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Abstract. Knowledge graphs are used as a source of prior knowledge in numerous computer
vision tasks. However, such an approach requires to have a mapping between ground truth
data labels and the target knowledge graph. We linked the ILSVRC 2012 dataset (often
simply referred to as ImageNet) labels to Wikidata entities. This enables using rich knowl-
edge graph structure and contextual information for several computer vision tasks, traditionally
benchmarked with ImageNet and its variations. For instance, in few-shot learning classifica-
tion scenarios with neural networks, this mapping can be leveraged for weight initialisation,
which can improve the final p erformance metrics v alue. We mapped all 1 000 | mageNet la-
bels — 461 were already directly linked with the exact match property (P2888), 467 have exact
match candidates, and 72 cannot be matched directly. For these 72 labels, we discuss dif-
ferent problem categories stemming from the inability of finding an exact m atch. Semantically
close non-exact match candidates are presented as well. The mapping is publicly available at
https://github.com/DominikFilipiak/imagenet-to-wikidata-mapping.
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Introduction

Thanks to deep learning and convolutional neural networks, the field of computer vision experi-
enced rapid development in recent years. ImageNet (ILSVRC 2012) is one of the most popular
datasets used for training and benchmarking models in the classification task for computer vi-
sion. Nowadays, an intense effort can be observed in the domain of few- [17] or zero-shot
learning [16] which copes with various machine learning tasks, for which training data is very
scarce or even non-available. More formally, N-way K-shot learning considers a setting, in
which there are N categories with K samples to learn from (typically K < 20 in few-shot learn-
ing). This is substantially harder from standard settings, as deep learning models usually rely
on a large number of samples provided. One of the approaches to few-shot learning considers
relying on some prior knowledge, such as the class label. This can be leveraged to improve
the performance of the task. For instance, Chen et al. [4] presented Knowledge Graph Trans-
fer Network, which uses the adjacency matrix built from knowledge graph correlations in order
to create class prototypes in a few-shot learning classification. M ore g enerally, knowledge-
embedded machine learning systems can use knowledge graphs as a source of information for
improving performance metrics for a given task. One of these knowledge graphs is Wikidata
[15], a popular collaborative knowledge graph.
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Our main research goal concentrates on facilitating general-purpose knowledge graphs en-
abled computer vision methods, such as the aforementioned knowledge graph transfer network.
In this paper, we provide a mapping between ImageNet classes and Wikidata entities, as this is
the first step to achieve this goal. Our paper is inspired by and built on top of the work of Nielsen
[12] — he first explored the possibility of linking ImageNet WordNet synsets with Wikidata. We
also aim at providing detailed explanations for our choices and compare the results with these
provided by Nielsen. Our publicly available mapping links WordNet synset used as ImageNet
labels with Wikidata entities. It will be useful for the aforementioned computer vision tasks.
Practical usage scenarios consider situations in which labelling data is a costly process and the
considered classes can be linked to a given graph (that is, for few- or zero-shot learning tasks).
However, simpler tasks, such as classification, can also use context knowledge stemming from
rich knowledge graph structure (in prototype learning [18], for instance).

The remainder of this paper is structured as follows. In the next section, we briefly discuss
related work. Then, in the third section, we provide detailed explanations about the mapping
process, which is focused on the entities which do not have a perfect match candidate. The
next section provides some analytics describing the mapping, as well as a comparison with
automated matching using a NERD tool — entity-fishing [7]. The paper is concluded with a
summary. Most importantly, the mapping is publicly available’.

Background and Related Work

To provide a mapping between ILSVRC 2012 and Wikidata, it is necessary to define some
related terms first. This requires introducing a few additional topics, such as WordNet, since
some concepts (such as structure) in ILSVRC 2012 are based on the former. This section
provides a comprehensive overview of these concepts. We also enlist the existing literature on
the same problem of finding this specific mapping. To the best of our knowledge, there were
only two attempts to achieve this goal — both are described below.

WordNet is a large lexical database of numerous (primarily) English words [11]. Nouns
and verbs have a hierarchical structure and they are grouped altogether as synsets (sets of
synonyms) in WordNet. Historically, this database paid a significant role in various pre-deep
learning era artificial intelligence applications (it is still used nowadays, though). ImageNet [5]
is a large image database, which inherited its hierarchical structure from WordNet. It contains
14,197,122 images and 21841 WordNet-based synsets at the time of writing, which makes it
an important source of ground-truth data for computer vision. ImageNet Large Scale Visual
Recognition Challenge (abbreviated as ILSVRC) [13] was an annual competition for computer
vision researchers. The datasets released each year (subsets of original ImageNet) form a pop-
ular benchmark for various tasks to this day. The one released at ILSVRC 2012 is particularly
popular and commonly called ImageNet? up to this date. It gained scientific attention due to the
winning architecture AlexNet [9], which greatly helped to popularise deep learning. ImageNet is
an extremely versatile dataset — architectures coping with it usually have been successful with
different datasets as well [2]. Models trained on ImageNet are widely used for transfer learning
purposes [8].

Launched in 2012, Wikidata [15] is a collaborative knowledge graph hosted by Wikimedia
Foundation. It provides a convenient SPARQL endpoint. To this date, it is an active project
and it is an important source of information for e.g. Wikipedia articles. Due to its popular-
ity, size, and ubiquity, Wikidata can be considered as one of the most popular and successful
knowledge graph instances along with DBpedia [1] and Freebase-powered [2] Google Knowl-
edge graph. Given the recent interest in the ability to leverage external knowledge in computer
vision tasks [4], it would be therefore beneficial to map ImageNet classes to the correspond-

"https://github.com/DominikFilipiak/imagenet-to-wikidata-mapping
2From now on, we will refer to ILSVRC 2012 dataset as simply ImageNet, unless directly stated otherwise.
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ing Wikidata entities. The idea itself is not new, though the full mapping was not available to
this date. To the best of our knowledge, Nielsen [12] was the first to tackle this problem. He
summarised the encountered problems during preparing the mapping and classified them into
few categories. These categories include missing synsets on Wikidata, matching with a dis-
ambiguation page, discrepancies between ImageNet and WordNet, differences between the
WordNet and the Wikidata concepts with similar names, and multiple semantically similar items
in WordNet and Wikidata. Nielsen described his effort in detail, though the full mapping was
not published. Independently, Edwards [6] tried to map DBpedia and Wikidata to ImageNet (in
a larger sense, not ILSVRC 2012) using various pre-existing mappings and knowledge graph
embeddings methods, such as TransE [3], though the results of such mapping have not been
published as well. Contrary to these papers, we publish our mapping.

Mapping

This section is devoted to the mapping between the ImageNet dataset and Wikidata. First,
we explain our approach in order to provide such mapping. Then, we identify and group key
issues, which occurred in the mapping process. We also provide more detailed explanations
for the most problematic entities.

To prepare the mapping, we follow the approach and convention presented by Nielsen.
Namely, we use synset names from WordNet 3.0 (as opposed to, for example, WordNet 3.1).
That is, we first check the skos:exactMatch (P2888) property in terms of an existing mapping
between Wikidata entities and WordNet synsets. This has to be done per every ImageNet
class. For example, for the ImageNet synset n02480855 we search for P2888 equal to http:
//wordnet-rdf .princeton.edu/wn30/02480855-n using Wikidata SPARQL endpoint. Listing
1 provides a SPARQL query for this example.

SELECT =
WHERE {
7item wdt:P2888 7uri.
FILTER STRSTARTS(STR(?uri),
< "http://wordnet-rdf.princeton.edu/wn30/02480855-n") .

Listing 1. Matching WordNet with Wikidata entities using SPARQL.

As of November 2020, there are 461 already linked synsets out of 1000 in ImageNet using
wdt :P2888 property. For the rest, the mapping has to be provided. Unlike Edwards [6], we
do not rely on automated methods, since the remaining 539 entities can be checked by hand
(although we test one of them in the next section). Using manual search on Google Search, we
found good skos:exactMatch candidates for the next 467 ImageNet classes. These matches
can be considered to be added directly to Wikidata, as they directly reflect the same concept.
For the vast majority of the cases, a simple heuristics was enough — one has to type the synset
name in the search engine, check the first result on Wikipedia, evaluate its fithess and then use
its Wikidata item link. Using this method, one can link 928 classes in total (with 467 entities
matched by hand).

Sometimes, two similar concepts were yielded. Such synsets were a subject of qualitative
analysis, which aimed at providing the best match. Similarly, sometimes there is no good
match at all. At this stage, 72 out of 1000 classes remain unmatched. Here, we enlist our
propositions for them. We encountered problems similar to Nielsen [12], though we propose a
different summary of common issues. We categorised these to the following category problems:
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Table 1. Mapping — hyponymy.

WordNet 3.0 synset Wikidata Entity
n03706229 (magnetic compass) Q34735 (compass)
n02276258 (admiral) Q311218  (vanessa)
n03538406 (horse cart) Q235356  (carriage)
n03976467 (Polaroid camera, Polaroid Land camera) Q313695  (instant camera)
n03775071 (mitten) Q169031  (glove)
n02123159 (tiger cat) Q1474329 (tabby cat)
n03796401 (moving van) Q193468  (van)
n04579145 (whisky jug) Q2413314  (jug)
n09332890 (lakeshore) Q468756  (shore)
n01685808 (whiptail, whiptail lizard) Q1004429 (Cnemidophorus)
n03223299 (doormat) Q1136834 (mat)
n12768682 (buckeye, horse chestnut, conker) Q11009 (nut)
n03134739 (croquet ball) Q18545 (ball)
n09193705 (alp) Q8502 (mountain)
n03891251 (park bench) Q204776  (bench)
n02276258 (admiral) Q311218  (vanessa)

hyponymy, animals and their size, age, and sex, ambiguous synsets, and non-exact match.
Each of these represents a different form of a trade-off made in order to provide the full mapping.
This is not a classification in a strict sense, as some of the cases could be placed in several of
the aforementioned groups.

Hyponymy. This is the situation in which the level of granularity of WordNet synsets did not
match the one from Wikidata. As a consequence, some terms did not have a dedicated entity.
Therefore, we performed semantic inclusion, in which we searched for a more general “parent”
entity, which contained this specific case. Examples include magnetic compass (extended to
compass), mitten (glove), or whisky jug (jug). The cases falling to this category are presented
in Table 1.

Animals and their size, age, and sex. This set of patterns is actually a subcategory of
the hyponymy, but these animal-related nouns provided several problems worth distinguishing.
The first one considers a situation in which a WordNet synset describes the particular sex of
a given animal. This information is often missing on Wikidata, which means that the broader
semantic meaning has to be used. For example, drake was mapped to duck, whereas ram, tup
to sheep. However, while hen was linked to chicken, for cock, rooster (n01514668) there exist
an exact match (Q2216236). Another pattern considers distinguishing animals of different age
and size. For instance, lorikeet in WordNet is defined as “any of various small lories”. As this
definition is a bit imprecise, we decided to use loriini. In another example eft (juvenile newt) was
linked to newt. Similarly, there is eastern and western green mamba, but WordNet defines it as
“the green phase of the black mamba”. The breed of poodle has three varieties (toy, miniature,
and standard poodle), but Wikidata does not distinguish the difference between them — all were
therefore linked to poodle (Q38904). These mappings are summarised in Table 2.

Ambiguous synsets. This is a situation in which a set of synonyms does not necessarily
consist of synonyms (at least in terms of Wikidata entities). That is, for a synset containing at
least two synonyms, there is at least one possible Wikidata entity. At the same time, the broader
term for a semantic extension does not necessarily exist, since these concepts can be mutually
exclusive. For instance, for the synset African chameleon, Chamaeleo chamaeleon there exist
two candidates on Wikidata, Chamaeleo chamaeleon and Chamaelo africanus. We choose
the first one due to the WordNet definition — “a chameleon found in Africa”. Another synset,
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Table 2. Mapping — animals and their size, age, and sex.

WordNet 3.0 synset Wikidata Entity
n01847000 (drake) Q3736439 (duck)
n01514859 (hen) Q780 (chicken)
n01806143 (peacock) Q201251  (peafowl)
n02412080 (ram, tup) Q7368 (sheep)
n01820546 (lorikeet) Q15274050 (loriini)
n01631663 (eft) Q10980893 (newt)
n01749939 (green mamba) Q194425  (mamba)
n02113624 (toy poodle) Q38904 (poodle)
n02113712 (miniature poodle) Q38904 (poodle)
n02113799 (standard poodle) Q38904 (poodle)
n02087046 (toy terrier) Q37782 (English Toy Terrier)

academic gown, academic robe, judge’s robe contains at least two quite different notions —
we have chosen academic dress, as this meaning seems to be dominant in the ImageNet.
Harvester, reaper is an imprecise category in ImageNet since it offers a variety of agricultural
tools, not only these suggested by the synset name. Bonnet, poke bonnet has a match at
Wikidata’s bonnet, though it is worth noticing that ImageNet is focused on babies wearing this
specific headwear. The mapping of this category can be found in Table 3.

Non-exact match. Sometimes, however, there is no good exact match for a given synset
among Wikidata entities. At the same time, the broader term might be too broad. This leads to
unavoidable inaccuracies. For example, for nipple we have chosen its meronym, baby bottle.
Interestingly, nipple exists in Polish Wikidata, though it does not have any properties, which
makes it useless in further applications. Other examples involve somewhat similar meaning
— tile roof was mapped to roof tile, or steel arch bridge to through arch bridge. Plate rack
was linked to dish drying cabinet, though it is not entirely accurate, as the ImageNet contains
pictures of things not designated to drying, but sometimes for dish representation. In other
example, we map baseball player to Category:baseball players. ImageNet contains photos
of different kinds of stemware, not only goblet. Cassette was linked to a more fine-grained
synset (audio cassette) as the images present audio cassettes in different settings. Table 4
summarises the mappings falling into this category.

ImageNet itself is not free from errors, since it is biased towards certain skin colour, gender,
or age. This is a great concern for ethical artificial intelligence scientists since models trained
on ImageNet are ubiquitous. There are some ongoing efforts to fix it with a more balanced
set of images, though [19]. Beyer et al. [2] enlisted numerous problems with ImageNet, such
as single pair per image, restrictive annotation process, or practically duplicate classes. They
proposed a set of new, more realistic labels (Real) and argued that models trained in such a
setting achieve better performance. Even given these drawbacks, ImageNet is still ubiquitous.
Naturally, the presented mapping inherits problems presented in ImageNet, such as these in
which images roughly do not present what the synset name suggests. This problem was pre-
viously reported by Nielsen [12] — he described it as a discrepancy between ImageNet and
WordNet. As for some examples, this might include radiator, which in ImageNet represents
home radiator, whereas the definition on Wikidata for the same name describes a bit more
broad notion (for instance, it also includes car radiators). Monitor is a similar example since it
might be any display device, though in ImageNet it is connected mostly to a computer display.
Sunscreen, sunblock, sun blocker represent different photos of products and their appliance on
the human body, which look completely different and might be split into two distinct classes.
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Table 3. Mapping — ambiguities.

WordNet 3.0 synset

Wikidata Entity

n01694178

n02669723

n02894605

n01755581

n03110669
n03899768
n04258138
n03016953
n02114548

n13133613
n04509417
n01729322
n01735189
n02017213
n02013706
n04008634
n09399592
n01644900

n02395406
n02443114

n03017168
n02088466
n03595614
n03065424
n03594945
n01753488

n03496892
n02869837

(African chameleon, Chamaeleo
chamaeleon)

(academic gown, academic robe, judge’s
robe)

(breakwater, groin, groyne, mole, bul-
wark, seawall, jetty)

(diamondback, diamondback rattlesnake,
Crotalus adamanteus)

(cornet, horn, trumpet, trump)

(patio, terrace)

(solar dish, solar collector, solar furnace)
(chiffonier, commode)

(white wolf, Arctic wolf, Canis lupus tun-
drarum)

(Ear, spike, capitulum)

(unicycle, monocycle)

(hognose snake, puff adder, sand viper)
(garter snake, grass snake)

(European gallinule, Porphyrio porphyrio)
(limpkin, aramus pictus)

(projectile, missile)

(promontory, headland, head, foreland)
(tailed frog, bell toad, ribbed toad, tailed
toad, Ascaphus trui)

(hog, pig, grunter, squealer, Sus scrofa)
(polecat, fitch, foulmart, foumart, Mustela
putorius)

(chime, bell, gong)

(bloodhound, sleuthhound)

(fersey, t-shirt)

(colil, spiral, volute, whorl, helix)

(jeep, land rover)

(horned viper, cerastes, sand viper,
horned asp, Cerastes cornutus)
(harvester, reaper)

(bonnet, poke bonnet)

Q810152 (Chamaeleo africanus)

Q1349227 (academic dress)

Q215635 (breakwater)

Q744532 (eastern diamondback rat-
tlesnake)

Q202027 (cornet)

Q737988 (patio)

Q837515 (solar collector)

Q2746233 (chiffonier)

Q216441 (Arctic wolf)

Q587369 (Pseudanthium)

Q223924 (unicycle)

Q5877356 (hognose)

Q1149509 (garter snake)

Q187902 (Porphyrio porphyrio)

Q725276  (limpkin)

Q49393  (projectile)

Q1245089 (promontory)

Q2925426 (tailed frog)

Q787 (pig)

Q26582  (Mustela putorius)

Q101401 (bell)

Q21098  (bloodhound)

Q131151 (t-shirt)

Q189114 (spiral)

Q946596 (off-road vehicle)

Q1476343 (Cerastes cerastes)

Q1367947 (reaper)
Q1149531 (bonnet)
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Table 4. Mapping — non-exact matches.

WordNet 3.0 synset Wikidata Entity
n04311004 (steel arch bridge) Q5592057 (through arch bridge)
n01737021 (water snake) Q2163958 (common water snake)
n07714571 (head cabbage) Q35051 (white cabbage)
n01871265 (tusker) Q7378 (elephant)
n04344873 (studio coach, day bed) Q19953097 (sofa bed)
n07714571 (head cabbage) Q35051 ((white) cabbage)
n03961711 (plate rack) Q1469010 (dish drying cabinet)
n04505470 (typewriter keyboard) Q46335 (typewrriter)
n03825788 (nipple) Q797906  (baby bottle)
n04435653 (tile roof) Q268547  (roof tile)
n09835506 (baseball player) Q7217606 (Category:baseball players)
n02966687 (carpenter’s Kit, tool kit) Q1501161 (foolbox)
n02860847 (bobsleigh — sleigh) Q177275  (bobsleigh — sport)
n04493381 (tub, vat) Q152095  (bathtub)
n03443371 (goblet) Q14920412 (stemware)
n02978881 (cassette) Q149757  (audio cassette)

Analytics

We also check to what extent the process can be automated, as it might be useful for larger
subsets of ImageNet (in a broad sense). In this section, we present the results of such an
investigation. We also provide a concise analysis of the number of direct properties, which is a
crucial feature in spite of the future usage of the mapping in various computer vision settings.

Foppiano and Romary developed entity-fishing [7], a tool for named entity recognition and
disambiguation (abbreviated as NERD). This tool can be employed in order to provide an auto-
matic mapping between ImageNet and Wikidata. We used indexed data built from the Wikidata
and Wikipedia dumps from 20.05.2020. For this experiment, each synset is split on commas.
For example, a synset barn spider, Araneus cavaticus (n01773549) is split into two synset el-
ements: barn spider and Araneus cavaticus. For each of these elements, the term lookup
service from entity-fishing is called, which searches the knowledge base for given terms in
order to provide match candidates. Since this service provides a list of entities ranked by its
conditional probability, we choose the one with the highest value.

We start with the 461 already linked instances, which can be perceived as ground-truth data
for this experiment. Among them, for 387 (84%) synset elements there was at least one correct
suggestion (for example, for a previously mentioned synset barn spider and Araneus cavati-
cus at least one was matched to Q1306991). In particular, 286 (62%) synsets were correctly
matched for all its elements (for example, for a previously mentioned synset barn spider and
Araneus cavaticus were both matched to Q1306991). While these results show that NERD tools
can speed up the process of linking by narrowing down the number of entities to be searched
for in some cases, it does not replace manual mapping completely — especially in more com-
plicated and ambiguous cases, which were mentioned in the previous section. Nevertheless,
for the remaining 539 synsets which were manually linked, an identical NERD experiment has
been performed, which resulted in similar figures. For 448 (83%) synsets, entity-fishing pro-
vided the same match for at least one synset element. Similarly, for 342 synsets (63%) the tool
yielded the same match for all elements. Albeit these figures can be considered as relatively
not low, they prove that the mapping obtained in such a way might consider some discrepancies
and justify the process presented in the previous section.
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Table 5. Most popular properties in the mapping (occurrences of the same properties of a given
entity was counted as one).

property label count
P646 (Freebase ID) 932
P373 (Commons category) 927
P18 (image) 911
P8408 (KBpedia ID) 687
P910 (fopic’s main category) 681
P279 (subclass of) 659
P1417 (Encyclopeedia Britannica Online ID) 618
P8814 (WordNet 3.1 Synset ID) 551
P31 (instance of) 524
P1014 (Art & Architecture Thesaurus ID) 482

Similarly to Nielsen, we also count the number of the direct properties available in Wikidata.
This is a crucial feature since it enables to leverage knowledge graph structure. Listing 2 shows
the query used for obtaining the number of properties for Q29022. The query was repeated for
each mapped entity. Figure 1 depicts a histogram of direct properties for the 1000 mapped
classes. This histogram presents the right-skewed distribution (normal-like after taking the
natural logarithm) with the mean at 28.28 (o = 22.77). Only one entity has zero properties (wall
clock).

In total, there are 992 Wikidata entities used in the mapping, as some of them were used
several times, like the mentioned poodle. These entities displayed 626 unique properties in to-
tal. The most popular ones are listed in Table 5. In the optics of computer vision, an important
subset of these categories includes P373 (Commons category) P910 (topic’s main category),
and P279 (subclass of), as they directly reflect hyponymy and hypernymy with the knowledge
graph. Such information can be later leveraged in the process of detecting (dis-)similar nodes in
a direct way. For example, using e.g. graph path distance in SPARQL for entities sharing com-
mon ancestors considering a given property. However, SPARQL does not allow to count the
number of arbitrary properties between two given entities. Using graph embedding is a potential
workaround for this issue. For example, one can calculate the distances from 200-dimensional
pre-trained embeddings provided by the PyTorch-BigGraph library [10]. Another possible direc-
tion considers leveraging other linked knowledge graphs, such as Freebase (P646), which is
linked to the majority of considered instances.

SELECT (COUNT (?7property) AS ?7count)
WHERE {
wd:Q29022 7property []
FILTER STRSTARTS(STR(?property),
< "http://www.wikidata.ord/prop/direct/")

Listing 2. Counting direct properties for a single mapped entity. Based on: Nielsen [12].

Summary

In this paper, we presented a complete mapping of ILSVRC 2012 synsets and Wikidata. For
461 classes, such a mapping already existed in Wikidata with skos:exactMatch. For other 467
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Figure 1. A histogram of direct properties.

classes, we found candidates, which match their corresponding synset. Since 72 classes do not
have a direct match, we proposed a detailed justification of our choices. We also compared our
mapping with the one obtained from an automated process. To the best of our knowledge, we
are the first to publish the mapping ImageNet and Wikidata. The mapping is publicly available
for use and validation in various computer vision scenarios.

Future work should focus on empirically testing the mapping. Our results are intended to
be beneficial for general-purpose computer vision research since the graphs can be leveraged
as a source of contextual information for various tasks, as our analysis showed that the vast
majority of the linked entities have a certain number of direct properties. This fact can be
utilised according to the given computer vision task. For example, it may be used to generate
low-level entity (label) embeddings and calculate distances between them in order to create a
correlation matrix used in Knowledge Graph Transfer Network [4] in the task of few-shot image
classification. This architecture leverages prior knowledge regarding the semantic similarity
of considered labels (called correlation matrix in the paper), which are used for creating class
prototypes. These prototypes are used to help the classifier learn novel categories with only few
samples available. Correlations might be calculated using simple graph path distance, as well
as using more sophisticated low-dimensional knowledge graph embeddings and some distance
metrics between each instance. In this case, this will result in a 1000x 1000 matrix, as there
are 1000 labels in ImageNet. Embeddings from pre-trained models might be used for this task
(such as the aforementioned PyTorch-BigGraph embeddings).

Future work might also consider extending the mapping in a way that allows considering
larger subsets of ImageNet (in a broad sense), such as ImageNet-6K [4], the dataset, which
consists of 6000 ImageNet categories. Preparation of such a large mapping might require a
more systematic and collaboratively-oriented approach, which can help to create, verify and
reuse the results [20]. The presented approach can also be used for providing mappings with
other knowledge graphs and ImageNet. Another possible application might consider further
mapping to the actions, which might be particularly interesting for applications in robotics, where
robots would be deciding which actions to take based on such mappings [14].
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