
24th International Conference on Business Information Systems (BIS 2021)

Knowledge Graphs

https://doi.org/10.52825/bis.v1i.39

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 02 July 2021

Domain-specific Event Abstraction

Finn Klessascheck1, Tom Lichtenstein1, Martin Meier1, Simon Remy1, Jan Philipp Sachs2,4, 
Luise Pufahl3, Riccardo Miotto4,5, Erwin Böttinger2,4, and Mathias Weske1

1Hasso Plattner Institute (HPI), University of Potsdam, Potsdam, Germany
2Digital Health Center, HPI, University of Potsdam, Potsdam, Germany

3Software & Business Engineering, Technische Universitaet Berlin, Berlin, Germany
4Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA

5Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA

Abstract. Process mining aims at deriving process knowledge from event logs, which contain 
data recorded during process executions. Typically, event logs need to be generated from pro-
cess execution data, stored in different kinds of information systems. In complex domains like 
healthcare, data is available only at different levels of granularity. Event abstraction techniques 
allow the transformation of events to a common level of granularity, which enables effective pro-
cess mining. Existing event abstraction techniques do not sufficiently take into account domain 
knowledge and, as a result, fail to deliver suitable event logs in complex application domains. 
This paper presents an event abstraction method based on domain ontologies. We show that 
the method introduced generates semantically meaningful high-level events, suitable for pro-
cess mining; it is evaluated on real-world patient treatment data of a large U.S. health system.

Keywords: Process mining, Event abstraction, Domain knowledge, Healthcare

1 Introduction

Many organizations have an inherent interest to monitor and understand their processes. For 
example, analyzing and adopting processes can improve their overall efficiency, e nsure that 
legal requirements are met, and maintain a desired quality level. To this end, process mining 
provides techniques to analyze processes based on event data recorded during their execution. 
However, such event data is not always available in the necessary format and often differs 
in its granularity in complex settings. This also applies to treatment processes in hospitals, 
which are typically highly heterogeneous, complex, multidisciplinary, ad-hoc, and susceptible to 
change [1]. In the past, process mining has been proven as a technique well-suited to derive 
an understanding of medical processes, like patient-flows, and to improve them accordingly [2].

When extracting event data for process mining of electronic health records (EHRs), multi-
ple data sources have to be tapped into, including hospital information systems. This variety 
of data sources and differences in data granularity leads to a mismatch in the level of abstrac-
tion between different events. Moreover, the fact that many events are documented manually by 
physicians or other medical personnel typically leads to varying degrees of detail in the recorded 
events. Using the resulting event logs would result in complex process models [3]–[5]. In order 
to generate event logs with events of comparable granularity and to elicit useful process mod-
els, event abstraction is needed. To this end, a rich set of research works on event abstraction

117

https://creativecommons.org/licenses/by/4.0/


Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Patient is
admitted

Diagnose Non-
Specific Low

Back Pain

Is condition
acute,

subacute,
or chronic?

Apply
Superficial

Heat or other
Nonpharmocol.

Treatments

Additional
treatment
desired?

Was treatment
successful?

Prescribe
NSAID

Treatment
Process
ended

Was treatment
successful?

Prescribe
Opioid

Prescribe
NSAID or SMR

Apply Exercise
or other

Nonpharmacol.
Treatments

acute/
sub-
acute

chronic

no

no

yes

no

yes

yes

Figure 1. BPMN process model describing the treatment of LBP as per [7]. The events ap-
pearing in the event log of List. 1 belong to the same process but do not align with the activities
of the process model, and make it difficult to put them into relation.

methods and techniques exists, as shown in [3], [6]. But fewer research works utilize existing
domain knowledge. Those approaches mostly follow a bottom-up principle by starting from the
observed event data. While the resulting process models are less complex and already improve
the process analysis, bottom-up approaches do not guarantee a conceptually sound abstrac-
tion. There is a high prevalence of standards and ontologies in the medical field, containing
domain-specific information such as medications, procedures, and diagnoses. This knowledge
can be used to enrich abstraction mechanisms by actively selecting a use case-specific level of
abstraction.

This paper presents an event abstraction method based on domain knowledge for process
analysts to generate event logs for process mining. The method is domain-agnostic but was
developed and tested for the healthcare domain. In the remainder of this paper, a motivating
example is given in Sect. 2 followed by an overview of related work in Sect. 3. Afterwards, the
domain-specific abstraction method, is presented in Sect. 4. Our approach is applied to the
back pain treatment process data of a large health system in the U.S. in Sect. 5. The work is
concluded and future research discussed in Sect. 6.

2 Motivating Example

In this section, we discuss the treatment process of non-specific low back pain (LBP), which is
one of the most frequent complaints, as a motivating example. The evidence-based framework
for diagnosis and treatment of LBP in the U.S. context is defined by a guideline from the Ameri-
can College of Physicians, which outlines under which circumstances and in what order certain
interventions are to be conducted or medications to be prescribed [7], as shown in Fig. 1. As
such, the guideline encompasses recommendations with regards to the prescription of a multi-
tude of different drug classes, e.g., opioids (e.g., Oxycodone), non-steroidal anti-inflammatory
drugs (NSAID; e.g., Ibuprofen), or skeletal muscle relaxants (SMR; e.g., Diazepam). Based
on this, it could be of particular interest for a health system to which extent current treatment
processes comply with the given clinical guideline.
<event>

<date key = ‘ ‘ t ime: t imestamp ’ ’ value = ‘ ‘2018−08−04T13:04 ’ ’ />
<s t r i n g key = ‘ ‘ concept:name ’ ’ value = ‘ ‘NAPROXEN 500 MG TABLET ’ ’ />
<s t r i n g key = ‘ ‘ even t : con tex t ’ ’ value = ‘ ‘ EPIC MEDICATION ’ ’ />
<s t r i n g key = ‘ ‘ event:code ’ ’ value = ‘ ‘19918 ’ ’ />

< / event>
<event>

<date key = ‘ ‘ t ime: t imestamp ’ ’ value = ‘ ‘2018−09−01T13:59 ’ ’ />
<s t r i n g key = ‘ ‘ concept:name ’ ’ value = ‘ ‘OXYCODONE 5 MG TABLET ’ ’ />
<s t r i n g key = ‘ ‘ even t : con tex t ’ ’ value = ‘ ‘ EPIC MEDICATION ’ ’ />
<s t r i n g key = ‘ ‘ event:code ’ ’ value = ‘ ‘20627 ’ ’ />

< / event>

Listing 1. Excerpt of a real-world event log containing low-level events.

118



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

The event data recorded in the hospital information system (HIS) is stored in a detailed
manner due to medical necessity and billing purposes, including precise information about,
e.g., the dosage of medications. Listing 1, extracted out of an EHR database, shows the event
names that result from this data. While the event log contains fine-grained events, the treatment
guideline modeled in Fig. 1 is concerned with more abstract, high-level activities (e.g., Prescribe
NSAID)1. This makes it difficult to compare the guideline with the recorded treatment event
data. Due to the fine-grained event data, discovering a process model without processing it
beforehand would result in a highly complex model that would be hard to interpret. It would
include, for example, numerous activities, splits and branches for each drug and its potential
dosage. Thus, event abstraction is needed to enable the alignment of low-level events with
the high-level activities of a clinical guideline and to discover more human-readable process
models.

An easy approach would be to abstract all events that refer to the administration of drugs
into the high-level event Administer Drug. On one side, this would reduce the complexity. On
the other side, valuable information, like the administered drug, would be discarded, such that
this abstraction would not be useful and diverge from the level of detail given by the clinical
guideline. It would, for example, not be possible to differentiate between non-pharmacological
treatments and pharmacological treatments or non-opioid and opioid treatments, as per the
guideline. However, this categorization cannot be simply made with the available event infor-
mation from the data warehouse (cf. List. 1), so that additional information, e.g., about the drug
class or the effect mechanisms, is necessary. Standards and ontologies that contain informa-
tion about medical concepts such as medications, procedures, and diagnoses, already exist in
healthcare. Thus, in this work, we explore the application of such medical knowledge resources
for exploiting the medical context of events and determining the right level of abstraction.

3 Related Work

In the following, we discuss related work on event abstraction in general and with a particular
focus on healthcare. Diba et al. [6] identifies event abstraction as one out of three major tasks
for event log generation. Similarly, van Zelst et al. [3] provides a taxonomy for event abstrac-
tion techniques and categorizations. In general, abstractions techniques can be distinguished
based on their information richness, which again depends on the required input [6]. The first
category comprises clustering and unsupervised learning approaches like [8], [9], which re-
quire no additional input. In addition, Richetti et al. [9] applies natural language processing to
discover activities and objects from the event labels. Based on their semantic relations, similar
activities get clustered and substituted. In contrast, Tax et al. [10] applies supervised learning
to map low-level events to activity executions that requires labelled training data to learn the
probabilistic mappings. Leemans et al. [11] utilizes event attributes to derive hierarchical mod-
els encapsulating low-level events in sub-processes. The approach lacks of a mechanism to
guarantee semantically sound abstraction groups.

Another category comprises approaches using behavioural patterns to transfer low-level
events into higher-level activities. As an example, Mannhardt et al. [12] provides a supervised
event abstraction technique. With the help of behavioural activity patterns, domain knowledge
is captured, based on which events are matched. Additionally, the approach by Baier et al. [13]
utilizes enriched process models. They describe the issue of n:m mappings from events to ac-
tivities and use an annotated process model to identify mappings between events and activities
in which they additionally encoded domain knowledge. With the help of a gamified crowd-
sourcing approach, Sadeghianasl et al. [4] requires a group of domain-experts to participate
in the game to equalize activity labels. Lastly, the authors of [14] present a knowledge-based

1Note that, while the example of this section only consists of medication-related events, the overall problem
exists for diagnostic-/treatment-related events as well.

119



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

1. Define
use case

2. Identify
knowledge

sources (top-down)

4. Abstract
events

(bottom-up)

5. Evaluate
abstraction

6. Apply
process mining

techniques

refinement

3. Define event
hierarchy

Figure 2. Method for domain-specific event abstraction. After defining the use case and iden-
tification of relevant knowledge sources, an adequate abstraction level is derived in an iterative
manner.

abstraction mechanism based on domain-specific ontologies. Depending on a set of rules,
events are mapped to the fundamental concepts of the ontologies; multiple events matching
the same ground term within a given time window get merged into macro-activities. However,
this approach heavily relies on predefined mapping rules.

For the healthcare domain, Mans et al. [15] illustrates the problem of different levels of data
granularity by providing an overview of the spectrum of available data in an HIS. The authors
classify different source systems based on the abstraction level and the data accuracy. Those
findings are confirmed in a case study [16] on event log generation in healthcare in which
event abstraction challenges and the need for suitable techniques, like abstraction tables, are
discussed. In order to investigate treatment processes, the authors of [5] use, similarly to [11],
sub-processes to encapsulate low-level events of treatment processes in sub-processes. The
gold standard of the approach relies on the encoding of domain-knowledge within the activity
labels, which might be added manually.

Most of the presented approaches are data-driven only and rely on structural features like
control-flow pattern, while only a few also consider additional contextual information, e.g., [12],
[14]. We will refer to those approaches as bottom-up. Still, they are missing mechanisms to
generate a consistent level of abstraction, which is also medically sound.

4 Domain-specific Abstraction Method

In order to overcome the limitations of existing approaches, we introduce a method for domain-
specific event abstraction. While the domain for the abstraction is not limited in any sense,
one concrete abstraction instance can only be applied within one specific domain, and is not
reusable across multiple domains. In the context of this work, the term abstraction means the
unification of event identifiers for related events, so that several events are not combined to
one event, but assigned to the same event class. The presented method combines two basic
concepts of event abstraction, namely bottom-up and top-down. In the following, both concepts
are presented, as well as the concrete abstraction procedure.

4.1 Basic Concepts of Event Abstraction

The first concept, which will subsequently be referred to as bottom-up, uses the low-level event
log as its only input. Most of the abstraction approaches described in Sect. 3 can be con-
sidered to follow this concept. The advantage of a bottom-up abstraction is that little or no
additional domain-specific information is required. However, such approaches produce results
which might include high-level events at different levels of abstraction. Depending on the use
case, it may be desirable to maintain a certain level of abstraction across the output event log as
well as to produce high-level sound events for a domain. An abstraction that relies exclusively
on the data level is therefore not sufficient in this case.

One way to overcome the lack of domain-specific information is to use an abstraction proce-
dure following the concept of top-down abstraction. Top-down approaches first define the goal
of the abstraction for a use case based on domain-specific information and map the low-level
events to the targeted high-level events. In comparison to the bottom-up concept, the patterns

120



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Iterations

Suitable Level of Abstraction

Use Case

Event Data

Top-down

Bottom-up

Figure 3. Conceptual depiction of the abstraction method. The use case and event data are
alternately investigated from the top-down and bottom-up perspective to further restrict the
abstraction scope.

and rules are not detected in the log, but defined by analysts in advance. The domain-specific
patterns and rules are used to group related low-level events together using an assignment
algorithm [12], [14].

The top-down approach allows to explicitly define the desired level of abstraction and can
thus significantly improve the analysis of the process. However, an accurate abstraction of low-
level events requires a deep understanding of the underlying data. Additionally, the abstraction
must be conducted in such a way that it fits to the present data, which can be very complex and
detailed, and is hard for the analyst to know beforehand. This can make exploratory analyses
particularly difficult.

4.2 Alternating Event Abstraction

In order to find a suitable level of abstraction considering the available low-level event data as
well as the abstraction goal of a use case, abstraction concepts of bottom-up and top-down are
combined. Figure 2 depicts the method, which consists of six steps. In the first step, a use case
needs to be defined due to the nature of the involved top-down concept. The use case may be
guided by a domain-specific question, e.g., relating a treatment process to clinical guidelines or
regulatory aspects. Next, knowledge sources relevant for the use case are collected and used
as input for the subsequent steps. Before actual process mining techniques can be applied
in step 6, an adequate abstraction level needs to be derived from steps 3 to 5 in an iterative
manner. In these steps, the data and use case are alternately investigated from the top-down
and the bottom-up perspective to further restrict the abstraction scope from each perspective
with every iteration, as illustrated in Fig. 3. In order to achieve this, this paper proposes a
hierarchy-based abstraction procedure.

Event Hierarchy. Since the desired granularity of an abstraction strongly depends on the use
case, an event hierarchy is created as a basis for the abstraction of low-level event identifiers,
which describes groups of related terms that are essential for the analysis. The event hierarchy
is designed from a top-down perspective. It consists of several abstraction sets. Each abstrac-
tion set consists of an abstraction term and a list of subordinate terms. The abstraction term
serves as the high-level event identifier for each low-level event that can be assigned to the
abstraction set with the help of the corresponding subordinate terms. The general structure of
an event hierarchy, as well as an exemplary abstraction set in the medical context, is illustrated
in Fig. 4.

A relevant abstraction term in the medical context could be, for example, a class of drugs,
such as NSAID. The low-level events are then mapped to the subordinate terms contained in
the lists of the abstraction sets and abstracted to the corresponding abstraction term. The
mapping is done by checking for each event whether its name contains one or multiple terms
from the lists of the subordinate terms. Depending on the quality of the provided abstraction

121



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Abstraction Set i
[Abstraction Term]

[Subordinate Term]

[Subordinate Term]

[Subordinate Term]

...
...

Abstraction Set 1
Prescribe NSAID

Aspirin

Ibuprofen

Naproxen

...

Event Hierarchy

Figure 4. General structure of an event hierarchy with an example abstraction set.

sets, a single event name can contain different terms from different abstraction sets. In this
case, either a domain expert can decide on the assignment, or the Levenshtein distance [17] or
other kinds of distance measures could be used to determine the term most closely related to
the event identifier. In order to avoid misleading abstractions, the lists of subordinate terms of
different abstraction sets should not overlap. Having distinct abstraction sets allows a precise
view of the data, which is directly tailored to the use case. After finding a matching term, the
event identifier is then changed to the abstract term of the abstraction set. To preserve as much
information as possible, the original name is added as an attribute to the event. If an event
cannot be assigned to an abstraction set, the event keeps its original name. An abstraction set
can additionally be marked as a filter set. If an event is assigned to an abstraction set that is
marked as a filter, it is not included in the resulting event log.

Iterative Approximation of the Abstraction Level. Each iteration starts from the top-down
perspective with the creation or refinement of the event hierarchy. After the abstraction, the
resulting high-level events are analyzed from the bottom-up perspective. More concrete, it can
be determined whether more abstraction sets should be added, or whether additional subordi-
nate terms derived from low-level events that were not previously covered by any abstraction
set should be added to one. Special attention should be paid to events that have not been
abstracted to high-level events and to abstraction sets that abstract large parts of the event log.
This evaluation can be done by either directly examining the resulting high-level events or by
evaluating a process model, mined from the resulting event log. With that, the resulting event
hierarchy is progressively refined towards the selected use case. Because of this, it cannot be
used arbitrarily for other use cases.

5 Application to a Real-World Use Case

This section presents an exemplary application of the abstraction method to the real-world use
case of Sect. 2. While the method itself is domain-agnostic in its application, a concrete exam-
ple from the healthcare domain is suited to illustrate the concrete steps and their usefulness.
As the first two steps (i.e., the use case definition and the collection of additional knowledge
sources) are described in Sect. 2, this section evaluates and illustrates steps three to five.

5.1 Experimental Setup and Data Preparation

In this work we used EHR data from the Mount Sinai Health System, a large health system
located in New York, NY, which generates a high volume of structured, semi-structured and
unstructured data from inpatient, outpatient, and emergency room visits. Patients in the system

122



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Naproxen 500 MG

Ibuprofen Tablet

Ibuprofen 200 MG

Oxycodone 5 MG Oxycodone

Ibuprofen

Naproxen

Prescribe NSAID

Prescribe Opioid

Input Event Normalization Abstraction

Figure 5. Example event abstraction process to illustrate the normalization and abstraction
from the event log excerpt in List. 1 to the event log in List. 2.

can have up to 15 years of follow-up data. We accessed a de-identified dataset containing
approximately 8.1 million patients from eight hospitals within the system, spanning the years
from 2003 to 2018. This research was approved by the Institutional Review Board (IRB)2 of the
institution fully compliant with the HIPAA3 regulations. In particular, in this study we included
diagnosis codes (ICD-9/10), medications and procedures.

In order to be able to apply the method to the available data, preprocessing steps are nec-
essary. Those steps include the normalization of event descriptors. This is necessary to not
encode dosage information and other factors, which would otherwise lead to highly complex
event hierarchies, without providing any additional value for the process analysis. The normal-
ization is part of our prototypical implementation and is based on manually crafted rules derived
by a medical expert. The normalization of the event log excerpt given in List. 1 is illustrated in
Fig. 5, while the normalized event descriptors can be found in List. 2 attached as attributes. Af-
ter the normalization, the iterative abstraction is applied to the low-level event log as described
in Sect. 4.
<event>

<date key = ‘ ‘ t ime: t imestamp ’ ’ value = ‘ ‘2018−08−04T13:04 ’ ’ />
<s t r i n g key = ‘ ‘ concept:name ’ ’ value = ‘ ‘ Prescr ibe NSAID ’ ’ />
<s t r i n g key = ‘ ‘ e v e n t : d e s c r i p t i o n ’ ’ value = ‘ ‘NAPROXEN 500 MG TABLET ’ ’ />
<s t r i n g key = ‘ ‘ event :normal ized ’ ’ value = ‘ ‘ Naproxen ’ ’ />
<s t r i n g key = ‘ ‘ even t : con tex t ’ ’ value = ‘ ‘ EPIC MEDICATION ’ ’ />
<s t r i n g key = ‘ ‘ event:code ’ ’ value = ‘ ‘19918 ’ ’ />

< / event>
<event>

<date key = ‘ ‘ t ime: t imestamp ’ ’ value = ‘ ‘2018−09−01T13:59 ’ ’ />
<s t r i n g key = ‘ ‘ concept:name ’ ’ value = ‘ ‘ Prescr ibe Opioid ’ ’ />
<s t r i n g key = ‘ ‘ e v e n t : d e s c r i p t i o n ’ ’ value = ‘ ‘OXYCODONE 5 MG TABLET ’ ’ />
<s t r i n g key = ‘ ‘ event :normal ized ’ ’ value = ‘ ‘ Oxycodone ’ ’ />
<s t r i n g key = ‘ ‘ even t : con tex t ’ ’ value = ‘ ‘ EPIC MEDICATION ’ ’ />
<s t r i n g key = ‘ ‘ event:code ’ ’ value = ‘ ‘20627 ’ ’ />

< / event>

Listing 2. Example event log extract after the application of the abstraction method.

5.2 Evaluation

To demonstrate the usefulness of the proposed method, we created and analyzed two event
logs using a prototypical implementation4. A detailed description of the event log generation
pipeline can be found in [16]. Each log comprises 2,000 patients diagnosed with low back pain
from the Mount Sinai Health System with a focus on the treatment processes. When creating
the first event log, no abstraction was applied, and all events were included with the granularity

2IRB-19-02369
3Health Insurance Portability and Accountability Act
4https://github.com/bptlab/fiber2xes

123

https://github.com/bptlab/fiber2xes


Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 6. Discovered process model based on only three randomly selected traces from the
event log without any abstraction and 60% noise filter.

as they were recorded in the data warehouse. To mine process models form the different event
logs, we used the inductive miner plug-in [18] of ProM5.

Fig. 6 shows the resulting process model, involving only three randomly selected traces of
the event log without any abstraction. A visual examination of the diagram is very complex
because of the large number of nodes and edges. A comparison to the model representing the
clinical guideline in Fig. 1 is hardly possible. This complexity also complicates a variant analysis.
The event log without any abstraction contains 1,998 trace variants and 28,540 different event
classes. In contrast, Fig. 7 depicts the process model discovered from an event log, where our
method was applied during its generation. Apparently, this model is much more compact. The
abstracted event log contains 1,300 variants and the seven event classes that were previously
defined in the event hierarchy. With this event log, the activities can be directly related to those
present in the clinical guideline in Fig. 1. However, the abstracted event log still contains a high
number of trace variants, which reflects the flexible nature of treatment processes. In summary,
the event abstraction has resulted in a simpler process model that facilitates both interpretation
and alignment with the clinical guideline.

5.3 Discussion

The combination of top-down and bottom-up concepts takes advantage of existing structured
knowledge and outlines a clear procedure to produce sound abstractions with regard to the
underlying domain that lead to semantically meaningful events. In other words, it enables the
domain-specific event abstraction of event data. While this method requires manual work and
input of a domain expert, the resulting abstractions have been shown capable of increasing the
understandability and interpretability of the event logs. Abstractions produced by applying the
presented method are comprehensible - there is no “black box” leading to abstracted events,
and domain experts are always able to verify the validity of the abstraction. Furthermore, the
method makes it possible to easily vary the level of abstraction when investigating a given use
case. Also, resulting abstractions are highly flexible and configurable. In contrast to Leonardi et
al. [14], no custom ontology needs to be defined, since the abstraction sets are directly derived
from existing knowledge sources, like existing standards. This also increases their reusability
in other event hierarchies as they have a certain general validity. The presented method could
also be combined with existing abstraction techniques discussed in Sect. 3, such as the work of
Mannhardt et al. [12], in order to add further perspectives to the resulting event log. They could
be used, for example, to add a temporal perspective to the abstraction, where subsequent steps
of a larger treatment process, are abstracted into a single event. Furthermore, this method
could be improved by adding support for automating the creation of the event hierarchy, or
evaluation of the abstraction results based on different metrics.

5http://www.promtools.org/

124

http://www.promtools.org/


Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 7. Discovered process model, including all 2,000 patients based on the event log after
event abstraction, with 40% noise filter.

6 Conclusion

Different levels of granularity in event data hamper the effective use of process mining tech-
niques. Therefore we proposed a structured method to achieve a semantically meaningful
event abstraction. By combining top-down and bottom-up approaches, conceptually sound ab-
stractions from low-level events are reached. Applying the method to a real-world event log from
a U.S. health system shows the usefulness of the approach. Currently, we have developed and
tested the domain-specific method exclusively for healthcare. Still, the steps are general and
might also be useful for other domains, which need to be further studied. For future work, differ-
ent metrics to evaluate the quality of generated event hierarchies and abstraction sets are worth
investigating, as they could help guiding the application of the method through the different it-
erations. Moreover, interfaces for integrating existing ontologies such as RxNorm or SNOMED
CT, as well as a more semi-automated approach for creation of event hierarchies, could reduce
the manual effort.

Acknowledgments. Research reported in this paper was supported by the Office of Research Infras-
tructure of the National Institutes of Health under award numbers S10OD026880. The content is solely
the responsibility of the authors and does not necessarily represent the official views of the National
Institutes of Health. This work was supported in part through the computational and data resources and
staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

References

[1] P. Homayounfar, “Process mining challenges in hospital information systems,” in Feder-
ated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2012,
pp. 1135–1140.

[2] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, “Process mining in healthcare:
A literature review,” Journal of Biomedical Informatics, vol. 61, pp. 224–236, 2016.

[3] S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider, “Event abstraction in
process mining: Literature review and taxonomy,” Granular Computing, pp. 1–18, 2020.

[4] S. Sadeghianasl, A. H. M. ter Hofstede, S. Suriadi, and S. Turkay, “Collaborative and in-
teractive detection and repair of activity labels in process event logs,” in 2nd International
Conference on Process Mining, ICPM, 2020, pp. 41–48.

125



Klessascheck et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

[5] X. Lu, A. Gal, and H. A. Reijers, “Discovering hierarchical processes using flexible activity
trees for event abstraction,” in 2nd International Conference on Process Mining, ICPM,
2020, pp. 145–152.

[6] K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction, correlation, and abstrac-
tion of event data for process mining,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 10, no. 3, 2020.

[7] A. Qaseem, T. J. Wilt, R. M. McLean, and M. A. Forciea, “Noninvasive treatments for
acute, subacute, and chronic low back pain: A clinical practice guideline from the amer-
ican college of physicians,” Annals of Internal Medicine, vol. 166, no. 7, pp. 514–530,
2017.

[8] F. Folino, M. Guarascio, and L. Pontieri, “Mining predictive process models out of low-level
multidimensional logs,” in Advanced Information Systems Engineering (CAiSE), ser. LNCS,
vol. 8484, Springer, 2014, pp. 533–547.

[9] P. H. P. Richetti, F. A. Baião, and F. M. Santoro, “Declarative process mining: Reducing
discovered models complexity by pre-processing event logs,” in Business Process Man-
agement BPM, ser. LNCS, vol. 8659, Springer, 2014, pp. 400–407.

[10] N. Tax, N. Sidorova, R. Haakma, and W. M. P. van der Aalst, “Event abstraction for pro-
cess mining using supervised learning techniques,” in Proceedings of SAI Intelligent Sys-
tems Conference (IntelliSys), ser. LNNS, vol. 15, Springer, 2016.

[11] S. J. J. Leemans, K. Goel, and S. J. van Zelst, “Using multi-level information in hierarchical
process mining: Balancing behavioural quality and model complexity,” in 2nd International
Conference on Process Mining, ICPM, 2020, pp. 137–144.

[12] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, and P. J. Toussaint,
“Guided process discovery - A pattern-based approach,” Information Systems, vol. 76,
pp. 1–18, 2018.

[13] T. Baier, J. Mendling, and M. Weske, “Bridging abstraction layers in process mining,”
Information Systems, vol. 46, pp. 123–139, 2014.

[14] G. Leonardi, M. Striani, S. Quaglini, A. Cavallini, and S. Montani, “Towards semantic
process mining through knowledge-based trace abstraction,” in International Symposium
on Data-Driven Process Discovery and Analysis, ser. LNBIP, vol. 340, Springer, 2017,
pp. 45–64.

[15] R. Mans, W. M. P. van der Aalst, R. J. B. Vanwersch, and A. J. Moleman, “Process mining
in healthcare: Data challenges when answering frequently posed questions,” in Process
Support and Knowledge Representation in Health Care - BPM, Revised Selected Papers,
ser. LNCS, vol. 7738, Springer, 2012, pp. 140–153.

[16] S. Remy, L. Pufahl, J.-P. Sachs, E. P. Böttinger, and M. Weske, “Event log generation in
a health system: A case study,” in International Conference on Business Process Man-
agement, ser. LNCS, Springer, 2020.

[17] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[18] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering block-structured
process models from event logs containing infrequent behaviour,” in Business Process
Management Workshops, ser. LNBIP, vol. 171, Springer, 2013, pp. 66–78.

126




