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Abstract. Given a large collection of transactions containing items, a basic common asso-
ciation rules problem is the huge size of the extracted rule set. Pruning uninteresting and
redundant association rules is a promising approach to solve this problem. In this paper, we
propose a Condensed Representation for Positive and Negative Association Rules represent-
ing non-redundant rules for both exact and approximate association rules based on the sets of
frequent generator itemsets, frequent closed itemsets, maximal frequent itemsets, and minimal
infrequent itemsets in database B. Experiments on dense (highly-correlated) databases show
a significant reduction of the size of extracted association rule set in database B.
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infrequent itemsets.

1 Introduction and Motivations

Positive and negative association rules (PNAR) mining have been studied extensively in Data
mining problem. Let X and Y be two disjoints itemsets, an association rule X → Y states that
a significant proportion in database B containing items in the premise (or antecedent) X also
contain items in the consequent (or conclusion) Y . This rule can indicate the positive relations
between different items, is called positive association rule (PAR) in database B. the association
rule at other three forms X → Y , X → Y and X → Y , which can indicate the negative relations
between items in database B, are called negative association rules (NAR) in database B.

A basic common association rules problem is the huge number of association rules gen-
erated many of which are uninteresting (Definition 1) and redundant (Definition 2). Many ap-
proaches [13], [14], [16], based on traditional measure confidence [1], has been developed for
reducing the size of the extracted rule set. However, no method to prune uninteresting associa-
tion rules (UAR) has been found in the literature. Indeed, this classic measure confidence is not
efficient to prune uninteresting rules. In addition, these approaches are insufficient, because
they consider only the positive association rules, and this, with less selective pair support-
confidence [1]. Therefore, discovering NAR, which can be interest to several domains [4], [6],
[11], [15] such as Artificial Intelligence, Machine Learning, Data Mining, Big Data, Visualization,
Marketing, Web mining, etc, is much more less developed than PAR due to the significant prob-
lem complexity caused by high computational cost and huge search space in calculating NAR
candidates.

In this paper, we propose a Condensed Representation representing non-redundant pos-
itive and negative association rules based on generator itemsets, closed itemsets, maximal
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itemsets and minimal infrequent itemsets. The main contributions are summarized as follows.
1) We propose GC2M algorithm for mining simultaneously all frequent generators, all frequent
closeds, all maximal frequent itemsets, and all minimal infrequent itemsets. GC2M is an ab-
breviation of Generator itemsets, Closed itemsets, Maximal itemsets, and Minimal infrequent
itemsets. 2) We introduce a formal definition for uninteresting association rules (UAR), then pro-
pose an efficient strategy for pruning UAR using MGK measure [7]. 3) We propose an efficient
strategy for search space pruning. 4) We propose three new efficient bases based on MGK

measure : Concise Basis for Positive Approximate Rules (CBA), Concise Basis for Negative
Exact Rules (CBE−), and Concise Basis for Negative Approximate Rules (CBA−). We prove
that these concise bases are a lossless representation of non-redundant rules since all valid
rules can be derived from these (cf. Theorems 2, 3, 4 and 5). 7) Based on these formalizations,
we develop an efficient algorithm, called CONCISE, to discover non-redundant rules.

This paper is organized as follows. Section 2 discusses the related works. Section 3 gives
the basic concepts. A Condensed Representation for PNARs is detailed in Section 4. Section 5
presents the experimental results. Conclusion and future work are given in Section 6.

2 Related works

The approaches of association rules mining can be roughly divided into two categories: i Bases
of positive association rules, and ii Bases of negative association rules.

In positive basis, we present Duquenne-Guigues basis [10]. Without going into the details
of its calculation, this approach is not informative. Bastide’s approach [2] adapts Duquenne-
Guigues basis. However, it inherits the same flaws as Guigues’s approach [10]. In [13], the
authors define two bases: Exat Min-Max Association Rules and Approximate Min-Max Asso-
ciation Rules. Despite their indisputable interests, these two bases contain UARs, and not
complete (i.e. they do not generate the negative association rules). In [14], Pasquier defines
two bases: Generic Base for Exact Rules and Generic Base for Approximate Rules. However,
this approach is still incomplete and not optimal: it extracts only the positive association rules,
many of which are UARs due to the confidence. Xu’s approach [16] also extends Pasquier’s
approach [13], and defines two bases: Reliable Approximate Basis and Reliable Exact Basis,
using CF (Certainty Factor). Similar to Pasquier’s approach [14], Xu’s approach [16] is also
incomplete, it only considers positive rules, don’t consider negative association rules.

In negative basis, it is important to mention that the extraction of negative rules is less de-
veloped compared to that of positive rules. Note that it emerges from the bibliographic study
conducted so far that Feno’s approach [7] is the first approach to have studied the problem
of bases for negative rules. It extends the Pasquier’s approach [13], and defines four bases:
Basis for Exact Positive rules (BPE), Basis for Approximate Positive rules (BPA), Basis for
Exact Negative Rules (BNE) and Basis for Approximate Negative Rules (BNA). However, this
approach is not informative, because it selects the premises from a positive borders [12] (or
pseudo-closed [13]) which intuitively returns the maximal elements, not in accordance with the
notion of minimal premise. It is not very selective due to the use of critical value (cf. Equa-
tion (4)) when selecting valid rules. In addition, its formulation of negative exact rules is not
appropriate which can present a high memory for searching space. Recently, Dong et al. [5]
propose an efficient method for pruning redundant negative and positive rules, using Confi-
dence and Correlation coefficient. Similar to Pasquier’s approach, no methods to prune UARs
has been found. In particular, Dong’s approach does not consider a concept of bases for non-
redundant rules, then its configuration semantics is not comparable to our approach.

From this quick literature, mining informative association rules is still a major challenge, for
several reasons. On the one hand, the majority of existing approaches are limited on positive
association rules which are not sufficient to guarantee the interest of knowledge extraction. On
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the other hand, these approaches are also limited on classic pair support-confidence [1] which
produces a high number of association rules whose interest is not always guaranteed.

3 Basic concepts

Table 1. Context B
TID Items
1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE
6 BCE

In association rules problem, a Database (cf. Table 1) is a triplet B =
T , I,R. T and I are finite sets of transactions and items respectively.
R ⊆ T × I is a binary relation between T and I. A relation iRt denotes
that the item i satisfies the transaction t. Let X ⊆ I, X = {t ∈ T |∃i ∈
X : i, t ∉ R} is complementary set of X. A subset X ⊆ I with k = |X|
is called k-itemset, where |X| denotes the cardinality of X. The set
ϕX = X ′ = {t ∈ T |iRt,∀i ∈ X} is called extension of X. Similarly, the
set ψY = Y ′ = {i ∈ I|iRt,∀t ∈ Y } is intension of Y . Both functions ϕ
and ψ form a Galois connection between PI and PT [8], where PO is
a power set of O. The composite function γX = ψoϕX is called Galois closure operator. Let
X,Y ⊆ I, the support of X is defined as suppX = PX ′ = |X

′|
|T | , where P is a discrete probability.

The support and confidence [1] of X → Y are defined by suppX∪Y and confX → Y = PY ′|X ′
respectively. Let minsup ∈0, 1 a minimum support threshold, X is frequent if suppX ⩾ minsup.
We define F the set of all frequent in database B as F = {X ⊆ I|suppX ⩾ minsup}. Let
X,Y ⊆ I, X and Y are said to be equivalent, denoted by X � Y , iff γX = γY . The set of
itemsets that are equivalent to X is X = {Y ⊆ I | X � Y }. The item C is closed iff C = γC.
We define the set FC of all frequent closed itemsets in database B as: FC = {C ∈ I|C =
γC, suppC ⩾ minsup}. An itemset G is said a minimal generator of a closed C iff γG = C
and g ⊆ I with g ⊆ G such that γg = C. We define the set GC of all frequent generators as:
GC = {G ∈ C|C ∈ FC, g ⊂ G, suppG ⩾ minsup}. We define MFC the set of all maximal
frequent in database B as: MFC = {C ∈ FC | C ⊃ C, C ∈ FC}.

4 Condensed Representations for PNARs

Our approach is divided into two successive steps: (i) it extracts the set FC, MFC, Gγ., and
the set F MIN of minimal infrequent itemsets in B; (ii) it derives from these frequent sets the non-
redundant informative rules. An association rule is informative if its premise (resp. conclusion)
is minimal (resp. maximal). For lack of space, certain proofs of the Properties are omitted.

4.1 Generating of Gγ., FC, MFC and F MIN

Our main motivation lies in absence of an autonomous approach for mining Gγ., FC, MFC
and F MIN. We then propose an efficient algorithm, GC2M, that simultaneously collects these
four sets Gγ., FC, MFC and F MIN in database B. Here we briefly describe GC2M algorithm. It’s
composed of two algorithms (Algo. 1 and Algo. 2). Its main orginality lies in the effective support
counting strategy: Let X be a frequent k-itemset (k ⩾ 3) and X̃ a k − 1-subsets of X. Then, X
is not a generator iff suppX = min{suppX̃|X̃ ⊂ X} [2], i.e. no access to context B is made if X
is non-generator. On search space pruning, it uses the following properties: (i) All subsets of a
frequent are frequent, (ii) All supersets of an infrequent itemset are infrequent, (iii) All subsets of
a generator are also generator, (iv) All supersets of a non-generator are also non-generator [2].
These results will be synthesized in the algorithm 1. The following Figure 1 shows examplary
execution of Algorithm 1 with a small context B from table 1 and fixed minsup = 26. From MFC,
we can derive the set F MIN of minimimal infrequent in B.

Definition 1 (Minimal infrequent itemset) Let MFC be the set of maximal frequent, and F
the set of frequent in B. The set F MIN of minimal infrequent itemsets in B is defined as :

F MIN = {X ∈ 2I\MFC | Y ⊂ X,Y ∉ F}. (1)
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Require: A database B, A minimum support threshold minsup ∈0, 1.
Ensure: List of Gγ., FC andMFC.
1: FCC1.GENERATORS ← {1-itemsts}
2: for all (k ← 1;FCCk.GENERATORS ≠ ∅; k ) do
3: FCCk.closure← ∅; FCCk.support← 0;
4: FCCk ← GENCLOSURESFCCk

5: for all (candidate itemsets c ∈ FCCk) do
6: Calculate suppc;
7: if (suppc ⩾ minsup) then
8: FCk ← FCk ∪ {c}
9: end if
10: end for
11: FCCk1 ← GENGENERATORSFCk

12: FCCk1 ← GENMAXIMALFCk

13: end for
14: FC ← k−1

j=1 {FCj .CLOSURE,FCj .support}
15: return FC

Algorithm 1: GENERATING Gγ., FC AND MFC

Scan B

FCC1 supp

Pruning the infrequent itemsets

Gγ. FC MFC supp
A AC 3/6 A AC - 3/6
B BE 5/6 B BE - 5/6

−→ C C 5/6 −→ C C - 5/6
D ACD min36, 16, 16 = 16 < 26
E BE 5/6 E BE - 5/6

Scan B

FCC2 supp

Pruning the infreq. itemsets

Gγ. FC MFC supp
AB ABCE min26, 26, 26, 46 = 26 AB ABCE ABCE 2/6
AE ABCE min26, 26, 26, 46 = 26 AE ABCE ABCE 2/6

−→ BC BCE min46, 56, 46 = 46 −→ BC BCE - 4/6
CE BCE min46, 56, 46 = 46 CE BCE - 4/6

Figure 1. List of Gγ., FC and MFC using Algorithm 1 with minsup = 26

The Algorithm 2 inputs a database B, a minsup, and outputs the set F MIN. Let’s take our

Require: B,MFC and minsup ∈0, 1.
Ensure: FMIN the set of minimal infrequent itemsets.
1: FMIN ← ∅
2: for all (X ∈ 2I\MFC) do
3: if (Y ⊂ X | suppY ≤ minsup) then
4: FMIN ← FMIN ∪ {X}
5: end if
6: end for
7: return FMIN

Algorithm 2: GENERATING MINIMAL INFREQUENT ITEMSETS

example in Figure 1 at minsup = 26, we have D ∈ 2I\MFC. We see that D ∉ F and D̃ ⊂ D
such taht suppD̃ ≤ minsup. This means D is a minimal infrequent itemsets (i.e. D ∈ F MIN).

4.2 Generating non-redundant PNARs

This Subsection is based essentially on 5 components : Pruning UAR, Modelization of signifi-
cant rules, Search space pruning, Pruning redundant PNARs, and CONCISE algorithm.

4.2.1 Pruning Uninteresting Association Rules (UAR).

Table 2. Contingency table
A ¬A coffee ¬coffee

B 72 18 90 tea 20 5 25
¬B 8 2 10 ¬tea 70 5 75

80 20 100 90 10 100

We first formalize the idea of UAR, and then pro-
pose a strategy to prune UAR. Note that the clas-
sic support-confidence [1] is not able to prune
UAR. Table 2 ullustrates these limits. The informa-
tion given in this Table 2 can be used to evaluate
the association A → B and tea → coffee. For the
pair A,B, we have suppA ∪ B = 0.72 and confA → B = 0.9. For the pair (tea,coffee), we
have supptea ∪ coffee = 0.2 and conf tea → coffee = 0.8. The support and confidence are
considered fairly high for both rules, i.e. A → B and tea → coffee are interesting rules. How-
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ever, PB′|A′ = PB′ = 0.9 and conf tea → coffee = 0.8 < 0.9 = suppcoffee implie A and B are
independent (resp. tea disfavors coffee), i.e. A → B and tea → coffee are UAR.

Definition 2 (Uninteresting Association Rules (UAR)) Let X,Y ⊆ I such that X ∩ Y = ∅.
An association rule X → Y is said to be uninteresting rule if Y is independent on X (i.e.
PY ′|X ′ = PY ′) or Y is negatively dependent on X (i.e. PY ′|X ′ < PY ′).

We then propose an UAR pruning strategy by measuring the degree dependency of X and
Y , denoted ΔX,Y = PY ′|X ′ − PY ′. We then use MGK measure [7], defined as :

MGKX → Y =

{
P Y ′|X′−P Y ′

1−P Y ′ , if ΔX,Y > 0
P Y ′|X′−P Y ′

P Y ′ , if ΔX,Y ⩽ 0.
(2)

The MGK refers to dependencies between the antecedent and consequent of an association
rule. Values in −1, 0 show that there is a negative dependence between X and Y . Values in
0, 1 show that there is a positive dependence between X and Y . Value equal 0 show that Y
independent on X. We recall, rules with MGK equal to 1 are called Exact Association Rules,
and rules with MGK less than 1 are called Approximate Rules. Theorem 1 below states that
value of UARs defined by Definition 2 will be statistically null or negative.

Theorem 1 ([2) ] Let X,Y ⊆ I. (1) If PY ′|X ′ ⩽ PY ′, we have −1 ⩽ MGKX → Y ⩽ 0. (2) If
PY ′|X ′ > PY ′, then 0 < MGKX → Y ⩽ 1.

From the same example of table 2, we have MGKA → B = 0.9−0.9
1−0.9 = 0, this verifies that A

and B are independent. So, A → B is UAR. We also obtain MGK tea → coffee = 0.8−0.9
1−0.9 = −1 <

0, this means that coffee and tea are negatively dependent. In other words tea → coffee is
UAR. As result, the UARs are systematically pruned using MGK .

4.2.2 Modelization of significant rules using MGK .

Note that the first component of MGK (Eq. (2)) is implicative but the second is not, only the
first will be active in modelization. We introduce the quantities n = |T |, nX = |ϕX|, nY = |ϕY |,
nX∧Y = |ϕX ∪ Y | and nX∧Y = |ϕX ∪ Y |. The quantity NX∧Y indicates a random variable which
generates nX∧Y , and NX∧Y generates nX∧Y . In that case, the Eq. (2) can be rewritten :

MGKX → Y = 1 −
nnX∧Y

nXnY

(3)

The current versions [7] are based on critical value γα defined as

γα =

√
1
n

n− nX

nX

nY

n− nY
χ2α, (4)

where α a real in the interval 0, 1 and χ2α is a Chi-square statistic of a single degree of freedom.
This means that X → Y will be valid if MGKX → Y ⩾ γα. However, this critical value can
nevertheless present some limits. Indeed, a low α leads to a high critical value which rapidly
exceeds the MGK value. This rejects certain robust rules. Conversely, a large value of α leads
to a very low critical value. This accepts certain very weak rules (i.e. independent rules).

To overcome these limits, we define a new model based on the test H0 independence
hypothesis of X and Y in the face of a positive dependence hypothesis H1, of the rule X →
Y . We then model, under H0 independence hypothesis, the probability between the random
variable NX∧Y and the observed counter-examples nX∧Y using measure MGK . We notice that
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the sensitivity of this measure MGK to variations in the occurrences of the observed counter-
examples nX∧Y reades with the partial derivative given in the following Equation (5):

∂MGK

∂nX∧Y

= − 1
nXn

Y
n

(5)

This shows that MGK decreases when the number nX∧Y increases and all the more quickly as

the quantity
nXnY

n
is low. In other words, MGK grows when nX∧Y decreases, which is seman-

tically acceptable, but the rate of variation is constant, independent of the rate of decrease of
this number, variations of nY . Consider M̃GK as the realization of a variable MGK , defined as:

M̃GKX → Y = −M̃GKX → Y = −
nX∧Y − nXn

Y
n√

nXn
Y

n

√
n

nXnY

(6)

It is the opposite of the directed contribution of the cell X ∪Y to the χ2

n except for a constant. In
practice, it is quite common to observe a few transactions which contain X and not Y without
having the general trend to have Y when X is present contested. Therefore, nX∧Y must be
taken into account to statistically accept to retain or not the rule X → Y . Suppose we draw at
random two subsets U,Z ⊆ I which contain nX and nY respectively, i.e. NX∧Y = |ϕU ∪Z|. This
variable NX∧Y follows a Poisson law with parameter nXn

Y
n [9]. We then measure the smallness

of random variable NX∧Y expected to the number nX∧Y under H0 independence hypothesis
between X and Y . Such an association rule X → Y is then said to be admissible at the
threshold α ∈0, 1 if the probability that the random variable NX∧Y is lower than that observed
number nX∧Y under H0 independence hypothesis on X and Y is relatively low :

PNX∧Y ⩽ nX∧Y |H0 ⩽ α. (7)

We then have :

PNX∧Y ⩽ nX∧Y |H0 = P

(
NX∧Y − nXn

Y
n√

nXnY

n
√
nXnY

⩽ M̃GKX → Y

)

Noting Φ. the standard normal distribution, we have
NX∧Y − nXn

Y
n√

nXnY

L−−−→
n→∞

N 0, 1, and
n

√
nXnY

p.s−−−→
n→∞

1 ⇒ n
√
nXnY

P−−−→
n→∞

1 ⇒ KX,Y =
NX∧Y − nXn

Y
n√

nXnY

× n
√
nXnY

L−−−→
n→∞

N 0, 1. Finally, we have:

PNX∧Y ⩽ nX∧Y |H0 = P
(
KX,Y ⩽ M̃GKX → Y

)
T CL≃ M̃GKX→Y

−∞
e−

t2
2

√
2π

dt = ΦM̃GKX → Y .

Our model of significant association rules is given in the following Definition 3.

Definition 3 (Valid association rule) Given a minimum threshold α ∈0, 1. An association rule
X → Y is said to be valid at level confidence 1 − α, called 1 − α-valid, if only if :

pXY = 1 − Φ−M̃GKX → Y ⩾ 1 − α (8)

For example, from Table 1, consider a rule A → BCE with α = 1%. Here, nA = 2, nB = 5
and nBCE = 4. From nA = 2, nB = 5, nBCE = 4 and nAnBCE

n = 0 < 3 (Gaussian hypothesis, cf.
[9]), we have pABCE = 0.5 < 0.99 ⇒ A → BCE is 99%-invalid (i.e. it’s not valid at α = 1%).
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4.2.3 Search space pruning.

Pasquier’s approach [14] is the most popular approach for generating of non-redundant rules.
However, no methods for search space pruning of significant valid rules is used by this ap-
proach. While it is possible to restrict the search space by partitioning into 2 the 8 (X → Y ,
Y → X, X → Y , Y → X, X → Y , X → Y , Y → X and Y → X) candidates in database B.

We then explain this restriction. In [2], we demonstrated that if X favors Y (i.e. PY ′|X ′ >
PY ′), then these are the four association rules X → Y , Y → X, X → Y and Y → X, which will
be studied. If X disfavors Y (i.e. PY ′|X ′ ⩽ PY ′), then these are the four contrary association
rules X → Y , X → Y , Y → X and Y → X which will be studied. We then obtain two classes:
Class of rules (X → Y , Y → X, X → Y , Y → X), denoted C1, and Class of rules (X → Y ,
X → Y , Y → X, Y → X), denoted C2. We also demonstrated that all rules of C1 can be
derived from X → Y , and all rules of C2 can be derived from X → Y . So, we only study two
rules such as X → Y and X → Y . This gives the reduction space 100(8-2)/8=75%.

4.2.4 Pruning redundant PNARs.

The most popular method to prune redundant rules is the base of rules that is a set of reduced
size rules that do not contain any redundant rule. Definition 4 defines a redundant rule.

Definition 4 (Redundant rule) The rule r1 : X1 → Y1 is redundant if ∃r2 : X2 → Y2, where
X1 ⊃ X2, Y1 ⊂ Y2 such that suppr1 = suppr2 and MGKr1 =MGKr2.

Corresponding to the three popular approaches [7], [14], [16], we propose three more effi-
cient bases called Concise Bases as defined in Definitions 6, 7 and 8. In addition, we define a
base for Positive Exact Rules using MGK , called CBE (cf. Definition 5). More precisely, CBE
basis is similar of Base for Exact Rules defined in [14], because an exact rule of Confidence is
also exact of MGK (cf. [2]). We prove that these concise bases are a lossless representation of
non-redundant rules since all valid rules can be derived from these (cf. Theorems 2, 3, 4, 5).

Definition 5 (CBE Basis) Let FC be the set of frequent closed itemsets. For each C ∈ FC, let
GC be the set of minimal generators of C, we have:

CBE = {G → C\G | G ∈ GC , C ∈ FC, G ≠ C} (9)

Theorem 2 (i) All valid positive exact rules and their supports can be derived from to CBE
basis. (ii) All rules in CBE are non-redudant exact rules.

Proof 1 i Let r1 : X1 → Y1\X1 be the exact positive rule between two frequents X1 and Y1
such that X1 ⊂ Y1. Let C be a frequent closed itemset in B (i.e. C ∈ FC). Since MGKr1 = 1,
we have suppX1 = suppY1. From suppX1 = suppY1, we derived that suppγX1 = suppγY1
⇒ γX1 = γY1 = C. Obviously, there exists a rule r2 : G → C\G ∈ CBE such that G is a
generator of C for which G ⊆ X1 and G ⊆ Y1. We show that the rule r1 and its supports can
be derived from the rule r2 and its supports. From γX1 = γY1 = C and γG = C, we then have
suppr1 = suppγX1 = suppγY1 = suppC = suppr2, and deduce that MGKr1 = MGKr2. This
explains that r1 can be derived from r2, and is a redundant rule of r2, so it’s pruned in CBE
base.

ii Let r2 : G → C\G ∈ CBE , we then have G ∈ GC and C ∈ FC. We demonstrate that there
is no other rule r3 : X3 → Y3\X3 ∈ CBE such as suppr3 = suppr2, MGKr3 = MGKr2, X3 ⊆ G
and C ⊆ Y3. If X3 ⊆ G, we then have γX3 ⊆ γG = C. We deduce that X3 ∉ GC ⇒ r3 ∉ CBE . If
C ⊆ Y3, we then have C = γC = γG ⊂ Y3 = γY3 ⇒ G ∉ GY3 . In other words, r2 is non-redundant.
This proves that CBE is a non-redundant base.

181



Parfait & Totohasina | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Definition 6 (CBA Basis) Let FC be the set of frequent closed. For each C ∈ FC, let GC be
the set of generators of C. Consider 0 < α ⩽ 1, we have:

CBA = {G → C\G|G, C ∈ GγG × FC, γG ⊂ C, PC′|G′ > PC′, pGC ⩾ 1 − α} (10)

Theorem 3 (i) All valid positive approximate association rules, their supports and MGK , can be
derived from the rules of CBA. (ii) All association rules in the CBA basis are non-redundant
approximate association rules.

Proof 2 i Let r1 : X1 → Y1\X1 ∈ CBA such that X1 ⊂ Y1. For any X1 and Y1, there is a
generator G1 such that G1 ⊂ X1 ⊆ γX1 = γG1 and a generator G2 such that G2 ⊂ Y1 ⊆ γY1 =
γG2. Since X1 ⊂ Y1, we have X1 ⊆ γG1 ⊂ Y1 ⊆ γG2 and the rule r2 : G1 → γG2\G1 ∈ CBA.
We show that r1 can be derived from r2. Since G1 ⊂ X1 ⊆ γX1 = γG1 and G2 ⊂ Y1 ⊆
γY1 = γG2, we have suppG1 = suppX1 and suppG2 = suppY1 = suppγG2. This gives that
suppr1 = suppr2 and MGKr1 =MGKr2, in other words, r1 can be derived from r2 and therefore,
r1 is a redundant rule of r2.

ii Let r2 : G → C\G ∈ CBA, we then have C ∈ FC and G ∈ GC . We demonstrate that there
is no other rule r3 : X3 → Y3\X3 ∈ CBA such as suppr3 = suppr2, MGKr3 = MGKr2, X3 ⊆ G
and C ⊆ Y3. If X3 ⊆ G, we then have γX3 ⊂ γG = C ⇒ X3 ∉ GC . If C ⊆ Y3, we then have
C = γC ⊂ Y3 = γY3. As result, G ∉ GY3 ⇒ r3 ∉ CBA, in other words, r2 is a non-redundant rule.
This proves that CBA is a non-redundant base.

Definition 7 (CBE− Basis) Let MFC be the set of maximal frequent itemsets, F MIN the set
of minimal infrequent on database B. For each M ∈ MFC, let GM be the set of minimal
generators of M, we have:

CBE− = {G → y | G ∈ GM, M ∈ MFC, y ∈ F MIN} (11)

Theorem 4 (i) All valid negative exact association rules, their supports and MGK , can be de-
rived from the rules of the CBE− basis. (ii) All association rules in the CBE− basis are non-
redudant negative exact association rules.

Proof 3 i Let r1 : X1 → Y 1\X1 ∈ CBE− such that X1 ⊂ Y1 ⊆ M where M ∈ MFC.
Since MGKr1 = 1, we have X1 � Y 1 ⇒ suppX1 = suppY1. Since suppX1 = suppY1, we
have suppγX1 ∪ Y1 = suppγX1 = suppγY1 ⇒ γX1 ∪ Y 1 = γX1 = γY1 = M a. Obviously,
∃r2 : G → y\G ∈ CBE− such that G ∈ GM for which G ⊆ X1 and G ⊆ Y1, and thus G ⊆ y (by
Definition 7). We show that the rule r1 can be derived from r2. Since r2 : G → y\G ∈ CBE−, we
have suppG∪ y = suppG. From suppG∪ y = suppG, we have suppγG∪ y = suppγG = suppγy ⇒
γG∪y = γG = γy = M a′. From relations a and a′, we have γG∪y = γX1∪Y1 ⇔ suppr1 = suppr2.
Since G ⊆ X1 ⊂ Y1 ⊂ y ⊆ γG = M, we have suppG = suppX1 = suppY1 = suppy = suppM ⇒
MGKr1 =MGKr2. These results explain that r1 can be derived from r2, and is a redundant rule
w.r.t r2.

ii Let r2 : G → y\G ∈ CBE−, i.e. G ∈ GM and y ∈ F MIN. We demonstrate that there is no
other rule r3 : X3 → Y 3\X3 ∈ CBE− such as suppr3 = suppr2, MGKr3 = MGKr2, X3 ⊆ G and
y ⊆ Y3. If X3 ⊆ G, we then have γX3 ⊆ γG ⊂ γy = M. We deduce that X3 ∉ GM and conclude
that r3 ∉ CBE−. If y ⊆ Y3, we then have γG ⊂ γy ⊆ γY3 = M. We deduce that G ∉ GY 3

and
conclude that r3 ∉ CBE−. This implies that r2 is a non-redundant rule, and proves that CBE−

is a non-redundant base.

Definition 8 (CBA− Basis) Let FC be the set of frequent closeds. For each C ∈ FC, let GC be
the set of generators of C. Consider 0 < α ⩽ 1, we have:

CBA− = {G → g|G, g ∈ GγG × Gγg, γG ⊊ γg, PG′|g′ > Pg′, pGg ⩾ 1 − α} (12)
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Theorem 5 (i) All valid negative approximate association rules, their supports and MGK , can
be derived from the rules of CBA−. (ii) All association rules in the CBA− are non-redudant
negative approximate association rules.

Proof 4 i Let r1 : X1 → Y1\X1 ∈ CBA− with X1 ⊂ Y1. For any frequent X1 and Y1, there
is a generator G1 such that G1 ⊂ X1 ⊆ γX1 = γG1 and a generator G2 such that G2 ⊂
Y1 ⊆ γY1 = γG2. Since X1 ⊂ Y1, we have X1 ⊆ γG1 ⊂ Y1 ⊂ G2 ⊆ γY1 = γG2. Obviously,
∃r2 : G1 → G2\G1 ∈ CBA− such that γG ⊊ γg (by Definition 8). We show that r1 can be
derived from r2. From G1 ⊂ X1 ⊆ γG1 and G2 ⊂ Y1 ⊆ γG2, we then have G1 � X1 and
Y1 � G2 ⇒ suppX1 ∪ Y1 = suppG1 ∪G2 and MGKX1 → Y1 = MGKG1 → G2. This explains that
r1 can be derived from r2, and is a redundant rule w.r.t. r2. ii Let r2 : G → g\G ∈ CBA−, i.e.
G ∈ GC and g ∈ GC such that γG ⊊ γg (i.e. C ⊊ C). We demonstrate that there is no other rule
r3 : X3 → Y3\X3 ∈ CBA− such that suppr3 = suppr2, MGKr3 =MGKr2, X3 ⊂ G and Y3 ⊃ g. If
X3 ⊂ G, we then have γX3 ⊂ γG = C ⇒ X3 ∉ GC . Since X3 ⊂ G, we have suppX3 > suppG ⇒
MGKr3 < MGKr2. If g ⊂ Y3, we then have suppg > suppY3 ⇒ MGKr2 > MGKr3. This means
that r2 is a non-redundant rule, and proves that CBE− is a non-redundant base.

4.2.5 CONCISE algorithm.

CONCISE is composed of three algorithms (Algo. 1, Algo. 2,Algo. 3). The principal procedure
(Algo. 3) takes as input GC , FC, MFC, F MIN,minsup and α. It returns all non-redundant PNARs.

Require: Gγ., FC,MFC, FMIN, minsup and α.
Ensure: CB, A Concise Base of Non-Redundant PNARs.
1: CB = ∅;
2: for all (C ∈ FC) do
3: for all (G ∈ GC) do
4: if (PC′|G′ > PC′) then
5: if (γG = C) then
6: if (G ≠ γG & suppG ∪ C ≥ minsup) then
7: CB ← CB ∪ {G→ C\G}; /* CBE Basis */
8: end if
9: else if (γG ⊂ C) then
10: if (suppG ∪ C ≥ minsup & pGC ⩾ 1− α) then
11: CB ← CB ∪ {G→ C\G}; /* CBA Basis */
12: end if
13: end if
14: else if (PC′|G′ < PC′) then
15: for all (M∈MFC) do
16: for all (G ∈ GM) do
17: for all (y ∈ FMIN) do
18: if (suppG ∪ y ≥ minsup) then
19: CB ← CB ∪ {G→ y\G}; /* CBE− Basis */
20: end if
21: end for
22: end for
23: end for
24: for all (g ∈ Gγg |γG ⊊ γg & P g′|G′ < P g′) do
25: if (suppG ∪ g ≥ minsup & pGg ⩾ 1− α) then
26: CB ← CB ∪ {G→ g\G}; /* Base CBA− */
27: end if
28: end for
29: end if
30: end for
31: end for
32: return CB

Algorithm 3: GENERATING NON-REDUNDANT ASSOCIATION RULES

5 Experimental evaluation
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Table 3. Data characteristics
Database |T | |I| Avg. size
T10I4D100K 100 000 1 000 10
T20I6D100K 100 000 1 000 20
C20D10K 10 000 386 20
MUSHROOMS 8 416 128 23

We evaluate CONCISE with two comparable baseline ap-
proaches Pasquier’s approach [14] and Feno’s approach [7].
All algorithms are implemented in R. All the experiments are
run on a PC Core i3-2350M with 4CPUs and 4GB memory
on the Windows 7. We compare their number of valid rules
and computational costs on different databases (cf. Table 3): T10I4D100K1, T20I6D100K (cf. foot-
note 1), C20D10K2 and MUSHROOMS (cf. footnote 2). We make CONCISE and Feno’s approach
to follow the same constraint α = 5%. For Pasquier’s approach, consider a minimal confidence
minconf = 80%. The number of extracted rules for the three algorithms, by varying the minsup,
is shown in Table 4. For this, E (resp. A) indicates the positive exact (resp. approximate) rules.
E− (resp. A−) indicates the negative exact (resp. approximate) rules. We also denote by "-" a
subset which could not generated. We observe that no negative association rules are gener-

Table 4. Number of all valide non-redundant association rules
Pasquier’s approach Feno’s approach CONCISE

Dataset minsup |E | |A| |E−| |A−| |E | |E−| |A| |A−| |E | |E−| |A| |A−|

T10I4D100K
10% 0 11625 - - 0 0 10555 1256 0 0 725 52
20% 0 8545 - - 0 0 6656 1058 0 0 545 34
30% 0 3555 - - 0 0 2785 954 0 0 355 25

T20I6D100K
10% 115 71324 - - 95 98 51899 3897 115 103 1804 56
20% 76 57336 - - 66 91 35560 2705 76 95 1403 38
30% 58 45684 - - 43 63 21784 1887 58 63 1175 27

C20D10K
10% 1125 33950 - - 975 255 28588 11705 1125 285 1856 182
20% 997 23821 - - 657 135 19582 8789 997 185 1453 123
30% 967 18899 - - 567 98 11581 4800 967 101 1221 97

Mushrooms
10% 958 4465 - - 758 289 3850 3887 958 304 1540 89
20% 663 3354 - - 554 178 2144 2845 663 198 1100 78
30% 543 2961 - - 444 109 1140 1987 543 115 998 39

ated by Pasquier’s approach. For each algorithm, no E and A− are generated on T10I4D100K
when minsup ≤ 30%. The reason is that all frequent are closed itemsets. On other databases,
Feno’s approach represents a number smaller than Pasquier’s approach and CONCISE. The
explanation is that Feno’s approach uses the set of pseudo-closed [13] which returns a re-
duced number of frequent itemsets and thus, it is the same for number of rules generated, but
it’s not informative. Whereas Pasquier’s approach and CONCISE algorithm generate the more
informative non-redundant association rules.

On dense databases (C20D10K and MUSHROOMS), CONCISE algorithm is much more se-
lective than Pasquier’s and Feno’s approaches for all minsup. For example, on C20D10K
database and less minsup = 1%, Pasquier’s (resp. Feno’s) approch contains 33950 (resp.
28588) positive approximate rules as showed in Table 4, while the CONCISE contains 1856
positive approximate rules; this gives the reduction ratio 94.5% and 93.51% respectively. In
this case, 32094 (resp. 26732) positive approximate rules can be deduced either from the
Pasquier’s (resp. Feno’s) approach or from the CONCISE algorithm. The main reason is asso-
ciated to the different techniques to prune both UARs and redundant association rules.

We present in the following the execution times of CONCISE compared to those existing.
However, this comparison is still very difficult, for several reasons. First, Feno’s approach is not
comparable to CONCISE, because it ignores the big phase for generating Gγ., FC and MFC.
Pasquier’s approach could not generate the negative rules. We partialy compare CONCISE

and Pasquier’s approach on execution times of E and A. The results will be represented in
Fig. 2 by varying the minsup at fixed α = 0.05 and minconf = 0.6. On sparse databases
(T10I4D100K and T20I6D100K), CONCISE and Pasquier’s approach are almost identical for
positive exact rules E for all minsup (cf. Fig. 2a and 2b). On approximate rules A, it is very
obvious that CONCISE is better than Pasquier’s approach (cf. Fig. 2a, 2b). The explanation
is that all frequent are closed itemsets, that complicates the task of Pasquier’s approach who
performs more operations than CONCISE for counting frequent closed itemsets.

1http://www.almaden.ibm.com/cs/quest/syndata.html
2http://kdd.ics.uci.edu/
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Figure 2. Response times by varying minsup at fixed α = 0.05 and minconf = 0.6

On dense databases (C20D10K and MUSHROOMS), CONCISE algorithm leads to signifi-
cant average time compared to Pasquier’s approach for all minsup (cf. Figure 2c and Fig-
ure 2d). The main reason is associated to the technique for pruning search space of valid
positive/negative association rules. Thanks to the different optimizations as defined on Sub-
section 4.2.3, CONCISE algorithm can reduce considerable amount the execution time for all
minimum support threshold minsup, it is not the case for Pasquier’s approach. The latter ob-
tains the least performance. This is mainly due to the lack of techniques for pruning the search
space for valid association rules. This obviously affects its execution time. However, Pasquier’s
approach joins CONCISE algorithm for the E execution times, when minsup is 20% to 30%.

6 Conclusion

In this paper, we presented and evaluated a condensed representation for association rules.
It is an efficient method for representing non-redundant positive and negative rules. We the-
oretically proved and experimentally confirmed that our approach can eliminate considerable
amount of redundancy and uninteresting rules. Compared to the Pasquier’s and Feno’s ap-
proaches, our approach is not only a concise but also a lossless extraction of positive and
negative association rules. From this, all informative association rules can be deduced. The
perspective would be to extend this proposal in Graphs and Classification problems.
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