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Abstract. In this paper, the deep learning instance segmentation architectures DetectoRS, 
SOLOv2, DETR and Mask R-CNN were applied to data from the field of Pig Precision 
Livestock Farming to investigate whether these models can address the specific challenges 
of this domain. For this purpose, we created a custom dataset consisting of 731 images with 
high heterogeneity and high-quality segmentation masks. For evaluation, the standard metric 
for benchmarking instance segmentation models in computer vision, the mean average 
precision, was used. The results show that all tested models can be applied to the 
considered domain in terms of prediction accuracy. With a mAP of 0.848, DetectoRS 
achieves the best results on the test set, but is also the largest model with the greatest 
hardware requirements. It turns out that increasing model complexity and size does not have 
a large impact on prediction accuracy for instance segmentation of pigs. DETR, SOLOv2, 
and Mask R-CNN achieve similar results to DetectoRS with a parameter count almost three 
times smaller. Visual evaluation of predictions shows quality differences in terms of accuracy 
of segmentation masks. DetectoRS generates the best masks overall, while DETR has 
advantages in correctly segmenting the tail region. However, it can be observed that each of 
the tested models has problems in assigning segmentation masks correctly once a pig is 
overlapped. The results demonstrate the potential of deep learning instance segmentation 
models in Pig Precision Livestock Farming and lay the foundation for future research in this 
area. 

Keywords: Precision Livestock Farming, Instance Segmentation, Computer Vision, Deep 
Learning, Pig. 

Introduction 

Structures of modern pig livestock farming, and pork production have been undergoing major 
changes in recent years. Data from the Federal Statistical Office show the opposite trend of a 
steadily decreasing number of farms [1] with simultaneously increasing numbers of animals 
per farm [2] and a continuously decreasing slaughter price1, which poses and will continue to 
pose great challenges for the farmer. At the same time, politics and society alike are calling 
for more sustainable and more animal-friendly husbandry [3], which puts additional pressure 
on the farmer and makes economically profitable pig livestock farming increasingly difficult. 
These challenges cannot be met with conventional methods, which is why new and 
innovative solutions are needed. As a result, research in the domain of Precision Livestock 
Farming (PLF) has increased in recent years. PLF describes systems that utilizes modern 
camera and sensor technologies to enable automatic real-time monitoring in livestock 
production to supervise animal health, welfare and behaviour [3], [4]. This involves the 
automated acquisition, processing, analysis and evaluation of sensor-based data like 
temperature, humidity or CO2-concentration [5] and image and video data [6], [7]. Based on 

1 https://www.bmel-statistik.de/preise/preise-fleisch/ 
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this information, systems can be created that support the farmer in his daily work and help 
him adapt to the changing conditions in pig livestock farming. To enable such systems, 
methods are first needed that allow the automated processing of these different data streams 
in the form of image, video, and sensor data. In the case of image data, methods are 
required that can be used for automated recognition and localization of individual pigs within 

the pen. Due to the specific conditions in pigsties, these tasks pose a particular challenge. 

Figure 1. Example image from pigsty. 

Fig. 1 illustrates some of these problems. Piling, crowded areas, the overlapping of pigs as 
well as their various orientations and alignments make it difficult to automatically detect and 
locate individual pigs within the pen. In addition, there are constantly changing factors such 
as varying light conditions, soiling of the animals and the pen and occlusions caused by 
objects in the pen. In literature, similar use cases such as automated pedestrian detection in 
crowded areas have been successfully addressed using deep learning (DL) methods [8]. For 
pig detection and localisation, there are two approaches that are used in DL domain: (1) 
Object detection and (2) instance segmentation. Object detection (1) describes the 
classification and localisation of objects with the help of bounding boxes [9]. The algorithm 
surrounds each classified object within the image with a bounding box, which can then be 
used to determine the object's position in the image. Instance segmentation is a combination 
of object recognition and semantic segmentation. After object detection, semantic 
segmentation is used to classify and map each pixel of the detected object to a 
corresponding class or category. This results in detailed masks for each detected object 
where each mask can be considered as an independent instance [9]. 

A variety of different object detection methods from the field of DL have already been 
used in PLF. Cang et al. applied Faster-RCNN for detection and weight estimation of pigs 
based on image data [10], Nasirahmadi et al. utilized Single Shot Multibox detector, Region-
Based Fully Convolutional Neural Network and Faster R-CNN for posture detection of 
individual pigs [11] and YOLO was applied by Sa et al. for pig detection under various 
illumination conditions [12]. However, bounding boxes are not able to capture the contours of 
objects, which is why valuable information could be lost when only using bounding boxes 
[13]. For some PLF related use cases like the prediction of tail biting in grouped house pigs, 
this information could be insufficient. In a report by the BMEL2, in which various indicators for 
the early detection of tail biting were summarised, it emerges that activities such as tail-in-
mouth behaviour or generally manipulative chewing behaviour on pen objects can 
increasingly be observed before tail biting events [14]. For this type of use case, the much 
more precise instance segmentation masks could be beneficial. In the DigiSchwein3 project, 
the automated early detection of tail biting is a central objective, which we intend to explore 

2 Bundesministerium für Ernährung und Landwirtschaft 
3 https://www.lwk-niedersachsen.de/index.cfm/portal/1/nav/1093/article/35309.html 
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further with the help of modern deep learning methods. For this reason, this paper 
investigates whether common instance segmentation methods from the field of DL can be 
applied to data from Pig PLF. Using defined selection criteria, four different instance 
segmentation methods are identified in DL literature and tested and evaluated based on a 
custom dataset. The goal is to evaluate whether the applied methods can deal with the 
specific challenges of the data from the Pig PLF domain and how their quality is in terms of 
prediction accuracy and speed. 

This paper is structured as follows. First, we examine how instance segmentation has 
been applied in the context of Pig PLF and which methods have been used. Based on these 
results, the selection criteria for the instance segmentation methods are presented, followed 
by a brief description of the selected models. The presentation of the results is done using a 
quantitative and qualitative analysis. The model evaluation is performed using the mean 
average precision (mAP) based on our test set that we extracted from our annotated dataset. 
The qualitative analysis is based on a visual evaluation of the predicted masks by the 
different models and is used to discuss potential problems and remaining challenges. The 
interpretation of the results discusses the insights gained from the quantitative and qualitative 
evaluation. The conclusion and outlook summarize the results and describe how they can be 
used in future research. 

Related Work 

Instance segmentation use cases identified in literature can be divided into two different 
categories: (1) segmentation without DL and (2) segmentation with DL [15]. Segmentation 
techniques without DL (1) are characterised by using thresholding for image binarization, 
separating background from foreground [16]. Otsu’s method is a popular example for this, 
which has been used in a variety of use cases [17], [18], [19], [20]. This type of segmentation 
is usually only done as a pre-processing step, based on which the actual detection of the 
objects in the foreground takes place. Nasirahmadi et al. use the results of Otsu’s 
binarization to locate pigs on image data using an ellipse fitting algorithm [21]. The approach 
for the identification and localisation of grouped-house pigs by Huang et al. has a similar 
structure, but Gabor filters are used for segmentation and feature extraction. The subsequent 
detection is done with Support Vector Machines [22]. However, methods like Otsu’s do not 
perform instance segmentation, but semantic segmentation since the entire content of an 
image is segmented according to the defined threshold rather than individual regions or 
instances. Due to the definition of a threshold for image segmentation, such solutions are 
also vulnerable to structural changes within the image like changing light conditions, 
occlusion or dirt [20]. To address these problems and enable actual instance segmentation of 
objects, DL methods can be applied. 

During literature research, only three papers were identified that applied instance 
segmentation methods from the field of DL to Pig PLF. Seo et al. conclude that the 
predictions of the Mask R-CNN are insufficient for the use case of separating touching pigs in 
image data. They describe that the segmentation accuracy of the predicted masks is not 
satisfactory, as some pigs in overcrowded areas are not recognised correctly or are 
completely missed out [23]. On the other hand, Li et al. successfully use Mask R-CNN for 
instance segmentation of pigs. They use the information provided by the segmentation 
masks to automatically recognise mounting behaviour. The presented model was fine-tuned 
on pre-trained COCO model and a ResNet50 backbone [24]. Tu et al. tested and evaluated 
Mask Scoring R-CNN, an adaptation of Mask R-CNN, to improve instance segmentation 
performance for grouped-housed pigs [15]. Mask Scoring R-CNN improves instance 
segmentation performance by adding a network block that learns the quality of the predicted 
instance masks and feeds this information back into the network during training [25].  

During analysis of these papers, we noticed some problems in the way the evaluation 
of instance segmentation models was conducted. In research, the COCO data format has 
become the standard format to train and evaluate instance segmentation models [26], [27]. 
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Most of the instance segmentation models and methods found in literature, including Mask 
R-CNN, use the COCO evaluation format to benchmark model performance against other
architectures [9]. The commonly used metric for evaluation and benchmarking is the mAP,
which is the mean of the Average Precision (AP) based on a set of different Intersection over
Union (IoU) thresholds [9]. IoU is the most used evaluation metric for object detection and
instance segmentation tasks. It is defined as the similarity between the ground truth
segmentation and the predicted segmentation present in the image and is determined by
dividing the intersection with the area of union [28].  We noticed that none of the identified
paper uses this metric to evaluate their model. Tu et al. use Precision, Recall and F1-Score
for evaluation [15], Seo at al. did not state a general model performance for instance
segmentation at all [23] and Li et al. used mean Pixel Accuracy (mPA) metric [24] which is
normally used to evaluate performance in semantic segmentation tasks and not instance
segmentation [29]. Pixel accuracy describes the amount or percentage of pixels which are
classified correctly by the model. This can be problematic if, for example, there is a class
imbalance in the data used, in which the number of pixels in the image that do not belong to
any class greatly exceeds the number of pixels that belong to a class and vice versa, thus
enabling a classification performance based on the class imbalance with a priori knowledge
[29]. This results in two problems: (1) A comparison of the performance of the respective
results is not possible due to the different and partly inappropriate evaluation metrics and (2)
No evaluation of instance segmentation models on data from the Pig PLF domain has been
conducted yet based on the standard evaluation metric mAP. These research gaps are also
addressed in this paper.

Materials and methods 

Instance segmentation model selection 

Instance segmentation methods were chosen based on defined selection criteria. The 
definition of the selection criteria was made based on different aspects. On the one hand, the 
requirements for PLF systems mentioned in the literature should be considered. On the other 
hand, the selection criteria should serve to answer the research question of this paper 
regarding prediction accuracy and speed of the model on data from the Pig PLF domain. The 
following criteria were defined: 

1. Prediction Accuracy: The prediction of the respective model should be as accurate
as possible [30].

2. Prediction Speed: Model inference should be in real time [18].

Prediction speed in real time refers to the requirement that the respective algorithm should 
deliver a result within milliseconds. Cost-effectiveness is a criteria that is mentioned in 
literature as well regarding PLF systems [18] but has been ignored in the context of this 
paper as it does not contribute to answering the initial research question. To set a baseline 
for which models to compare and to allow consideration of innovative approaches for 
instance segmentation, two additional selection criteria were added: 

3. Innovation: Architectures with new or innovative approaches are to be examined for
suitability.

4. Usage in PLF research: The recently used instance segmentation architectures in
PLF literature should be considered for comparison.

The website paperswithcode4 provides an overview of all published instance segmentation 
architectures and their benchmark results on the COCO test-dev, a dataset on which model 
performance is evaluated and benchmarked. Since we also use the COCO format for training 
and evaluation in this paper, this overview serves as a basis for selecting the instance 
segmentation models based on our criteria. For each defined criterion, an instance 

4 https://paperswithcode.com/task/instance-segmentation 
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segmentation model was chosen. The following models were selected and evaluated in this 
paper:  

DetectoRS: DetectoRS achieves state of the art (SOTA) performance on COCO test-
dev for instance segmentation [31], which is why it was selected for this paper based on 
criterion 1. Inspired by the human mechanism of looking and thinking twice, the authors tried 
to implement similar mechanisms into their architecture at both the macro and the micro 
level. At the macro level, a Recursive Feature Pyramid (RFP) is proposed which builds on 
top of a Feature Pyramid Network (FPN). The RFP incorporates additional feedback 
connections from the FPN layers into the bottom-up backbone layers which creates a 
recursive operation. At the micro level, Switchable Atrous Convolutions (SAC) are 
incorporated, which convolves the same input feature with different atrous rates and gathers 
the results using switch functions. The incorporation of this mechanism into both levels 
improved the mAP on COCO test-dev by up to 4.3%. 

SOLOv2: SOLO is an anchorless instance segmentation approach introduced by 
Wang et al. [32]. It divides an image into a uniform grid with each grid cell being responsible 
for the detection of an object if its centre is placed in it. Class probabilities and a global binary 
mask are computed for each cell individually. This restricts each cell to only predict one 
object or class. The model combines a FPN with a category and mask branch and reduces 
the problem of instance segmentation to the question of which cell and category a pixel 
belongs to. SOLOv2 extends this idea by improving the mask branch of the model [33]. Two 
new branches are introduced, the kernel branch and the feature branch. The kernel branch is 
responsible for generating a kernel for each cell of the grid while the feature branch 
generates multiple different prototype masks. Finally, the kernels are used in a convolution 
operation on the prototype masks to generate the final predictions. SOLOv2 archives SOTA 
performance in real time inference and is selected based on criteria 2. 

DETR: DETR describes a novel object detection method introduced by Carion et al. 
[34]. The method offers a new approach to object detection as it uses a feature extractor in 
combination with Transformers [35]. The model uses the feature vectors extracted by a 
Convolutional Neural Network (CNN) backbone as an input for the encoder and its attention 
heads. The decoder then generates a defined number of predictions in parallel, each of 
which is assigned to a class either from the given dataset or an additional class like the 
background class. While its initial implementation focusses on the prediction of bounding 
boxes, the authors also demonstrate the adaptation to instance segmentation. This is done 
by utilizing the output of the decoders in combination with the multi-head-attention values 
und multiple convolutional layers to generate upscaled binary masks. Due to the innovative 
approach of instance segmentation with transformers, DETR was selected based on criteria 
3. 

Mask R-CNN: Mask R-CNN extends on Faster R-CNN by adding an additional 
branch for masks prediction that works parallel to the branch for bounding box prediction. 
Thus, the pixel wise prediction of the individual segmentation masks is decoupled from the 
actual classification of the object. A RoIAlign layer is introduced to improve bounding box 
alignment after RoIPooling and preserves exact spatial locations. For segmentation mask 
prediction, a Fully Convolutional Network (FCN) is used on each of the extracted bounding 
boxes [9]. Since Mask R-CNN is the most current instance segmentation architecture in PLF 
literature and no evaluation in COCO format has been performed yet, Mask R-CNN was 
selected based on criteria 4. 

Dataset description 

To evaluate the performance of selected instance segmentation architectures, a dataset 
consisting of a total of 731 images with high quality segmentation masks was created. The 
open source tool Labelme was used to annotate the images and convert them into the 
COCO format [36]. To ensure heterogeneity in the data, the dataset was compiled from a 
combination of samples from several datasets. Fig. 2 shows exemplary images that 
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illustrates the data heterogeneity. When creating the dataset, we tried to cover as many 
different backgrounds, camera perspectives, shooting lenses and lighting conditions as 
possible. Care was also taken to include PLF specific challenges such as piling, occlusion or 
overlapping of pigs in the dataset. Psota et al. published a dataset of a total of 2000 keypoint 

Figure 2. Images from the dataset  Figure 3. Mask example 

 Figure 4. Descriptive statistics of the dataset. 

annotated images from 17 different locations [37], of which a total of 631 images were 
extracted and annotated. The remaining 94 images were provided by the KoVeSch5 project 
of the Lower Saxony Chamber of Agriculture, which includes 60 pictures from piglet rearing 
and 34 pictures with fattening pigs. All images were annotated by hand. Three people were 
involved in the labelling process, with each annotated image being checked by another 
person to assure quality and correctness of the annotations. Fig. 4 shows some descriptive 
statistics about the dataset. Each image contains between 3 and 30 pigs, while the average 
number of pigs per image is 14.5. The average number of coordinate points per mask is 
about 90, while a few masks can consist of up to 264 points. Fig. 3 shows an example of 

5 https://www.lwk-niedersachsen.de/index.cfm/portal/1/nav/1093/article/34849.html 
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annotated masks.  Compared to the other datasets, our dataset has a higher number of pigs 
per image and a higher variation of data within the set, as both different locations and 
different camera angles were considered. The data set was divided into a training and test 
set, with 75% being used for training and 25% being used for testing and benchmarking. 

Test environment and setup 

Model training was performed on a desktop workstation with two Nvidia RTX 3090 with 24 
GB VRAM each, a Threadripper 3960X and 64 GB RAM. The MMDetection framework was 
used to train and evaluate Mask-RCNN and DetectoRS [38], while the AdelaiDet toolbox was 
used for SOLOv2 [39]. As the DETR implementation in MMDetection did not provide instance 
segmentation, the original implementation of the authors6 was used instead. To check the 
suitability of the models for instance segmentation in the field of Pig PLF, it was decided to 
use the default configuration for each model and to not make any adjustments to the 
parameters. For each training job, we fine-tuned the respective architecture using models 
pre-trained on the COCO dataset. A Resnet50 backbone was used for each of the tested 
models, so that, apart from a few deviations in the respective configuration file, all models 
were trained and evaluated on the same baseline. Each model was fine-tuned over 30 
epochs. 

Results 

Quantitative evaluation 

The models were evaluated based on their mAP including APIoU=0.50 and APIoU=0.75, inference 
speed on GPU and CPU, and number of parameters. The number of parameters describes 
the model size and can affect the required hardware to train and operationalize the 
respective model. The IoU threshold specifies the threshold at which a prediction is classified 
as true positive, while the mAP represents the average of all determined APs. The mAP was 
calculated from the results for IoU thresholds in the range 0.5 to 0.95 with a step size of 0.05 
represented as AP@[.5:.05:.95] [27]. 

Table 1. Results of the evaluation on the test set. 

Model Average precision Inference time in s # Parameters 

mAP APIoU=0.50 APIoU=0.75 GPU CPU 

DetectoRS 0.848 0.978 0.947 0.147 - 131,648,615 

SOLOv2 0.831 0.980 0.946 0.097 0.905 46,175,681 

DETR 0.830 0.976 0.933 0.122 2.262 42,613,152 

Mask R-CNN 0.822 0.978 0.946 0.066 1.574 43.971,158 

As seen in Tab. 1, the best performance in prediction accuracy was achieved using 
DetectoRS. The model achieves a mAP of 0.848 and is thus slightly better than the 
competition, but also has the highest resource requirements. With 131 million parameters, 
DetectoRS is by far the biggest model compared to the others, although inference on GPU is 
only slightly slower than the more lightweight SOLOv2. For DetectoRS, inference on CPU 
was not possible because it was not supported by the used framework. On GPU, Mask R-
CNN was the fastest among the tested models with an inference time of 0.06s per image, but 
provides the lowest mAP compared to the other models. However, measured by APIoU=0.50, it 
can be observed that Mask R-CNN gives a better result than DETR and achieves identical 
performance to DetectoRS. This is also true for APIoU=0.75, although the difference between 
Mask R-CNN and DETR is even greater here. SOLOv2 is slightly slower than Mask R-CNN 

6 https://github.com/facebookresearch/detr 
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but has the best overall result for APIoU=0.50. It is also the fastest model when tested on CPU. 
DETR represents the smallest model with a total of 42 million parameters but is also the 
slowest on CPU. Overall, SOLOv2, DETR, and Mask R-CNN do not differ significantly in their 
parameter size. In general, it is noticeable that the results for APIoU=0.50 of all tested models 
are similar. Differences in performance are only noticeable at higher thresholds. 

Qualitative evaluation 

For the qualitative evaluation of the predicted masks, we selected an example image from 
the test set that included as many of the mentioned visual challenges in Pig PLF as possible. 
For visualization purposes, the visualization method provided by the respective package was 
used, which explains the different coloured masks of the respective visualizations. Fig. 5 
shows the predictions of the different models on the selected example image. As with the 
measured mAPs, the quality of the predicted masks is at a similar level for all models. 
Different coloured points were placed on the image to mark specific areas where the quality 
of the predicted masks sometimes deviated significantly. The red points indicate that in some 
cases, DETR and SOLOv2 have problems assigning pixels to the correct instance. While 
DETR does not assign the pixels to any instance at all, SOLOv2 tends to assign them to the 
wrong one. However, these errors can be observed in any of the tested architectures. This 
inconsistency can be illustrated with the help of the white points that focus on the pig's tail.  

Figure 5. Predictions on test image. 

Although DetectoRS produces the highest overall quality masks in comparison, correct 
segmentation of the tail is possible in only 2 out of 5 cases. In this task, DETR generates the 
best segmentations for the tail region. A problem that every tested model struggles with is 
highlighted by the orange dots. Due to the overlap of the pigs, the legs cannot be assigned to 
the correct mask by any model. The weaknesses of the models highlighted by the different 
points can be found consistently in other test images as well. 

After comparing the individual models and identifying the best model based on mAP 
and visual evaluation, the generalization ability of the model should also be demonstrated. 
For this purpose, a series of images was selected from the test set containing images with as 
many different camera positions, shooting angles, camera lenses and light conditions as 
possible. Fig. 6 shows an overview of these images. As can be seen in the images, the 
segmentation of the individual masks also succeeds in completely different scenarios. 

s
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Although there are similar detail errors as in Fig. 5, the general quality of the masks is 
already promising. Of all the images, there is only one in which a pig was not provided with a 
mask, found in red rectangle. This problem occurred in about 10% of the tested images and 
if present, always occurs in crowded areas. This is similar to the problem mentioned by Seo 
et al. and is caused by the Non-Maximum Suppression (NMS) algorithm, which He et al. also 
pointed out in their introduction of the Mask-R CNN architecture [9]. Adjusting the threshold 
of the NMS could therefore lead to better results.  It is also be seen that in theory the model 
can be applied in different pig compartments as well. Both piglets and fattening pigs can be 
correctly segmented by the model. 

Figure 6. Predictions of DetectoRS. 

Interpretation of the results 

Both the quantitative and the qualitative evaluation show that the results of the models do not 
differ significantly in terms of prediction accuracy. In this context, it can also be stated that 
each of the four instance segmentation models we tested is applicable to Pig PLF data when 
it comes to prediction accuracy. The fact that the prediction accuracy of the models is so 
close may be related to the fact that in this case of the Pig PLF, only one class needs to be 
predicted, whereas the COCO dataset on which the models evaluated here were trained on, 
contains 80 different classes. Although the number of parameters of DetectoRS is almost 
three times larger than that of the other models, it does not result in a significantly better 
mAP. This means that increasing the size and complexity of the model does not necessarily 
have a significant effect on improving the mAP in this type of use case. Accordingly, the 
problems identified in the qualitative evaluation for instance segmentation of pigs cannot be 
solved by scaling the models vertically in depth but require other approaches to improve 
segmentation accuracy. Taking the prediction speed and the number of parameters into 
account, it can be stated that SoloV2, DETR and MASK R-CNN are better suited than 
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DetectoRS for potential use cases in this domain under current circumstances. This is due to 
the fact that fewer resources are required to operationalize these models, allowing them to 
be deployed on less expensive hardware. With respect to the prediction accuracy, it is also 
necessary to differentiate for which use case the respective models should be used and what 
the requirements for accuracy are in this case. Based on the results, it can be stated that 
Mask R-CNN can be used as a baseline due to its fast execution time, small size, and its 
accuracy. For use cases such as tail bite detection, where more precise masks might be 
needed, DETR could be used as a baseline. 

Conclusion and outlook 

In this paper, we demonstrated the usability of the deep learning instance segmentation 
models DetectoRS, SOLOv2, DETR and Mask R-CNN when being applied to data from the 
field of PLF for instance segmentation of pigs. The standard evaluation metric mAP was also 
applied for the first time to uniformly evaluate deep learning instance segmentation models in 
the Pig PLF domain to make performance more comparable. The results show that, in terms 
of prediction accuracy, each of the tested models can in principle be applied for instance 
segmentation of pigs. We observed that for instance segmentation in this context, the 
complexity and size of the model does not have a significant impact on the mAP, as the less 
complex models Mask R-CNN, SOLOv2 and DETR achieve similar prediction accuracy 
compared to DetectoRS. Accordingly, the identified problems in pig instance segmentation 
such as incorrect mask assignment when pigs overlap cannot be solved by vertically scaling 
models in depth but require other approaches or improvements. Based on this work, future 
research in this domain will focus on the aspect of cost efficiency when evaluating instance 
segmentation models for PLF systems. For example, it could be investigated which of the 
tested models can be deployed and operationalized on low-cost hardware or edge devices. 
Since in the context of this paper only the default configuration of each framework was 
applied to create the training jobs, the optimization of the configuration parameters could also 
be a direction for future research. Here, methods such as hyperparameter tuning could be 
applied to find an optimal configuration of the respective models to investigate the influence 
of these on the mAP. Alternative instance segmentation models and architectures such as 
YOLACT could also be explored in this domain for suitability in future research. 
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