenters to 
record laboratory data and generating a machine-readable data collection while mitigating data 
loss. Thus, they enable clean research data management in laboratories. As ELNs exist in 
multiple shapes and utilize different formats, the focus in this work lies on the use of data stored 
in EnzymeML-based ELNs in form of pre-structured Excel-sheets [6, 7]. EnzymeML is not only 
an open standard XML-based format for enzyme kinetics data, but also uses ontology classes, 
e.g., from the Systems Biology Ontology (SBO) [8]. 

This work shows an automated approach to translate data contained in ELNs into a 
process simulation by standardized concepts stated in ontologies. Reading EnzymeML-based 
Excel-sheets with Python, data is extracted and stored in an ontology-based knowledge graph. 
Furthermore, data regarding the process flow sheet and additional data needed to setup the 
process simulation are included. Then, DWSIM and its Python interface are used to import the 
needed data for the automated setup of a process simulation of a reactor scale-up. After the 
process simulation is conducted, resulting data is also stored in the knowledge graph, allowing 
for automated storage of research data in a machine and human readable way. This overall 
workflow, allowing for direct translation of ELN data into a process simulation via ontologies, 
is depicted schematically in Figure 1.  

 

Figure 1. Schematic overview of the workflow presented in this work for the automated exe-
cution of process simulations based on a knowledge graph and ELN-based data. 

2. Methods 

To test the workflow, a set of ELN files describing experiments of oxidation of ABTS with the 
enzyme Laccase is used. The data of the experiments conducted in the lab in a continuous 
milliliter-reactor contain among others information of the reaction kinetics. Once, the En-
zymeML-based ELN is filled in with the information of the laboratory experiments, the Python-
package PyEnzyme [8] allows for automated data extraction from the ELN files.  

In order to setup a knowledge graph for the experiments and the simulations in DWSIM, 
an ontology is needed. As the ELN is setup with classes from the SBO, it is used as base 
ontology. In addition, the metadata4ing ontology [9] is used to describe process-related con-
cepts. Thus, classes from metadata4ing are included into the SBO and own classes and rela-
tions added where necessary to obtain an extended ontology tailored to the needs of this work-
flow. 

Utilizing the owlready2 [10] module in Python, the ontology can then be loaded and 
extended automatically with the data from the ELN files. Figure 2 depicts an excerpt of the 
resulting knowledge graph, where individuals are assigned automatically to the ontology based 
on the input ELN data. This allows for structured access on, e.g., reaction kinetic parameters.  
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Figure 2. Excerpt of the ontology visualized in Protégé describing the class hierarchy (yellow 
circles) leading to the individuals for the kinetic parameters KM and kCat of the Michaelis-Men-

ten kinetics with regards to the substance ABTSox 

Furthermore, the process simulator DWSIM is equipped with a Python-API allowing for 
automated setup of flow-sheets and execution of process simulations. Thus, after the 
knowledge graph is generated and stored, the information contained is transferred via the API, 
creating and executing a new process simulation. 

3. Results 

Executing the workflow described in the previous chapters results in a knowledge graph con-
taining not only the ontology classes of the extended ontology, but also data obtained from the 
ELN. Figure 3 shows an excerpt of the class Laccase visualized in Protégé with the data an-
notations used to setup the corresponding substance in DWSIM. Furthermore, the resulting 
process simulation is visualized. Thus, this workflow allows for a quick and automated setup 
of process simulations based on laboratory data previously recorded in an EnzymeML-based 
ELN.  

 

Figure 3. Excerpt of the annotation of the Enzyme Laccase within the knowledge graph visu-
alized with Protégé (left) and resulting process simulation of a plug flow reactor (PFR) in 

DWSIM (right).  

Data availability statement 

The data, code and markdown files presented in this abstract will be available at GitHub here: 
https://github.com/TUDoAD/EnzymeMLandDWSIM   
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