
24th International Conference on Business Information Systems (BIS 2021)

Smart Infrastructures

https://doi.org/10.52825/bis.v1i.51

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License 

Published: 02 July 2021

Execution of Multi-Perspective Declarative Process
Models using Complex Event Processing

Niklas Ruhkamp1, Stefan Schönig1[https://orcid.org/0000-0002-7666-4482]

1Institute for Management Information Systems, University Regensburg, Germany

Abstract. The Internet of Things (IoT) enables continuous monitoring of phenomena based on
sensing devices as well as analytics opportunities in smart environments. Complex Event Pro-
cessing (CEP) comprises a set of techniques for making sense of the behavior of a monitored
system by deriving higher level knowledge from lower level system events. Business Process
Management (BPM) attempts to model processes and ensures that executed processes con-
form with a predefined sequence. In IoT scenarios frequently a large number of events has to
be analyzed in real-time to allow an instant response. While BPM reaches its limits in such situ-
ations, CEP is able to analyze and process high volume streams of data in real-time. The eval-
uation and execution of rules and models of both paradigms are currently based on separate
formalisms and are frequently implemented in heterogeneous systems. The presented paper
integrates both domains by proposing an execution approach for multi-perspective declarative
process process models completely based on CEP. The efficiency of the combined paradigms
is validated in an implemented demonstration with simulated and real-life sensor data.

Keywords: Process Execution, Complex Event Processing, MP-Declare, Event-driven sys-
tems

The world is increasingly linked through a large number of connected devices, typically em-
bedded in electrical/electronical components and equipped with sensors and actuators, that en-
able sensing, (re-)acting, collecting and exchanging data via various communication networks
including the Internet of Things (IoT). As such, it enables continuous monitoring of phenomena
based on sensing devices (wearable devices, beacons, smartphones, machine sensors, etc.)
as well as analytics opportunities in smart environments (smart homes, connected cars, smart
logistics, Industry 4.0, etc.) [1]. Event processing focuses on capturing and processing events
in real-time, for detecting changes or trends indicating opportunities or problems. Complex
Event Processing (CEP) comprises a set of techniques for making sense of the behavior of a
monitored system by deriving higher level knowledge from lower level system events. CEP and
Business Process Management (BPM) have traditionally been considered very separate from
each other [2], [3]. BPM attempts to model processes and ensures that executed processes
conform with a predefined sequence. In addition, BPM offers methods to analyze business
processes and to search for potential improvements [4]. In complex situations a large number
of events has to be analyzed in real-time to allow an instant response. While BPM reaches its
limits in such situations, CEP is able to analyze and process high volume streams of data in real-
time. To implement novel scenarios in the area of the IoT, e.g., Industry 4.0 and Smart Home
scenarios, a combination of these two domains is becoming an active field of research under
the term event-driven BPM [5]. Both domains provide their own advantages, which can comple-
ment each other [2]. Consider, e.g. an Industry 4.0 environment that produces a large amount

95

https://creativecommons.org/licenses/by/4.0/


Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

of raw data. Using CEP, this data can be processed efficiently. In the context of predictive
maintenance the failure of a machine can be predicted long time in advance. The combination
of CEP and BPM would not only allow to detect such a pattern using CEP but also to define
how human operators have to react to such a failure prediction based on activities defined in
the underlying process model.

The evaluation and execution of rules and models of both paradigms, however, are currently
based on separate formalisms and are frequently implemented in heterogeneous systems. First
attempts to combine both paradigms have already been done and are mentioned in related
work. An integrated execution approach combining both worlds in one engine is still missing.
We fill this research gap and integrate both domains by proposing an execution approach for
business process models completely based on CEP. For this purpose, the multi-perspective
extension of the declarative process modeling language Declare [6], MP-Declare [7] is used
for mapping predefined constraints to CEP-queries, which are then executed by a CEP-engine.
We implemented1 our approach based on the Esper2 CEP-engine and the corresponding Esper
Query Language (EQL). Additionally, screencasts and videos demonstrate the real-life applica-
tion of the approach using sensor data provided via MQTT3.

The remainder of this paper is structured as follows: Section 1 describes fundamentals and
related work. In Section 2.1 we introduce our approach to execute MP-Declare constraints us-
ing CEP queries. Section 2.2 describes the implementation of the integrated exeuction engine.
The approach is validated with simulated and real data in Section 3 and Section 4 concludes
the paper.

1 Background and Related Work

Next, we describe event-driven systems, basics of multi-perspective declarative process mod-
elling and give an overview of related approaches.

1.1 Event-Driven Systems

Processes in our everyday life and business related procedures are influenced and triggered
by various events. The processing, interpretation and reaction to such events is therefore an
important part of how companies work. The three basic steps of event-driven systems are: (i)
Sense: The starting point is the recognition of relevant information or facts by sources like sen-
sors. This information is interpreted as events and reflects a relevant part of the state of reality.
For event-driven systems the events must be recognized immediately at the time of their occur-
rence to guarantee real-time processing. Otherwise, the value of the information decreases. (ii)
Process: In this step, the analysis of the detected events is performed. Events are aggregated,
correlated, abstracted, classified, or if necessary discarded. Here, we seek for patterns in and
between the event streams, which express certain relationships and dependencies between
the events. (iii) Respond: If a pattern is recognized, the system can react with a corresponding
action, e.g., warnings or the triggering of a business activity. The generation of new events is
also a possible reaction, as for instance the generation of complex events on a higher level of
abstraction.

As soon as data from event sources like sensors, network data, or news tickers arrive,
they are processed by a CEP engine using predefined rules to detect patterns and derive
complex events. This process can be repeated on several levels of abstraction. Subsequently,
predefined actions are triggered or the obtained information is transferred to other systems,
e.g., databases, message channels, or information systems. This way, processes are not only
monitored but additionally automatic actions can be triggered [5].

1Available at https://github.com/NiklasRuhkamp/MP-Declare-To-CEP
2EsperTech - Esper Documentation: https://www.espertech.com/esper/&sc=SUR
3https://vimeo.com/512049878

96

https://github.com/NiklasRuhkamp/MP-Declare-To-CEP
https://www.espertech.com/esper/&sc=SUR
https://vimeo.com/512049878


Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

1.2 Multi-Perspective Declarative Process Modelling

Declarative process modelling approaches like Declare [6] have proven to be suitable means
to capture activities and agent interactions within flexible environments additionally involving
real world objects [1]. A central shortcoming of the process modeling language Declare is the
fact that constraints only apply to activities while other perspectives such as time and data
perspectives are ignored. In real world scenarios like IoT applications these are important
factors that must be considered to model realistic processes. To include these perspectives,
Declare has been extended by a multi-perspective version called MP-Declare [7].

Semantics of Declare are extended by further conditions, which refer to the payload of
events and must be fulfilled to satisfy a constraint namely the activation condition, the correla-
tion condition and the target condition. These additional conditions will be demonstrated using
the example of template Response (A, B) in the context of the IoT. With standard Declare, the
constraint would be formulated as Response (machine failure, order maintenance). Machine
failure is the activation, while order maintenance is the target. This constraint defines that if a
machine is down, the maintenance department must be informed at some point in the future to
initiate the maintenance. With MP-Declare semantics additional conditions can now be added.
The activation condition ϕa, in this case, is the fact that the machine is a production-critical
one, whose failure would cause a standstill of production within minutes. If this condition does
not occur while machine failure does, the constraint is not activated. This is formally written
as A∧ϕa(x) which means that when action A occurs, the condition ϕa must be true for x. The
correlation condition ϕc is already part of the target and addresses the payload of both, event A
and event B. Therefore, ϕc must be valid when the target arrives. It is formulated as B∧ϕa(x,y).
In this context, an example would be that if a machine from certain vendor is down, the main-
tenance department of the same vendor must be informed and not the one of another vendor.
Additionally, there is the target condition ϕt which only refers to the payload of event B and is
written as ϕt(y). Depending on the use case a time period can also be defined in which the
rule must be fulfilled [8]. The complete constraint would therefore be described as: if a ma-
chine essential for ongoing production is down, maintenance has to be initiated by the same
vendor, which also has to be available for maintenance within the defined time frame. This pro-
cess would ensure that the machine is repaired by the corresponding maintenance right after a
problem is detected with minimal consequences for the production process.

1.3 Related Work

The use of a CEP engine to execute multi-perspective declarative process models is yet not
well studied. The paper by Soffer et al. [2] is one of the most important sources for the combi-
nation of CEP and BPM in general, and specifically for concepts of integrating BPM and CEP.
The paper provides a state-of-the-art review of current research of the symbiosis of CEP and
BPM and describes challenges and opportunities. Janiesch et al. [9] are dealing with the com-
bination of IoT and BPM in a research and practitioner’s point of view. A general framework for
event-driven BPM is presented in [10]. Li et al. [11] provide a translation of the block-structured
part of Business Process Execution Language (BPEL) into events in order to be able to execute
them using CEP. Although BPEL is not a modeling language, but rather an execution language,
there is a mapping between BPMN and BPEL [12]. Cicekli and Cicekli [13] use an imperative
process modeling language called control-flow-graph, which works with basic control flow pat-
terns. To execute them and increase their expressiveness, they provide corresponding event
rules. Another attempt to realize event-driven systems is done by RuleML [14] using rule detec-
tion to trigger processes. Hens et al. [15] use imperative languages such as BPMN and YAWL
and divide them into small chunks. The start and completion of these are then processed by a
CEP-engine. However, this cannot be seen as a complete execution on the CEP-engine since
the individual chunks are still handled by the process engine. In the work of Daum et al. [16],
they investigate the integration of BPM and CEP. However, they investigate how process mod-
els can be supported or extended through CEP, but not the execution of these models on a

97



Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

CEP engine. Another approach of integrating external events into business models is done by
Mandal et al. [17] combining a process engine and a event engine in a heterogeneous system.
There exist also first approaches for the execution of declarative rules using CEP. Jergler et
al. [18] propose a version of the Guard-Stage-Milestone model (GSM) based on CEP to specify
life cycle processes of business artifacts. This model contains Event-Condition-Action rules
(ECA-rules), which can be executed by a CEP engine. Soffer [19] also suggests an ECA-based
execution of declarative models. Approaches to detect declarative process models from event-
logs were devised, such as in [20]. According to [21], some works use process stream mining
to do so. In [22], Schönig et al. introduce that SQL can be used to derive multi-perspective
declarative models from logs. In fact, these approaches are using static event logs and do not
process the data as a stream. Therefore, the latency between occurrence of a constraint and
its detection is not acceptable for time critical cases. Another problem could be the storage
requirements, if processing the data in real-time is not possible. Burattin et al. [23] propose a
framework for the discovery of declarative process models. They combine algorithms for stream
mining and algorithms for the online discovery of Declare models to get a real-time representa-
tion of the process. Another attempt in this direction is proposed by [24] using Hoeffding trees.
A similar approach is presented in [25] by examining event streams to process models using
prefix-alignments.

In the context of Big Data traditional approaches may reach their limits due to the high data
volume. Therefore, a mapping to CEP, which is geared towards Big Data, could perform more
efficiently. Wu et al. [26] are using SASE [27] over streams of RFID-events in order to detect
matching patterns and to feed an external monitoring application. Another work dealing with
monitoring in combination with CEP is introduced by [28]. In this approach CEP is used in
combination with Business Activity Monitoring (BAM) to monitor cloud BPM.

None of these approaches deals with the execution of multi-perspective declarative models
itself. A first attempt was made in [29]. In this work, MP-Declare constraints are transformed into
the modelling language Alloy and executed afterwards. In summary, the execution of complete
multi-perspective declarative process models via CEP is still unexplored. The motivation of the
work at hand is to study and implement a solution which integrates MP-Declare process models
entirely into CEP and thereby bridging the gap between these two paradigms.

2 Execution of MP-Declare Models using CEP

This chapter explains how multi-perspective declarative MP-Declare models can be executed
on top of a CEP-engine. Therefore, we introduce the concept of how MP-Declare models can
be mapped to CEP queries.

2.1 Concept

MP-Declare constraints essentially consist of two components. The activation of the constraint
is on the left-hand-side of the constraint. As soon as it occurs, the constraint is activated. In
addition to this, the activation condition must also be fulfilled. On the right-hand-side is the
target including the correlation condition and the target condition, which must also occur to
fulfill the constraint. A time period within the target must occur can be specified additionally.
Therefore, a concept is needed for applying CEP rules to examine a stream of data for the
fulfillment or violation of MP-Declare constraints and thus to execute entire MP-Declare process
models by means of a CEP-engine.

CEP is able to recognize patterns in an event stream and react to them. Furthermore,
incoming low-level event streams can be filtered by CEP and, if necessary, depending on the
application, a new stream of events can be generated including the relevant data. This feature
is now used to apply MP-Declare constraints to incoming event streams. The basic idea here
is to detect the left-hand-side of the constraint - the activation - using CEP. As soon as event of

98



Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 1. Recognition of Activation and Target in Event Streams of different Levels of Abstrac-
tion

a new process instance occur in the event stream and an activation of a constraint has been
detected, the right-hand-side of the constraint - the target - must arrive. Thus, CEP must be
able to store all events of process instances where the activation of a constraint occurred, and
then to process the event stream to see if the target occurs as well. In this case, this instance
fulfills the constraint. If the target is not found in the event stream, this process instance violates
the rule or can not fulfill the rule so far.

This procedure is illustrated in Figure 1. On the lowest level of abstraction the incoming
event streams can be seen. These are completely unordered, unfiltered and from different data
sources. The CEP-engine accesses this stream and examines it for incoming activations. The
engine has to store all activated constraints until they are fulfilled or violated. To implement
this concept, streams of different abstraction levels are used as shown in Figure 1. Activations
are stored on an intermediate level of abstraction. On this level also targets and violations
are represented. Once an activation occurs, the CEP-engine searches for the corresponding
patterns in the event stream to find the target. As soon as it arrives, the target is also added
to the higher-level stream. The intermediate level stream represents all available activations
and targets. Finally, at the highest abstraction level stream, the CEP-engine checks whether
the constraints have been fulfilled or violated. For this purpose, it examines all activations and
checks if the intermediate stream contains the matching targets or a violation. Additionally, the
CEP engine examines the payload of the events to determine whether required conditions are
met. As soon as a constraint can be detected as fulfilled or violated, it is added to the highest-
level stream. As shown as the dark grey event in Figure 1, both the activation and the target
are in the intermediate stream and hence the constraint is fulfilled. As shown as the green
event, only the activation occurs without the matching target. The constraint is not yet fulfilled
but might be in the future. This enables CEP to examine the event stream for CEP constraints
and thus execute the entire MP-Declare models in form of a set of constraints using the CEP
engine.

Besides the time perspective (whether the target has to occur before or after the activation),
the constraints can be divided into three categories. The first group is constraints that can only
be fulfilled or are not yet fulfilled but not directly violated. These consist of an activation and a
target. The time period in which the target has to appear is potentially infinite.

The second group of constraints are those which can be fulfilled or can be violated directly.
The target B of alternate response, for example, must occur without other instances of event B
in between. Therefore, the constraint is violated, as soon as another B occurs between A and
B.

99



Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

The negating constraints, which are marked by the prefix “not” belong to the third category.
These are violated as soon as the activation of a constraint is followed by the corresponding
target, which according to the constraint must not occur. As soon as both sides of a “not”
constraint occur, this rule is violated.

For constraints of the first category, however, the constraint is fulfilled if both sides occur and
are not yet fulfilled when the activation occurs but not (yet) the target. In brief, the engine waits
for the fulfillment of activated constraints. The procedure for the second category is different.
The CEP engine does not have to wait to see whether the constraint is fulfilled at some point in
the future. The engine does not only search for the fulfillment but also for violations of activated
constraints by looking for occurring of the opposite of the constraints.

To highlight this behavior, Figure 1 illustrates the detection of a constraint of the second
category, using the example of Chain Response defined as: if A occurs, B must occur next,
which in turn means no other events must occur in between. In the event stream the matching
target occurs after activation, but not immediately after its activation. The next event after the
activation is the event marked in red. As a result the CEP-engine can mark the rule as violated.
Using multiple streams at different levels of abstraction, MP-Declare models can entirely be
mapped to CEP rules and executed using CEP-engine.

2.2 Implementation

For the execution of MP-Declare models by means of CEP, the CEP-Engine Esper is used in
this work. The CEP-engine works like an inverted database. In a conventional database, the
data sets are fixed, and the data is accessed dynamically using a query language. However,
with a CEP-engine the query rules are known from the beginning, and the data is then loaded
in the form of an event stream and checked for the rules in real time. Incoming event streams
can be read via input adapters and connectors. These streams are characterized by very high
volume, fast emergence of new data and occurrence in real-time. Esper also provides access
to historical data in memory to provide querying possibility on historical events. The engine
manages the registered statements, examines the streams for these statements and stores the
results in the form of Plain Old Java Objects (POJO). These are then available for downstream
systems via the output adapter.

2.2.1 Transforming MP-Declare to EQL

Esper provides its own SQL-like Event Processing Language (EPL) ccalled Event Query Lan-
guage (EQL). Here, queries essentially consist of SELECT-, FROM- and WHERE-constructs.
EQL-queries are used to examine the event-stream for incoming activations, targets and viola-
tions. The EQL-query to detect, for instance, the target of a Response constraint in the context
of machine failures and the order of a maintenance looks as follows:

SELECT a.id, b.company FROM PATTERN[
every a = MachineFailureEvent(productionCritical = true)
-> b= OrderMaintenanceEvent(available = true)]
WHERE a.manufacturer = b.company

The PATTERN defines that all cases, in which a production critical machine fails, followed by
a maintenance order for which the company must be available at that time, are to be considered.
The term “every” defines that the query should not be made only once, but all instances which
fulfill this pattern should be returned. The WHERE clause checks the correlation condition.
In case of backward-looking constraints like Precedence the EQL-query looks similar to the
query of Response. The difference is that the target is on the left-hand-side and the activation
is on the right-hand-side. Therefore, the engine is storing all potential targets of a backward-
looking constraint as long as the corresponding activation follows and the constraint can finally
be detected as fulfilled. As depicted in Figure 1 the engine has to search for violations in some

100



Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 2. Example of events in the middleLayer-stream to fulfill Response

cases, too.

2.2.2 Constraint Builder

The most important component is the ConstraintBuilder. In order to execute MP-Declare rules
using CEP, these must be translated into EQL-queries for the engine to be able to process them.
The ConstraintsBuilder is composed of a for-loop, which iterates over all added constraints
in the constraintAndConditionList, handed over by the ConstraintScreen. After all required
contents are assigned, an if-else-statement is used to search for the suitable constraint type
since each constraint type has different requirements.

2.2.3 middleLayer-Stream

As mentioned before (cf. Section 2.1) and shown in Figure 1 an additional stream is used,
called “middleLayer” and is necessary to handle activations, targets and violations on a higher
level of abstraction. This stream has four properties: The first one (integer “id” ) is used to store
the identifier of each event in the middleLayer -stream. This enables the engine to handle the
different instances of processes. If the process does not have multiple instances, the identifier
remains at its default value null. The second property (string “constraint” ) is storing the type
of the constraint. As soon as the user defines a specific name for a constraint, this name will
be used instead. This allows handling several constraints of the same type. For example: if
two different constraints of the type Response were defined, it might happen, that a target of
the second constraint is assigned to the activation of the first one. In this case the first Re-
sponse would mistakenly be fulfilled. To prevent this from happening, unique names need to
be set. To recognize whether an event of the middleLayer -stream is an activation, a target or a
violation, the third property (string “actOrTar” ) is used. The last property (string “correlationAc-
tivation” solves a similar problem as the second one and is only used if the constraint includes
a correlation condition. It ensures that, for example, the activating MachineFailureEvent of a
“KUKA”-machine, can only be followed by an OrderMaintenanceEvent for which the company
is also “KUKA” to solve the Response constraint. An illustration of the middleLayer-Stream is
shown in Figure 2.

2.2.4 Assignment of Process Instances

It is sometimes important to process events context-dependent. For example, if a machine fails
and needs to be repaired, it is important to check the event stream of the maintenance orders
for an order that was placed for that particular machine and not for another one, to ensure the
maintenance of the correct machine. By using the CREATE CONTEXT clause, Esper divides
events into context partitions.

101



Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 3. Environment to simulate a MQTT-Stream

3 Evaluation

We extensively evaluated our approach in terms of functionality and performance. In order
to validate the presented approach events were first sent to the CEP-engine from the Java-
environment in a predefined sequence. The simulation of the sample events is implemented
on a new thread. During the validation, 84 different iterations were made. Each constraint
was tested in seven different variations. The tool was able to detect all activations, violations
and fulfillments of each constraint prooving the funtionality and correctness. In addition, the
latency between the occurrence of an event and the assignment of a violation or fulfillment was
measured, to check the performance in terms of efficiency of the tool. The gap between the
occurrence of an event and the detection of the constraint, is used as a measure of latency.
According to the result of this measurement, the latency was only 1 msec. If the event does not
only affect one but several different activations, the latency increases. The maximum latency
in this measurement was 4 msec. On average, the latency was 1.91 msec. A longer period of
time is to be expected for constraints like Precedence, where the violation can not be detected
directly, which is therefore not included in the latency validation. The engine is waiting for 1
second, if the activation is followed by the detection of a target within this time. If not, the
constraint is violated. Therefore, the highest possible latency for detection is 1 second. The
results of the validation show that our tool is efficient at the detection of MP-Declare constraints
while achieving a 100 percent success rate. Additionally, we evaluated our approach with a
real-life approach. Here, an IoT setup was simulated as illustrated in Figure 3. An ultrasonic
distance sensor and a push-button matrix are connected to a Raspberry Pi 4B. The sensor data
was sent via MQTT (Message Queuing Telemetry Transport) to the tool, running on another
machine. MQTT is a lightweight, publish/subscribe messaging transport protocol, often used
in the context of IoT. The sensors are connected to the GPIO-board of the Raspberry Pi. The
Raspberry Pi is also used as an MQTT message broker, using Eclipse Mosquitto. The data of
the sensors are read with Python and published to the MQTT broker, using Paho. A screencast
and video demonstrating the application and functionality are available online.4. It has proven
that constraints involving real-life sensor data can be sent to the engine via MQTT and are
processed correctly by the engine.

4 Conclusion and Future Work

Our approach presents an efficient, scalable and reliable approach to examine a stream for
MP-Declare constraints in real-time, using complex event processing. The CEP-engine Es-
per has been implemented and adapted such that it is able to detect activations, fulfillments
and violations. For this purpose, besides the low-level event streams, different streams of a
higher level of abstraction are used to store activations and to listen for following targets or
violations. This way, MP-Declare constraints are executable even for unstructured high-volume
streams of events. The graphical user interface offers an intuitive and easy way to formulate
MP-Declare constraints. The user has full flexibility in adding new constraints. A screencast

4https://vimeo.com/512049878

102

https://vimeo.com/512049878


Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

available online5 demonstrates the functionality of the tool. After the process has been started,
the engine is giving real-time feedback to the user. This work provides an implementation of the
discussed approach, to successfully and quickly execute MP-Declare process models. The tool
can also easily be extended by predefined actions, which should apply as soon as a constraint
is violated. Therefore, the system can easily be implemented to automatically detect whether
predefined restrictions have been violated and to initiate necessary reactions. The validation
has proven that this approach is highly reliable while achieving low latency. As future work,
another validation in a more realistic environment is recommended. Since CEP is designed for
Big Data and implemented to process huge amounts of data in real-time, it is expected that
such integration is going to be successful. The integration into the context of IoT-environments
like Industry 4.0 should demonstrate, that even multiple large streams can successfully be in-
tegrated and examined.

References

[1] G. Meroni, C. D. Ciccio, and J. Mendling, “An artifact-driven approach to monitor business
processes through real-world objects,” in ICSOC, vol. 10601, 2017, pp. 297–313.

[2] P. Soffer et al., “From event streams to process models and back: Challenges and oppor-
tunities,” Information Systems, vol. 81.2019, pp. 181–200, 2019.

[3] S. Schönig, L. Ackermann, S. Jablonski, and A. Ermer, “Iot meets BPM: a bidirectional
communication architecture for iot-aware process execution,” Softw. Syst. Model., vol. 19,
no. 6, pp. 1443–1459, 2020.

[4] D. M. Goetz, “Integration of business process management and complex event process-
ing,” 2010.

[5] R. Bruns and J. Dunkel, Complex Event Processing. 2015, ISBN: 978-3-658-09898-8.

[6] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative workflows: Balancing
between flexibility and support,” Comput. Sci. Res. Dev., vol. 23, no. 2, pp. 99–113, 2009.

[7] A. Burattin et al., “Conformance checking based on multi-perspective declarative process
models,” Expert Syst. Appl., vol. 65, pp. 194–211, 2016.

[8] H. van der Aa, K. J. Balder, F. M. Maggi, and A. Nolte, “Say it in your own words: Defining
declarative process models using speech recognition,” in BPM Forum, vol. 392, 2020,
pp. 51–67.

[9] C. Janiesch et al., “The internet of things meets business process management: A man-
ifesto,” IEEE Systems, Man, and Cybernetics Magazine, vol. 6, no. 4, pp. 34–44, 2020.
DOI: 10.1109/MSMC.2020.3003135.

[10] R. von Ammon, C. Emmersberger, T. Greiner, F. Springer, and C. Wolff, “Event-driven
business process management,” in Fast Abstract, Second International Conference on
Distributed Event-Based Systems, DEBS 2008, Rom, Juli 2008, 2008. [Online]. Available:
https://epub.uni-regensburg.de/6829/.

[11] G. Li, V. Muthusamy, and H.-A. Jacobsen, “A distributed service-oriented architecture for
business process execution,” ACM Trans. Web, vol. 4, no. 1, 2010.

[12] M. Weidlich, G. Decker, A. Großkopf, and M. Weske, “BPEL to BPMN: the myth of a
straight-forward mapping,” in OTM Confederated International Conferences, vol. 5331,
2008, pp. 265–282.

[13] “Formalizing the specification and execution of workflows using the event calculus,” Infor-
mation Sciences, vol. 176, no. 15, pp. 2227–2267, 2006.

5https://vimeo.com/512048601

103

https://doi.org/10.1109/MSMC.2020.3003135
https://epub.uni-regensburg.de/6829/
https://vimeo.com/512048601


Ruhkamp & Schönig | Bus. Inf. Sys. 1 (2021) "BIS 2021"

[14] A. Paschke, “The reaction ruleml classification of the event / action / state processing
and reasoning space,” CoRR, vol. abs/cs/0611047, 2006. arXiv: cs/0611047. [Online].
Available: http://arxiv.org/abs/cs/0611047.

[15] P. Hens, M. Snoeck, G. Poels, and M. D. Backer, “Process fragmentation, distribution and
execution using an event-based interaction scheme,” J. Syst. Softw., vol. 89, pp. 170–192,
2014.

[16] M. Daum, M. Götz, and J. Domaschka, “Integrating cep and bpm: How cep realizes func-
tional requirements of bpm applications (industry article),” in International Conference on
Distributed Event-Based Systems, 2012, pp. 157–166.

[17] S. Mandal, M. Hewelt, and M. Weske, “A framework for integrating real-world events and
business processes in an iot environment,” in OTM 2017 Conferences, 2017, pp. 194–
212.

[18] M. Jergler, H.-A. Jacobsen, M. Sadoghi, R. Hull, and R. Vaculın, “Safe distribution and
parallel execution of data-centric workflows over the publish/subscribe abstraction,” in
ICDE, 2016, pp. 1498–1499.

[19] P. Soffer, “A state-based intention driven declarative process model,” International Journal
of Information System Modeling and Design, vol. 4, pp. 44–64, 2013.

[20] F. M. Maggi, M. Montali, and U. Bhat, “Compliance monitoring of multi-perspective declar-
ative process models,” in EDOC, 2019, pp. 151–160.

[21] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of
Business Processes. 2011, ISBN: 3642193447.

[22] S. Schönig, C. D. Ciccio, F. M. Maggi, and J. Mendling, “Discovery of multi-perspective
declarative process models,” in ICSOC, vol. 9936, 2016, pp. 87–103.

[23] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, “Online discovery of declarative
process models from event streams,” Transactions on Services Computing, vol. 8, no. 6,
pp. 833–846, 2015.

[24] N. Navarin, M. Cambiaso, A. Burattin, F. M. Maggi, L. Oneto, and A. Sperduti, “To-
wards online discovery of data-aware declarative process models from event streams,”
in IJCNN, 2020, pp. 1–8.

[25] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P. van der Aalst,
“Online conformance checking: Relating event streams to process models using prefix-
alignments,” Int. J. Data Sci. Anal., vol. 8, no. 3, pp. 269–284, 2019.

[26] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing over streams,”
in International Conference on Management of Data6, 2006, pp. 407–418.

[27] University of Massachusetts, SASE Home, http://sase.cs.umass.edu&sc=SUR, Online;
accessed 20 December 2020.

[28] J. N. Martínez Garro, P. Bazán, and F. J. Díaz, “Using bam and cep for process monitoring
in cloud bpm,” Computer Science and Technology, vol. 16, no. 01, 2016.

[29] L. Ackermann, S. Schönig, S. Petter, N. Schützenmeier, and S. Jablonski, “Execution of
multi-perspective declarative process models,” in OTM Conferences, vol. 11230, 2018,
pp. 154–172.

104

https://arxiv.org/abs/cs/0611047
http://arxiv.org/abs/cs/0611047
http://sase.cs.umass.edu&sc=SUR



