
24th International Conference on Business Information Systems (BIS 2021)

Big Data

https://doi.org/10.52825/bis.v1i.66

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 02 July 2021

Database-less Extraction of Event Logs from Redo
Logs

Dorina Bano1, Tom Lichtenstein1, Finn Klessascheck1, and Mathias Weske1

1Hasso Plattner Institute, University of Potsdam, Germany

Abstract. Process mining is widely adopted in organizations to gain deep insights about run-
ning business processes. This can be achieved by applying different process mining techniques
like discovery, conformance checking, and performance analysis. These techniques are applied
on event logs, which need to be extracted from the organization’s databases beforehand. This
not only implies access to databases, but also detailed knowledge about the database schema,
which is often not available. In many real-world scenarios, however, process execution data is
available as redo logs. Such logs are used to bring a database into a consistent state in case
of a system failure. This paper proposes a semi-automatic approach to extract an event log
from redo logs alone. It does not require access to the database or knowledge of the database
schema. The feasibility of the proposed approach is evaluated on two synthetic redo logs.

Keywords: Event Log, Redo Log, Database Schema, Log Extraction, Process Mining

1 Introduction

An event log is an intrinsic ingredient of process mining that is comprised of process execution
data [1]. In traditional process mining, event logs are extracted from the databases of a given
organization. Typical event log extraction approaches require extensive access to the database
tables and detailed knowledge about the database schema [2]. If this information is not avail-
able, other sources of information have to be tapped to extract event logs, primarily redo logs.
Redo logs are an attractive choice, since these logs not only hold values stored in the database,
but also a temporal ordering of the modifications that were applied to these data.

Several Data Base Management Systems (DBMSs), like Oracle RDBMS 1, provide redo
logs to store conducted data operations and use them to bring the database into a consis-
tent state in case of system failure. Existing approaches propose solutions on how to derive
event logs from redo logs. These approaches rely on information about the database and its
schema [3]–[5]. In this paper we argue that it is possible to extract an event log by just consid-
ering redo logs as a single source of information.

Therefore, this paper proposes database-less extraction of event logs from redo logs. We
are following a two-step semi-automatic approach where in the first step the database schema
is automatically inferred from the redo log. The inferred schema is evaluated by a domain
expert and it is used to extract an event log based on selected case notion. In the second step,
the database schema is used to correlate the redo log events into the event log traces. The
feasibility of our approach is tested on two synthetic redo logs.

1https://www.oracle.com/database/technologies/

73

https://creativecommons.org/licenses/by/4.0/

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

The reminder of this paper is organized as follows. Section 2 briefly discusses the basic
notions needed to understand the rest of the paper. The approach for extracting an event log
from redo log is described in Section 3. The related work are briefly discussed in section 4.
Consecutively, section 5 provides an evaluation of the proposed approach whiles section 6
concludes the paper.

2 Preliminaries

This section introduces the basic notions and concepts regarding the event log and redo log,
which we refer to throughout this paper.

The starting point of any process mining techniques is an event log, which is defined as a
ordered collection of events. Each event is represented by three mandatory attributes: the case
identifier, which identifies the process execution instance; the activity name, which represents
a well-defined step of the process execution; and, the timestamp, which represent the time
occurrence of the event. In addition, an event log can store several optional attributes such
as resources and organizations, showing the business unit where the process is executed. All
events pertaining to the same case identifier establish the case.

One can make use of a plethora of event log extraction approaches to construct an event
log around a specific case notion from a database of a given organization [2], [6]. Therefore,
it is possible to extract several event logs, each pertaining to a different case notion, from the
same source of information. To achieve that goal, the extraction procedure requires access to
the database and deep knowledge of the schema. However, this access and knowledge cannot
always be secured. Instead, usually another kind of log is more ready available—Redo logs.

A Redo log stores all changes of the database as they occur. Each entry in a redo log
corresponds to an transaction executed by the database system. Database systems like Oracle
RDBMS enable redo logs to store the historic view on what has happened in the system. In a
real-life scenario these logs are used to restore the database to the consistent state in case of
system failures.

Each transaction in the redo log is represented as an SQL statement (called redo entry) and
consist of (1) the operation made upon a certain database table i.e., insert, delete, and update;
(2) the affected attributes and the corresponding values, (3) the row id on which the statement
must be applied, (4) the timestamp of the statement occurrence.

Some examples of the redo entries are illustrated in Listing 1, which shows several redo
entries in a medical database system. Suppose that a patient is admitted to a hospital and
afterwards diagnosed by a doctor. Each statement represents a redo entry. In the first redo
entry two attribute value are inserted into the Patients table. While in the second second one
an update operation is made upon the Diagnoses table. The third redo entry includes a delete
operation over the Admissions table.

1 inser t i n t o ”SYSTEM” . ”PATIENTS” (” ID ” , ”GENDER”) values (’ 86 ’ , ’M ’) AAAT
; 08−JAN−2021 12:46:15

2 update ”SYSTEM” . ”DIAGNOSES” set ” ID ” = ’ 584 ’ where ” ADMISSION ID ” = ’
101 ’ and ICD CODE= ’ P599 ’ and ROWID = ’BADR ’ ; 08−JAN−2021 12:45:33

3 delete from ”SYSTEM” . ”ADMISSIONS” where ” ID ” = ’ 32 ’ and ” PATIENT ID ”
= ’ 34 ’ and ROWID = ’SABD ’ ; 08−JAN−2021 12:46:27

Listing 1. Redo log fragment: each statement corresponds to an transaction made upon the
database and is called redo entry

In this paper we provide a method for extracting an event log from a redo log without the
knowledge of the underlying database schema. Below a detailed explanation of each step is

74

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 1. Overview of the approach followed to discover an event log from a redo log

given.

3 Extraction of event logs from redo logs

As mentioned in the previous section, the redo logs store all the changes of the database as
they occur in the form of SQL statements. Our aim is to extract an event log by only considering
the redo log as a single source of information as shown in Figure 1.

To correlate the redo entries into the event log traces a database schema is, nevertheless,
needed. Therefore, the first step of our approach is to infer the database schema from a redo
log without having access to the actual database. Afterwards, the domain experts comes into
play to evaluate the inferred database schema and decide about the case notion by having in
mind the goal of the process model. The last step of our approach is is to extract the event log
from the redo log in conjunction with the database schema. The resulting event log is defined
as a set of traces and each trace contains a set of events.

The assumption is that the redo log contains sufficient information to be able to extract the
database schema and, in consequence, the event log. The bigger the redo log is and the
more variation of the software system transactions it contains, the more accurate the inferred
database schema becomes.

3.1 Inferring the database schema from redo logs

An important step that has to be taken before extracting an event log is to discover the database
schema, which is used to correlate the data taken from the redo log into the event log traces.
The database schema inferring process consists of identifying (1) the database tables with their
attributes; (2) the primary key of each table; (3) the foreign key relations needed to determine
the relation between tables.

75

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Database schema tables and attributes detection To discover the database schema tables
we look at each redo entry and filter out the table names. For each operation made upon the
certain table in the redo entry a new database table is constructed. If the table name already
exists in the database schema then we move forward to the next redo entry. Since each redo
entry contains only one operation made upon one table then this step requires only one iteration
over all redo log entries.

Once the database tables are constructed we have to identify for each table the affected
attributes. Following the same idea, we go through all the redo entries and extract for each
table the affected attribute names. If a new attribute is detected for a table, it is added to the
corresponding table. Otherwise, the attribute is ignored as it is already in the schema.

The next step of the schema extraction is to define the relation between tables based on the
attribute values involved in each redo entry. This implies the need to discover the primary keys
and foreign keys. Since the redo logs do not contain explicit information about these types of
keys we argue that this information can be extracted from the data pertaining to each attribute.

Primary key detection Primary keys are important constraints in the database indicating the
attributes relations that hold in a database. By definition a primary key attribute contains only
unique values [7]. This implies the need of checking the values of each attribute discovered
from the previous step. If duplicate values appear for a certain attribute then this attribute is not
a primary key candidate.

However, checking for unique values is necessary but not sufficient to detect the primary key.
It might happen that a certain attribute contains unique values and can easily be misinterpreted
as a primary key (e.g., an attribute which stores the value of the account balance). To overcome
this issue, we further check if the attribute values appear in ascending order throughout the redo
log. If this is not a case, the attribute is not considered as a primary key candidate even if its
values are unique.

To increase the accuracy in the primary key identification step, we are also considering the
attribute name suffix. In order to make the database more readable and easy to maintain, it is
a common practice in reality for the primary keys to contain a suffix like: ’key’, ’id’, ’nr’ [8].

Foreign key detection The foreign keys are used to identify the relations between the previ-
ously created tables. One difference between the primary keys and foreign keys is that we can
have several foreign keys but only one primary key for each table. Another difference is that
foreign keys require the existence of the primary key since they are used to reference a primary
key.

To identify the foreign keys between the constructed tables and the predefined primary keys
we rely on the inclusion dependency relation, which means that all the values of the referencing
attribute must be contained in the referenced attribute. For example, if we have two attributes
called X and Y respectively, each pertaining to two different tables in the database, we can say
that all attribute values of foreign key Y must be present in the attribute values of the primary
key X. This condition needs to be satisfied only on one direction, which implies that the primary
key attribute might have additional values.

Nevertheless, the inclusion dependency is required but it does not suffice to detect the
foreign keys. It might happen that there are, for example, 100 entries in the primary key attribute,
50 of which appear in another attribute of a different table. This means that this attribute is a
candidate for foreign key. To increase the chances for discovering the correct foreign key in the
same way as we did with the primary keys we will consider also the suffix attribute name.

Before using the inferred database schema as input for the event log extraction step we
leave to the domain expert to review it.

76

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

3.2 Event log extraction

The event log extraction takes as input the redo log and the inferred database schema. It is
the database schema that helps us to correlate the redo entries into the event log traces. The
domain expert supports this transformation by picking the case notion while having in mind the
desired process view. Specifically, the selected case notion denotes which database schema
table will be used to determine the event log traces.

Figure 2. Example of an entity relation table creation. Prescription table is in relation with the
Pharmacy table via the foreign key between User Id and Id attribute

Entity Relation Generation For each pair of tables in the database schema that are in relation
via the discovered foreign keys the following method is applied: For each entity on the left-hand
side of the referenced table it is checked whether one or more entities exist on the right-hand
side of the depended table (i.e., the one that contains the foreign key attribute). If this is the
case, the Row Id of the depended table together with the Row Id of the referenced table are
added to an entity relation table.

This is done until all entities of the left-hand side table have been considered. The method
is repeated for all tables that are in a foreign key relation outputting an entity relation table for
each pair. This requires the Row Id to be unique. However, it might happen that several rows in
the database might have the same row id. This occurs if a delete operation has happened on
that row before. If a certain row is deleted from the database, its row id can be reassigned to
another row via the insert operation. Therefore, a pre-processing step is needed to overcome
this limitation.

Before constructing the entity relation table the redo log is parsed and whenever a redo
entry that contains a delete operation occurs it’s row id is tracked. If another redo entry is
inserted and it occupies one of the tracked row id, then a unique suffix is appended to that row
id. This is repeated as soon as the next delete statement for that row id is encountered. In this
way, we make sure that each row id of the parsed redo log belongs exactly to one redo entry.

Figure 2 provides an example how the entity relation table can be created between two
tables (called Patients and Admissions) that are in relation through the foreign key. Suppose
that from the previously inferred database schema we get the information that each table has
an primary attribute called Id. In addition, the Patient Id attribute of the Admissions table (right-
hand side) is assigned as a foreign key of the Patients table (left-hand side). For the entity with
Id equal to 1 in the Patients table we will check all entities in the Admissions table that have the
same value to the foreign key attribute (i.e., Patient Id). As a result there are three entities that
satisfy this conditions (highlighted with rectangle). In consequence, the corresponding Row
Id of both tables are added to the entity relation table (first three entities of the entity relation
table).

77

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 3. An example of event log extraction after applying the entity-based trace collection
step on the inferred database schema. The Patients table is picked as root class/case notion
by a domain expert

The same logic is followed for the entity with Id equal to 2 (highlighted with circle) and
3 (highlighted with triangle) in the Patients table. The resulted entity relation table has six
relations in total. By default, there cannot be duplicates due to the uniqueness of the primary
key. Once the relation is constructed for each pair of the tables that are in a foreign key relation,
the next step is to define the event log traces.

Entity-based Trace Collection The goal of the entity-based trace collection step is to define
the event log traces by considering the entity relation table and the redo entries. In process
mining each trace is defined as as a collection of events. Each event is determined by a case
id, activity name, timestamp and list of other optional attributes. To discover an event log trace
we are considering for each row id of the root class (from now on let us call it RCID), picked by
the domain expert, all row ids (from other tables) that are in relation with the RCID. This implies
that for each RCID an event log trace is constructed.

To discover all row ids that are in relation with one RCID, the entity relation table comes
into play. Starting from the the first RCID, we check the entity relation table for the entities that
are in relation with this RCID. Let us call all entities that are in relation with the given RCID
the target entities relation. Each target entity relation corresponds to one or more Row Ids
of another table. Therefore the same step is followed to find all Row Ids that are in relation
with the second table. In the same way we iterate through all tables for which a predefined
entity relation table exists. For each RCID a trace is created as a list of all discovered Row Ids
relating to it. Each event in this trace has a case id equal to the RCID entity. The event’s activity
name and timestamp are extracted from the redo log entries based on the respective Row
Id event. Depending on the scope of the to-be-discovered business process model, several
optional attributes can be defined via the attributes lists considered in each redo log entry. All
the traces defined through this method constitute the event log.

Figure 3 illustrates an example of the entity-based trace collection based on the scenario

78

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

presented in Section 2. The patient was admitted to a hospital and afterwards diagnosed
by the doctor. Suppose that the inferred schema for this scenario has three tables Patients,
Admissions and Diagnoses. The Admissions table is in a foreign key relation with the Patients
table, and Diagnoses is in a foreign key relation with Admissions. For each pair of tables the
corresponding entity relation table is illustrated in Figure 3. Let us assume that the domain
expert has selected the Patients table as a root class (case notion). For RCID equal to A the
entity relation table is checked to identify the target entities relation. There are two target entities
N and O in the entity relation table which at the same time defines the Row Id of the related
table. In the same way we go further and check the related Row Id of N and O by considering
the entity relation between Admissions and Diagnoses.

We iterate through all RCID of the root class and identify a list of Row Ids which are in rela-
tion with A and B. Therefore, from the example illustrated in Figure 3 two traces are discovered:
〈A,N,O,X,Z〉 and 〈B,M,X,Y〉. As the last step, for each Row Id in the predefined trace the
redo log is queried to retrieve the activity name and time. The case id of the first trace is equal
to the Row Id of RCID, which is equal to A in the Patients table while the case id of the second
trace is likewise defined as B.

4 Related work

Discovering an event log from a redo log is recently subject to research work. Murillas et al. in
[4] propose a three-step approach (scope, bind and classify) to extract an event log from the
changes captured by the underlying database. The author assumes that the class model and
event model, which capture the changes of the underlying database, are known upfront. In
contrast, we are extracting an event log by considering only the redo log as a single source of
information.

Another approach for extracting an event log from the redo log is presented in [5]. The event
log extraction step requires three objects as input: the redo log, the data model and the trace
id pattern. The latter is extracted from the database and it is used to determine the case notion
needed to produce the event log traces. More specifically, the trace id pattern is used to find
a common set of attributes between different classes while considering the primary key and
foreign key relations. Instead, our approach assumes the lack of the database and such trace
id pattern can be derived from the redo log entries.

In [3], the authors give an comparison between the traditional process mining and redo log
process mining based on the event log extraction phase. They have applied both approaches
on real-life data and come to the conclusion that the event log extracted from the redo log are
richer in terms of number of events. In contrast to our approach the extraction of the event logs
requires as input the redo log and the data model which is accessed via the connected Oracle
database.

To the best of our knowledge, this is the first work on transforming database transactions
into an event log without requiring live access to the database.

5 Evaluation

Our approach is evaluated based on two synthetic redo logs. The first one is extracted from
the MIMC III (Medical Information Mart for Intensive Care III) real-life dataset [9] which contains
electronic health records (EHRs) related to patients admitted to the critical care unit (CCU)
at the Beth Israel Deaconess Medical Centre (BIDMC), in Boston, USA. A script is written to
simulate a redo log based on the provided MIMIC dataset. The approach presented in this
paper is implemented as a Scala-based CLI tool and can be found on GitHub 2. The Oracle

2https://github.com/fyndalf/redo-log-parser

79

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 4. Inferred database schema from the simulated MIMC redo log

LogMiner 3 is used to archive and export the redo logs.

The approach presented in Section 3.1 is applied to the simulated redo log and the inferred
database schema is illustrated in Figure 4. After comparing it with the original schema, we
come to the conclusion that they are similar.

As the next step, we chose two case notions: Patients and Admissions. As the last step
of our approach the event log was extracted based on the selected case notion. The process
model was then discovered from the extracted event log via the Inductive Visual Miner algorithm
[10], which is a ProM plug-in [11]. The discovered process model is illustrated in Figure 5.

Figure 5. MIMC discovered process model for the Patient. The Inductive Visual Miner algorithm
is applied with 70% threshold

From the discovered process we observe that the process starts with the insertion in the
Patient table, which is happening because the Patients is selected as a root class. Afterwards,
the insertion in the Admissions table can optionally happen. That is followed by the insertion in
the Diagnoses table. In consequence the insertion of the Prescriptions or Pharmacy table can
take place. The creation of all tables is followed by either updating the Frequency attribute in
the Pharmacy table or updating the DOSE AMOUNT attribute in the Prescription table which
concludes the process.

Our approach is applied also to the Ticket selling dataset which used in [5]. This dataset
3https://docs.oracle.com/en/database/oracle/oracle-database/18/sutil/oracle-logminer-utility.html

80

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 6. Inferred database schema from the Ticket selling redo log

contains events regarding a portal for selling concert tickets. The inferred database schema is
shown in Figure 6 and it is compared with the original schema presented in [5]. There is only
one extra relation inferred between price attribute in Ticket table and no attribute (seat number)
in Seat table that is not manifested in the original schema. We checked the data and concluded
that this seems to be an inconsistency in the original data: every ticket in the redo log has a
price equal to 35 and there is one seat with the seat number equal to 35. We are assuming that
the data are simulated and non-constant prices would not lead to this result.

6 Conclusion

In this paper we propose an approach to extract an event log from the redo log in the absence
of a database. We show that the access to whole database and extensive knowledge about the
database schema is not always necessary to extract an event log. To realize this, we propose
a semi automatic two-step approach to output the desired event log. First, it is shown how to
infer a database schema solely from the redo log. Then, the event log extraction is achieved by
considering both the inferred database schema and the redo log. The assistance of the domain
expert is required to select a case notion by having in mind the desired process model goal.

The feasibility of the approach is proven by developing a prototype which is applied on two
synthetic redo logs. The inferred database schema it is proven to be similar to the original one
proving the effectiveness of our approach. The discovered event log conforms to the XES 4

standard and can be used by the the process mining experts to apply different techniques like
discovery, conformance checking and performance analysis.

As future work, we are aiming to further exploit redo logs as a rich source of information
to enrich the discovered process model with additional information such as data objects. In
addition we would like to further improve the performance and usability of our implementation
tool.

4IEEE Task Force on Process Mining. XES Standard Definition. www.xes-standard.org

81

Bano et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

References

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second Edition. Springer,
2016, ISBN: 978-3-662-49850-7. DOI: 10.1007/978-3-662-49851-4. [Online]. Available:
https://doi.org/10.1007/978-3-662-49851-4.

[2] S. Remy, L. Pufahl, J.-P. Sachs, E. P. Böttinger, and M. Weske, “Event log generation
in a health system: A case study,” in Business Process Management - 18th Interna-
tional Conference, BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings, D.
Fahland, C. Ghidini, J. Becker, and M. Dumas, Eds., ser. Lecture Notes in Computer Sci-
ence, vol. 12168, Springer, 2020, pp. 505–522. DOI: 10.1007/978-3-030-58666-9_29.
[Online]. Available: https://doi.org/10.1007/978-3-030-58666-9%5C_29.

[3] E. G. L. de Murillas, G. E. Hoogendoorn, and H. A. Reijers, “Redo log process mining in
real life: Data challenges & opportunities,” in Business Process Management Workshops -
BPM 2017 International Workshops, Barcelona, Spain, September 10-11, 2017, Revised
Papers, ser. Lecture Notes in Business Information Processing, vol. 308, Springer, 2017,
pp. 573–587. DOI: 10.1007/978- 3- 319- 74030- 0_45. [Online]. Available: https:
//doi.org/10.1007/978-3-319-74030-0%5C_45.

[4] W. M. P. van der Aalst, “Extracting event data from databases to unleash process mining,”
in BPM - Driving Innovation in a Digital World, J. vom Brocke and T. Schmiedel, Eds.,
Springer, 2015, pp. 105–128. DOI: 10.1007/978-3-319-14430-6_8. [Online]. Available:
https://doi.org/10.1007/978-3-319-14430-6%5C_8.

[5] E. González-López de Murillas, W. van der Aalst, and H. Reijers, “Process mining on
databases: Unearthing historical data from redo logs,” English, Lecture Notes in Com-
puter Science, no. 9253, pp. 367–385, 2015, ISSN: 0302-9743. DOI: 10.1007/978-3-
319-23063-4_25.

[6] K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction, correlation, and abstraction
of event data for process mining,” WIREs Data Mining and Knowledge Discovery, vol. 10,
no. 3, e1346, 2020. DOI: 10.1002/widm.1346. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/widm.1346. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/widm.1346.

[7] L. Jiang and F. Naumann, “Holistic primary key and foreign key detection,” J. Intell. Inf.
Syst., vol. 54, no. 3, pp. 439–461, 2020. DOI: 10.1007/s10844-019-00562-z. [Online].
Available: https://doi.org/10.1007/s10844-019-00562-z.

[8] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser, “A machine learning
approach to foreign key discovery,” 2009.

[9] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B.
Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a freely accessible critical
care database,” Scientific data, vol. 3, p. 160 035, 2016.

[10] S. J. J. Leemans, D. Fahland, and W. van der Aalst, “Process and deviation exploration
with inductive visual miner,” in Proceedings of the BPM Demo Sessions Co-located with
the 12th International Conference on Business Process Management (BPM), ser. CEUR
Workshop Proceedings, vol. 1295, CEUR-WS.org, 2014, p. 46.

[11] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and
W. van der Aalst, “The ProM Framework: A New Era in Process Mining Tool Support,”
in Applications and Theory of Petri Nets 2005, 26th International Conference, ICATPN,
ser. Lecture Notes in Computer Science, vol. 3536, Springer, 2005, pp. 444–454. [On-
line]. Available: https://doi.org/10.1007/11494744%5C_25.

82

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-58666-9_29
https://doi.org/10.1007/978-3-030-58666-9%5C_29
https://doi.org/10.1007/978-3-319-74030-0_45
https://doi.org/10.1007/978-3-319-74030-0%5C_45
https://doi.org/10.1007/978-3-319-74030-0%5C_45
https://doi.org/10.1007/978-3-319-14430-6_8
https://doi.org/10.1007/978-3-319-14430-6%5C_8
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1002/widm.1346
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1346
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1346
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1346
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1346
https://doi.org/10.1007/s10844-019-00562-z
https://doi.org/10.1007/s10844-019-00562-z
https://doi.org/10.1007/11494744%5C_25

