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Abstract. Recently we observe a significant increase in the amount of easily accessible data 
on transport and mobility. This data is mostly massive streams of high velocity, magnitude, 
and heterogeneity, which represent a flow of goods, shipments and the movements of fleet. It 
is therefore necessary to develop a scalable framework and apply tools capable of handling 
these streams. In the paper we propose an approach for the selection of software for stream 
processing solutions that may be used in the transportation domain. We provide an overview 
of potential stream processing technologies, followed by the method for choosing the 
selected software for real-time analysis of data streams coming from objects in motion. We 
have selected two solutions: Apache Spark Streaming and Apache Flink, and benchmarked 
them on a real-world task. We identified the caveats and challenges when it comes to 
implementation of the solution in practice. 
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Introduction 

The recent rapid development of communication and detection technologies, the emergence 
of low-cost and widespread smart sensors, and a significant drop in data storage costs have 
all contributed to a significant increase in the amount of easily accessible data on transport 
and mobility. The volume and speed at which sensor data is generated, processed, and 
stored is unprecedented [1].  

The advent of Big Data, including massive streams of real-time data of high velocity, 
magnitude, and heterogeneity, have triggered changes in many fields. One of them is the 
transport sector that manages a massive flow of goods and at the same time creates large 
data sets. These data streams concern inter alia mil-lions of shipments and the movements 
of fleet that are tracked every day [2]. This data is then considered as a source for context-
aware applications and intelligent services, aiming to improve traffic efficiency, safety, and 
security [3] as well as last-mile delivery optimization, route optimization, fleet management, 
and detection of anomalous behavior [2] These services are applied in various transport 
modes, such as road, maritime or public transport as well as in various forms of shared 
transport (e.g., carsharing, bike-sharing). For example, data extracted from computers 
embedded in vehicles, that concern an object in motion, i.e., its origin, destination, content, 
and location, can be used to better understand and predict the flow of goods and people in 
real time. These data streams can be further combined with other data gathered from 
navigational systems, mobile phones (e.g., location, activities), environmental sensors (e.g., 
pollution levels), or social net-works (e.g., people’s preferences and relationships). 

Nevertheless, the potential of this massive amount of data can be exploited only if there 
are tools and models able to efficiently extract, detect and analyze relevant information from 
the data streams [4]. However, most of the approaches or methods applied in the existing 
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transportation systems and applications do not fit the paradigm of Big Data analytics [1]. The 
challenge now is not only to collect the data but to draw conclusions from them. Therefore, it 
is required to develop modern system architectures that would allow to efficiently process 
large data streams. As indicated by [5] in their systematic over-view of big data stream 
analysis, a significant amount of previous research has been directed to real-time analysis of 
big data streams and not much attention has been given to the preprocessing stage. 
Moreover, only a few big data streaming technologies offer a possibility to do both  batch, 
streaming and iterative jobs. Therefore [5] suggest that research effort should be directed 
towards developing scalable frameworks and architectures able to accommodate data 
stream computing mode, effective resource allocation strategy, and parallelization issues.  

In order to design such a scalable and efficient architecture, a number of choices have to 
be made by designers, including the selection of proper software and hardware. In response 
to this challenge, we propose an approach for the se-lection of software for stream 
processing solutions that may be used in the transportation domain (analysis of data streams 
generated by objects in motion). The aim is to show steps that need to be followed while 
designing system architecture for data stream analysis. To achieve this goal, we provide an 
overview and characterization of some stream processing technologies, followed by 
proposing a method for comparing the selected software for real-time analysis of data 
streams coming from objects in motion along with identification of the caveats and 
challenges when it comes to implementation of the software in practice. 

We designed and implemented in the selected technologies a Minimum Working 
Example (MWE) in which an exemplary data stream with location of moving objects is used. 
The stream is roughly 10 MB per minute, which gives around 15 GB for a 24h time window. 
The idea is to perform the real-time anomaly detection on a sliding window using the smallest 
time interval possible. This naturally depends on the size of the data, the complexity of the 
used algorithms, and avail-able processing power.  

The paper is structured as follows: in section 2 a comparison of the batch and streaming 
processing is provided, followed by software selection options (section 3) and description of 
the method (section 4). Section 5 and 6 present the results of benchmarking of the selected 
tools and discussion of the result. The paper ends with conclusions and indication of future 
work. 

Background 

The focus of this paper is stream processing. It is then necessary to explain the characteristic 
features of this approach to processing compared to more traditional batch processing. 

Batch processing is the processing of data in a group, referred to as batch. This means 
that data has to be collected first and then processed on-demand or based on a schedule. In 
this case we know in advance the volume of data to work on and the system we use for 
calculations can plan processing steps accordingly. Algorithms can also be designed in a 
way to allow optimization of the resources used. The batch processing is dedicated for large 
quantities of data that is usually not time-sensitive. 

In the stream processing there is no collection of data for “future” use. Data is sent to 
analytical modules immediately. Such an approach allows addressing the real-time or near-
real-time scenarios. This also entails additional requirements for the processing system. It is 
also more difficult to design algorithms that need to consider a constant update of the results 
when new records arrive in a stream. 

There are then several features specific for the stream processing [6]. 

 Buffering past input as streaming state.

Data is not stored explicitly but this does not mean that it is forgotten. Arriving data changes 
the way we would interpret the overall situation or data to come. Thus, it changes the so-
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called streaming state. The typical case in the studied domain would be to remember the last 
known position of a moving object, along with a timestamp. The state can also be 
remembered as values accumulated over time. Many algorithms can be implemented this 
way, where future input can be matched with past input. 

 Joining streams with streams

It is very common in the SQL world to join tables to perform a query. The same can apply to 
the stream processing but here instead of static tables we have dynamic streams. Joining 
streams thus requires an additional temporal dimension to be considered. For example, we 
can detect if tracked moving objects were close to each other in a specific time frame. 

 Streaming aggregations

Another very common query type in SQL is aggregation. A big number of rows is reduced to 
a small number of unique entities with assigned totals. The same can also apply to streams. 
One of the options is an accumulation of values over the whole history. The most 
demanding, however, is the accumulation of values in a specific time frame. For example, 
one can request the total number of moving objects observed in a monitored area in the past 
24 hours. Results of the query will differ depending on the moment of its execution. In the 
stream processing, we need to have the answer at any moment, which represents the 
current state of the world characterized by the collected data. The totals in aggregations 
change when new data arrives. 

 Handling late and out-of-order data

This issue is a consequence of how data is collected. We do not have any control over the 
objects, whether they send data immediately or need to cache because of connectivity 
issues. Data cannot be sorted either because it is not physically stored. Storing it locally 
would mean constant reprocessing because of out-of-order events and that the overall would 
be counterproductive. Therefore, additional measures were undertaken to handle it. First of 
all, the most distinctive for the stream processing is watermarking, which allows tracking of 
events (data accompanied by a timestamp) that still need to be processed although being 
late. The out-of-order events are not problematic as the stream processing considers them in 
specific time frames. 

Software selection 

The analysis of moving objects is a task that is best performed using stream processing. For 
this purpose, we need to choose appropriate software and this is what the paper is about. 
Currently, on the market, there are a couple of computation engines that support stream 
processing. The literature review reveals few studies focused on benchmarking streaming 
computation engines [7, 8, 9, 10]. However, those studies show different use cases and 
there is no clear winner. Therefore it is necessary to design our criteria for a specific case. 
Thus, let us discuss the selection of criteria for such software. 

Criteria for Selection 

There are many software solutions supporting this use case. We, therefore, de-fined criteria 
to support designers in making the choice. They are as follows: 

 Horizontal scalability, that is the scalability of a cluster of many processing nodes.
The horizontal scalability allows going beyond what a single machine, used in vertical
scalability, may provide, as, depending on the requirements, one may distribute the
processing to hundreds of thousands of nodes, which delivers resources many times
greater than any vertical scaling may provide.

 Maturity of the solution and commercial as well as community support. While there
are multiple big data stream processing solutions, we recommend picking the ones
which are more widely adopted and available for not less than several years. This is
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due to the fact that streaming applications running on clusters are notoriously difficult 
to debug. While some brand-new cutting-edge technologies may provide some 
benefits, without proper community support (on some web forums, etc.) it may be 
very difficult to find root causes for different issues that we may encounter along the 
way. 

 Suitable licensing for a commercial project.

 Support by cloud providers. Some software solutions are well adopted on cloud
platforms, which greatly increases ease of deployment and subsequent management
of the system in production. Theoretically, we may use a cloud platform only in the
Infrastructure as a Service (IaaS) model and install all the software manually on the
hardware operated by the cloud platform. Then, we may use any software we like.
Still, this does not allow us to utilize some of the most important advantages of the
cloud. The cloud platforms provide more managed solutions, which deliver both the
hardware and pre-configured soft-ware distributions, along with functions of
monitoring, encryption, etc. Such managed solutions are nevertheless available only
for limited software solutions and, for example, not all stream processing engines may
be used this way.

Our next step was the selection of software candidates based on a keyword search for 
“stream processing” and “stream analytics”, along with “big data”. 

First Round Candidates 

As one of our primary requirements was the stream processing, we have focused on 
software providing this capability. For each solution, we filled in details concerning an 
implementation language, a license, and stream features. We also con-fronted the features 
with our criteria for selection and presented the major pros and cons. Below we shortly 
characterize main solutions in this area. 

Apache Spark1 is implemented in Scala and can be used from Scala, Java, and Python. 
It is based on the Apache license. It supports the stream storage and the stream processing. 
As an advantage, we can mention tight integration with the batch processing framework and 
ML library and the capability for the structured streaming. It is also production-ready. On the 
negative side, it is a near-real time solution (up to a few seconds of delay). Continuous 
processing with  low (~1 ms) end-to-end latency is still in the experimental phase, hence, not 
recommended for production environments.  

Apache Kafka2 is written in Scala and Java. It can be integrated with many languages, 
including C++, Haskell, Node.js, OCaml, PHP, Python, Ruby, C#/.NET. It is based on the 
Apache license. It supports the stream storage and the stream processing. On the positive 
side, it is very fast, mostly due to the simplicity – it is more a low-level publish-subscribe 
message broker than a data processing pipe-line. 

Apache Flink3 is also implemented in Java and Scala and additionally pro-vides 
interfaces to Python. It is based on the Apache license. It supports the stream storage and 
the stream processing. Its main advantage is speed – it is faster than Spark, and seems to 
be reliable and powerful for complex stream processing. 

Apache Pulsar4 is dubbed as a cloud-native, distributed messaging and streaming 
platform. It can be bound with Java, C++, Python, and Go. It supports the stream storage but 
not the stream processing. It is a publish-subscribe messaging system, and in this respect, it 
is very similar to Kafka. Still, Kafka is more efficient, supports more features and is easier to 
use. 

1
 http://spark.apache.org 

2
 https://kafka.apache.org 

3
 https://flink.apache.org 

4
 https://pulsar.apache.org 
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Apache Storm5 can be used with JVM-based languages (predominantly Clojure), 
JavaScript, Python, and Ruby. It is based on the Apache license. It supports the stream 
processing but does not support the stream storage. Its advantage is speed. The drawback 
is that it is not so convenient for more complex tasks. 

Apache Samza6 is implemented in Java and Scala. It is based on the Apache license. It 
supports the stream processing but does not support the stream storage. There are not any 
advantages related to our task. It is not suitable for more complex tasks and depends on 
Kafka. It is not actively developed (the recent stable version was launched almost 2 years 
ago). 

In Table 1 we provide the comparison of the main features of the studied solutions. 

Table 1. The comparison of the main features 

Solution 
Horizontal 
scalability 

Maturity/  
community 

Suitable  
licensing 

Cloud  
support 

Apache Kafka ++ ++ ++ ++ 
Apache Spark ++ ++ ++ ++7 
Apache Flink ++ + ++ ++8 
Apache Storm ++ - ++ - 
Apache Samza ++ - ++ - 

 

It is important to note that both Apache Flink and Apache Spark9 are supported by cloud 
providers as a managed solution. An example of a good integration with the cloud is EMR10. 
It is the industry-leading cloud big data platform for processing vast amounts of data using 
open source tools such as Apache Spark and Apache Flink. 

Apache Kafka is mentioned as an underlying solution both for Flink and Spark. It is not a 
fully-fledged stream processor but merely a streaming engine. It can be considered as a kind 
of database that needs higher-level tools to work with. Therefore, in the next sections, we will 
study the short-listed candidates, i.e., Apache Spark and Apache Flink. 

Apache Spark 

According to the documentation, Apache Spark is a unified analytics engine for large-scale 
data processing11. It was originally designed for the static datasets batch processing (Spark 
generic) and the streaming data processing (Spark Structured Streaming) was added later.12 

Spark can be run using its standalone cluster mode or on the already existing clusters. 
Its engine can access diverse data sources. The important feature of Spark is being scalable 
using Hadoop YARN, Mesos, or K8s. Spark (generic) has also support for powerful data 
engineering and machine learning libraries (e.g. MLlib). Originally, Spark was written in 
Scala. However, there are also APIs available in Java and Python. It is an open-source 
solution and has a huge community. Spark Structured Streaming supports the stream 
processing using a micro-batch processing engine (100 milliseconds latencies) and 
continuous processing (still in an experimental phase). It ensures an end-to-end exactly-once 
fault-tolerance guarantee. 

                                                
5
 http://storm.apache.org  

6
 https://samza.apache.org  

7
 https://aws.amazon.com/emr/features/spark/  

8
 https://aws.amazon.com/about-aws/whats-new/2019/11/you-can-now-run-fully-managed-apache-

flink-applications-with-apache-kafka/  
9
 https://aws.amazon.com/emr/features/spark/  

10
 https://aws.amazon.com/emr/ 

11
 https://spark.apache.org/docs/latest/  

12
 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html  
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From a practical point of view, a stream processed by Apache Spark Structured 
Streaming is treated as an unbounded structured table and it is possible to perform the same 
operations as in static Spark SQL. Then, the streaming output can be saved on various sinks 
such as Kafka or file system files. 

Apache Flink 

According to the authors of the solution, Apache Flink is “a framework and distributed 
processing engine for stateful computations over unbounded and bounded data streams.”13 
What is referred to as bounded stream processing is in fact equivalent to the batch 
processing. Unbounded streams have a start but no defined end and are equivalent to the 
stream processing. 

It is important to emphasize that Apache Flink was designed with data streams in mind – 
it is referred to as a stream processor. The developers also paid attention to flexibility in 
programming, hence Flink allows for integration with SQL and Table API. Finally, in the 
context of the moving object analysis scenarios, one of the interesting features could be CEP 
(Complex Event Processing) for pattern discovery. 

The main feature of the Flink approach is the abstraction of streams. They are perceived 
as temporary tables, also referred to as dynamic tables. The dynamic tables are changing 
over time. They can be queried like static batch tables but using a continuous query. Such a 
query never terminates and produces a dynamic table as a result. It is important to note that 
the result of the continuous query is always semantically equivalent to the result of the same 
query being executed in the batch mode on a snapshot of the input tables. 

Summarizing, the following steps are performed in Flink to return the analysis results. 1. 
A stream is converted into a dynamic table. 2. A continuous query is evaluated on the 
dynamic table yielding a new dynamic table. 3. The resulting dynamic table is converted back 
into a stream. 

Method 

In order to choose the most appropriate tools for the analysis of objects in motion that send 
high-volume location data we have decided to get hands-on and test solutions on real data 
streams. This gave an extra opportunity for the identification of additional obstacles that are 
not clearly stated in the documentation. Also, we could assess the community involvement 
which is also very important as companies usually struggle with the implementation of more 
complex scenarios than the ones presented in tutorials. 

Minimum Working Example 

Based on data streams available for this study, we have defined a simple scenario. Two 
teams were implementing the same functionality: one in Apache Spark and the other in 
Apache Flink. They were supposed to come up with a so-called minimum working example 
(MWE). We then measured performance in terms of consumption of system resources (CPU, 
RAM). Please note that we did not consider the running time as we were operating on a data 
stream, so there is no such notion as the end of processing. 

Implementation of MWE served several purposes. First, we checked the capabilities of 
the analyzed solutions. Second, it provided hints as to how difficult it is to implement a 
specific scenario, what are the challenges and obstacles. Third, we could compare the 
efficiency of solutions measured by CPU and consumption memory requirements. 

The scenario for analysis consisted of counting the number of messages sent by moving 
objects, grouped by type of the object. There were two additional variants: counting all 

                                                
13

 https://flink.apache.org/flink-architecture.html 
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messages for the whole history of observation and counting messages within the 5-minutes 
tumbling windows. 

There were also additional non-functional requirements for the implementations. The 
streams to be used were served by Apache Kafka in CSV format. There were several 
streams and they had to be combined and deduplicated before any further processing. After 
the processing, the resulting streams should have been sent back in Avro format and stored 
in a database. Whereas the second variant could use “insert” queries (aggregation within 
window), the first required “upsert” queries (both insert and update), and message keys were 
necessary (global aggregation). 

Getting System-wide Measurements 

In order to compare both implementations, system-wide performance metrics were designed 
and then monitored. For the purpose of the monitoring, no other significant processes were 
running on the host machine at the time of those measurements. The main focus in the study 
was put on memory, processor load, and message processing lag. Therefore, the following 
metrics were used in the experiment:  

 Average CPU (15 min, 12h) and Max CPU (1 min, 12h)

The server average CPU load during the 15 minutes sliding window was measured every 
minute for the period of 12 hours. The final value for this metric is a simple mean of those 
averages. Similarly, it was possible to calculate the maximum CPU usage. However, for the 
maximum CPU load, the one-minute sliding window was considered. The bash script used 
for recording the measurement is following: 

while true; do uptime >> uptime.log; sleep 1; done 

 Average RAM (1s, 12h) and Max RAM (1s, 12h)

The average RAM usage across all server cores was measured every second during the 
period of 12 hours. The final metric was an average of the recorded measurements. 
Similarly, the max RAM metrics refer to the single maximal average RAM usage value across 
all cores during the period of 12 hours. The bash script used for recording the measurement 
is following: 

while true; do 
 echo "$(date)" `cat /proc/meminfo | grep Active: | sed 

's/Active: //g'`/`cat /proc/meminfo | grep MemTotal: | sed 
's/MemTotal: //g'` >> ram_monitoring.txt 
 sleep 1 

done 

 Average 5 min lag (12h), Max 5 min lag (12h), and Percentiles 5 min lag (12h)

The experiment of counting and grouping received messages for the last 5 minutes (moving 
windows) with 5 minutes watermark involved inserting results to the relational database. The 
lag metrics refer to the time difference between the count result database insert timestamp 
and the timestamp of the sliding window period (end window timestamp). Those metrics can 
be considered as an average, maximum, and percentiles of event processing delay during 
the period of 12 hours. The metrics were calculated by creating appropriate SQL query for 
the relational database containing the results. 

Results 

We have conducted our benchmarking on the following hardware. 
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Processor 2 x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 16 cores 

Memory DRAM 256 GB 

Disk Type HDD, 4x 1.2TB 10K RPM SAS, transfer 6Gb/s, configured as RAID 5, 
interface SATA 6Gb/s / SAS 12Gb/s, PCIe 3.0 

Network 
Adapter 

4 x Broadcom Limited NetXtreme BCM5720 Gigabit Ethernet PCIe, 
2x10Gb BT + 2x1Gb BT 

Operating 
System 

CentOS Linux (Version 7) 

Below we present the results achieved with the two tools: Apache Spark Structured 
Streaming and Apache Flink. We compare them based on the system-wide measurements 
presented in the previous section.  

Apache Spark Structured Streaming 

This section presents the results obtained using single-machine (standalone mode) with 
Spark Structured Streaming (Scala) to deploy MWE (grouping and counting received 
messages in the 5 min window frames and global counts). From Figure 1 and Figure 2 we 
can infer that the results are stable throughout the whole measurement period. Table 2 show 
average results. 

Table 2. Spark Structured Streaming - MWE Performance Metrics 

KPI Value 

Average CPU (15 min, 6h) 32.46% 

Max CPU (1 min, 6h) 43.99% 

Average RAM (6h) 66.96 [GB] 

Max RAM (6h) 72.96 [GB] 

Average 5 min lag (6h) 8.36 min 

Max 5 min lag (6h) 12 min 

95 percentile 5 min lag (6h) 10 min 

Median 5 min lag (6h) 8 min 

5 percentile 5 min lag (6h) 7 min 

Source: Own work. 

Figure 1. Average CPU load in Spark in various intervals 
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Figure 2. RAM usage in Spark 

Apache Flink 

The Flink job of making aggregations according to the described scenario was responsible 
for counting messages sent by objects in the 5 min window frames. The global counts were 
running during the measurement of the first metric. Below we present the summary statistics 
(Table 3), analogously to Apache Spark. Figure 3 presents CPU load and Figure 4 memory 
usage.  

Table 3. Flink MWE Performance Metrics 

KPI Value 

Average CPU (15 min, 6h) 4.20% 

Max CPU (1 min, 6h) 7.50% 

Average RAM (6h) 102.00 GB 
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Average 5 min lag (6h) 11.10 min 

Max 5 min lag (6h) 22 min 

95 percentile 5 min lag (6h) 21 min 

Median 5 min lag (6h) 9 min 

5 percentile 5 min lag (6h) 6 min 

Source: Own work. 
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Figure 3. Average CPU load in Flink in various intervals 

Figure 4. RAM usage in Flink 

Discussion 

In this section, we share our experience when it comes to the implementation of MWE in 
Spark and in Flink, as both provided a lot of technical challenges. The most cumbersome 
was understanding how the implementations work under the hood. Code examples available 
on the Internet were not always useful as they were fragmentary and did not mention any 
API version. 

Initially, we assumed the transfer of data from streams to the stream processor via CSV 
files. Files were placed on RAID and mounted with NFS. Reading from files (FileSource) had 
a huge cold-start problem - around 60 seconds per query on data collected for only one day. 
Kafka was much faster to deal with this issue. 

As Kafka was not planned in the first iteration of MWE implementation, initially we 
assumed that data will be stored directly in a database. Whereas Flink had no problems with 
such an approach, the JDBC driver for Spark did not provide update (UPSERT) mode. As a 
solution, we used Kafka topics to transfer data from Spark to a database. For comparability, 
Flink followed the same steps. Sending output to Kafka topics and creating a Confluent 
Kafka connector for saving data to the database worked with UPSERT mode as expected. 
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Concerning the output, saving Spark output to the Kafka topic in Avro format (instead of 
JSON) is the most popular way with the best community support. Message exchange 
between Flink and Kafka can be done in JSON and in Avro but the latter is more efficient. 

There were also different approaches to submit a job. Scala does not go well with 
Jupyter Notebooks. In case of Spark, which was implemented in Scala, we executed jobs 
using either spark-shell or spark-submit with a prepared JAR file. For submission of job in 
Flink, which was implemented in Java, we used a compiled JAR file either. 

The most important feature in the stream processing is time. Implementations in Python 
(pyspark and pyflink) were missing some important API calls referring to time windows. 
Moreover, documentation for Python was very often missing. Although we usually code in 
Python, we had to switch to Java for Flink and to Scala for Spark. Extending on time, it is 
very important to verify time zones in each environment (i.e., Docker containers, spark-shell, 
host machine, database) to prevent inconsistencies.  

One of the specific challenges was the discovery of how to perform a specific step to 
achieve the required functionality. Although many tutorials were present for some solutions, 
there was always a “magic sauce” that was not revealed to the others. The discovery of an 
appropriate approach was mainly a trial-and-error process.  

For example, in the case of Flink, there were drastic changes of API between 1.9 (when 
we started), 1.11 (our implementation target), and 1.12. (current stable); version 1.13 is in 
production. API is in constant reengineering and many methods were deprecated along with 
changes in classes. Although many examples were available on different fora, they were 
usually correct for older versions of Flink and were deprecated when we tried to run 
examples in version 1.11. The Flink project is developed by Alibaba, hence many 
discussions on problems are in Chinese.  

Missing detailed documentation is also characteristic for Spark. In the documentation, 
there are only code snippets and not fully blown examples. Therefore, expertise in the 
selected tools is necessary to understand a missing context. 

Conclusions and Future Work 

Looking for a technology capable of processing streams for analyzing objects in motion that 
send high-volume location data we came up with a list of potential solutions, which was later 
restricted to Kafka, Flink, and Spark. The objective of the paper was to narrow the selection 
and identify the caveats and challenges to be verified in the second phase of our 
benchmarking effort. So far we have implemented a simple Minimum Working Example to 
make sure we know the effort necessary to implement a fully-fledged solution. We found that 
a learning curve is rather steep, especially when we consider more-than-standard 
requirements, i.e., integration with Confluent’s version of Kafka, storage of intermediate 
results in a database with key-based updates, exchange of messages in Avro serialization 
format. To meet these requirements Spark required an external library and for Flink we 
needed to provided dedicated implementations of some interfaces. 

Concerning the efficiency of the solutions, Spark seems to be more memory efficient but 
at the cost of a higher CPU. Spark job made the machine quite busy with 30% CPU usage; 
allocated RAM was at the range of 70 GB. Flink was much more efficient – the same task 
caused a load of only 5%, but RAM consumption reached 110 GB. As we cannot tell which 
solution is preferred in the mentioned task, for future work we plan to extend MWE with 
additional scenarios. These scenarios will cover more tasks typical for the analysis of moving 
objects. In Scenario “Time Difference” we will measure the time passed since the last 
message was received; we can then alert if the time difference exceeds a certain threshold.  
In Scenario “Area Count” we will count the number of objects in a given area in a given 
moment or entering the area. In Scenario “Value Difference” we will measure the difference 
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between values of a parameter in two consecutive messages, e.g. speed of an object to 
detect if it is accelerating or slowing down. 

Another direction of extension is the improvement of the measurement methodology. So 
far we have used the system-level measures which are just aggregations and do not help 
much in the identification of weak points of each solution. In the future, we plan to use the 
built-in solutions available via additional monitoring API. Both Flink and Spark offer their own 
interface for monitoring various additional parameters, like for example heap size or 
separation of CPU usage between manager and workers. We will look for a common 
denominator to compare Spark and Flink in greater detail. The ultimate goal of the next 
paper will be confronting the capabilities of the tools with specific algorithms according to 
requirements to determine architecture choice. 
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