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Abstract. Corn and soybean farming use about two-thirds of the agricultural land in the US. 
To accelerate the large-scale adoption of agrivoltaics, best practices that are compatible with 
traditional farming operations for corn and soybeans need to be developed. In this presenta-
tion, we present the development of a modeling framework to explore the benefits and trade-
offs between crop growth and photovoltaic (PV) electricity generation for common commodity 
crops at the county level. Our model couples a crop growth model, a soil water balance model, 
and a PV model in one integrated scheme. As an example, we consider corn growth in Renville 
County, MN. The model suggests that there is a ~0.55% loss in crop yield upon 1% shading 
because the crop-diminishing effect of reduced radiation is partially offset by increased water 
retention in the ground. 
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1. Introduction

Multiple studies have suggested that dual-use of agricultural land can lead to diversification 
and risk reduction for farmers [1], [2], and to the creation of more than 100,000 jobs in rural 
communities [3]. However, the vast amount work on agricultural systems has mostly focused 
on pollinator habitat and the growth of specialty crops including vegetables, lettuce, and ber-
ries. Comparatively little work, however, has focused on the agrivoltaic potential of commodity 
crops such as corn and soybeans.   

A potential challenge for integrating agrivoltaics with corn-soybean farming is that corn, a 
shade-intolerant crop, could be negatively affected by shading from solar panels. A meta-anal-
ysis of 10 different experimental studies suggested that the corn crop yield decreases roughly 
linearly with the degree of shading, with 50% shade leading to a ~50% reduction of crop yield 
[4]. However, the individual studies used in the meta-analysis addressed widely varying exper-
imental approaches and were conducted in very diverse climatic conditions. It should be noted 
that none of the 10 studies were performed in the US, but rather in China, Japan, Korea, and 
Germany, where farming practices may be different from the US. There were also notable 
exceptions that did not follow the general trend of the meta-analysis. Sekiyama and Nagashima 
studied corn growth under solar arrays that provided 20% and 49% shading [5]. The arrays 
were mounted on stilts at a fixed angle and shaded the crop only for part of the day. They 
reported a 4.9% increase of crop yield for light shading, and only 3.6% decrease of crop yield 
under heavy shading. Hyon Jo et al. found minimal reduction of corn forage yield under an 
array with 30% shading over a two year period [6]. The significant spread of crop yields with 
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different amounts of shading reported in the meta-analysis [4], as well as the lack of data under 
US farming practices, reinforces the urgent need for our proposed study.  

It is generally accepted that biomass development in commodity crops like corn is propor-
tional to the solar radiation received. However, the loss of radiation in agrivoltaics systems may 
be ameliorated by a number of factors. Shading provided by solar panels may reduce evapo-
ration and lead to increased plant available water, particularly during dry spells. Moreover, corn 
growth slows when the daily maximum temperatures exceed a threshold value during extreme 
heat events, which occur more frequently with global warming. Depending on shading levels, 
the microclimate under a solar array may reduce maximum daily temperatures, thus alleviating 
heat stress during heat spells. Hence, it is important to evaluate these competing effects and 
study how the yield of corn is affected by light shading in agrivoltaics environments.  

Here we present a modeling framework that allows for study of the the yield of a variety of 
commodity crops under light shading conditions in agrivoltaics system. As an example, we 
apply this framework to corn yields in Renville County, MN. However, the model can be applied 
to any county for which agricultural statistical data are available.  

2. Modeling Framework 

A schematic of the modeling framework used here is shown in Figure 1. The model has three 
coupled modules that interact with each other: a plant growth model, a soil water balance, and 
a photovoltaic model. The model retrieves environmental data such as total and diffuse irradi-
ance onto a horizontal surface, daily precipitation, and daily high, low, and medium tempera-
tures from the NASA POWER Database [7]. Crop data at the county level are retrieved from 
survey data from the USDA National Agricultural Statistical Service. Estimates for annual plant-
ing dates are derived from the USDA crop report.  

Figure 1. Schematic of agrivoltaic modeling framework for commodity crops. 

A number of sophisticated crop models are available to describe crop growth based on 
local environmental data and crop management practices [8], [9]. Based on their experience 
with these models, Zhao et al. developed a simple, generic model for crop development and 
yield (SIMPLE) that can be adapted to various target crops [10]. The model describes each 
crop by a set of 13 crop parameters, 4 of them cultivar specific. The SIMPLE model assumes 
that the daily increase in biomass is proportional to the daily radiation received, and modified 

 

2



Kortshagen and Ferry | AgriVoltaics Conf Proc 3 (2024) “AgriVoltaics World Conference 2024” 

by factors that account for the development of leaf area and stressors such as excessive daily 
high temperature, low plant available water, and low daily mean temperatures. 

The growth of any crop is strongly affected by plant available water. Hence, the SIMPLE 
crop growth model draws on a soil water balance according to work by Woli et al. [11] that 
balances water received by precipitation and irrigation and water lost through plant transpira-
tion, evaporation, run-off and deep drainage. The ratio of actual evapotranspiration to potential 
evapotranspiration, according to Priestley and Taylor [12], is expressed as the agricultural ref-
erence index for drought (ARID), which ranges from 0 to 1, with 0 corresponding to saturated 
soil, and 1 corresponding to no evapotranspiration due to extreme drought.  

The photovolatic performance is evaluated using daily direct and diffuse irradiation data 
from the NASA Power database. These data account for daily variations of the irradiation due 
to cloud cover and other environmental factors. We currently model static, south-facing panels 
at a tilt angle that is chosen by the latitude of the location considered. The total daily radiation 
received by the panels is evaluated based on the model by Liu and Jordan [13], and converted 
to photovoltaic power assuming a power conversion efficiency of 19% and system losses of 
14%. The current version of our framework does not assume a specific configuration of the 
solar array because our emphasis is on understanding the impact of shading on crop yield. In 
practice, solar panels would be mounted at a height that is compatible with the use of farming 
equipment, which is about 14 ft. We currently assume that the solar array causes a certain 
amount of average crop shading, irrespective of a particular array configuration. Since we have 
found crop yield to decrease linearly with the degree of shading, this appears to be a reason-
able simplification. However, future versions of our framework will include more details of the 
solar array configuration, such as shading caused and PV electricity produced by static and 
tracking mounts for various installation heights and row spacings.  

Model calibration of crop and soil parameters is essential. The SIMPLE model features 
only one set of crop parameters for corn, for the cultivar McCurdy 84aa, which has been stud-
ied since the 1980s. However, in recent years, the introduction of new corn varieties has led 
to remarkable improvements in drought and disease resistance, which are not reflected in the 
crop parameters for McCurdy 84aa. Hence, we performed a sensitivity analysis of the 13 crop 
and 6 soil parameters and identified the 4 most important parameters. These parameters were 
subsequently optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using 
20 years of crop yield data for Renville County, MN. The “Renville County” cultivar  represents 
an average over the many varieties planted in the county. Compared to crop yields obtained 
with McCurdy 84aa parameters, Figure 2a, significantly better agreement with USDA reported 
crop yields are obtained after calibration, as seen in Figure 2b.  
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Figure 2. Actual vs. predicted corn crop yields in bushel per acre (BPA) for Renville County, MN, from 
2003-2022. (a) original McCurdy 84aa crop parameters, (b) optimized crop parameters for Renville 

County, MN. 

3. Results 

After model calibration, we tested the crop yield at various levels of shading from the solar 
array. Figure 3a shows results for the biomass generation at shading levels from 0-20%. For 
2021 in Renville County, our model predicted a continuous reduction in biomass, and thus crop 
yield, with increased shading level. At 20% shading, the yield decreased by about 11%. The 
less than 1:1 reduction in crop yield upon increased shading is caused by the increased mois-
ture retention in the soil due to partial shading. This is demonstrated by Figure 3b, which shows 
that the ARID index is reduced with increased shading and remains lower for increased shad-
ing particularly after precipitation events.  

Figure 3. Crop yield and ARID index for 2021 for Renville County, MN: (a) Predicted level of crop 
yields for different levels of shading. (b) ARID index for different levels of shading. 

These results are different from predictions using the McCurdy 84aa crop parameters. An 
important result of the optimization we performed is that the generic “Renville County” crop 
variety is much less sensitive to drought than the McCurdy 84aa cultivar. Since the McCurdy 
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84aa cultivar is extremely sensitive to drought, yield increases are sometimes observed with 
increased shading. This observation amplifies the need to train the crop growth model with 
actual yield data.  

While the results in Figure 3 reflect a single year of crop growth, simulations were per-
formed for the 20-year period from 2003-2022. The crop yield for these 20-year simulations for 
various levels of shading is shown in Figure 4, which demonstrates that the crop yield de-
creases linearly with increasing shading. The general guideline that results from our simula-
tions is that every 1 percent of shading leads to a 0.55 percent loss in crop yield. The 
predicted yield loss is less than the 1:1 loss found in ref. [4], which shows that some of the 
yield loss caused by the loss of radiation can be offset by increased moisture retention in the 
soil. However, given the drought tolerance of many modern seed varieties, increased soil mois-
ture is unable to fully compensate for the loss in radiation.  

Figure 4. Simulated corn crop yield loss for various levels of shading for Renville County, MN. 

4. Conclusions 

We presented a modeling framework that enables the study of crop yield under agrivoltaic 
systems of common commodity crops at the county level. We examined the example of corn 
yields in Renville County, MN, studied over a period from 2003 to 2022. 

The developed modeling framework highlights the significant trade-offs involved in agri-
voltaic systems for commodity crops. The model predicts for Renville County that a 1% in-
crease in shading results in a 0.55% decrease in corn yield. Given the slim profit margins in 
corn farming, even a few percent of yield loss may turn a profitable crop year into an unprofit-
able one. For instance, for 2023, the USDA Economic Research Service reported for each 
acre of corn harvested an average income of $920, an average cost of $907, for a profit of $13 
per acre, before government payments [14]. Even small reductions in income may raise the 
question whether it is not more profitable to take some land out of production and build a fully 
dense solar array, possibly with other higher value agrivoltaics crops beneath them. This con-
clusion underscores the necessity of carefully considering factors such as agricultural incen-
tives and electricity rates to determine the viability of agrivoltaic systems in different scenarios. 
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