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Abstract. Microservices and Big Data are renowned hot topics in computer science that have 
gained a lot of hype. While the use of microservices is an approach that is used in modern 
software development to increase flexibility, Big Data allows organizations to turn today’s infor-
mation deluge into valuable insights. Many of those Big Data architectures have rather mono-
lithic elements. However, a new trend arises in which monolithic architectures are replaced 
with more modularized ones, such as microservices. This transformation provides the benefits 
from microservices such as modularity, evolutionary design and extensibility while maintaining 
the old monolithic product’s functionality. This is also valid for Big Data architectures. To facili-
tate the success of this transformation, there are certain beneficial factors. In this paper, those 
aspects will be presented and the transformation of an exemplary Big Data architecture with 
somewhat monolithic elements into a microservice favoured one is outlined.
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1 Introduction

A continuous growth of the overall amount of data that is created, captured and analyzed heav-
ily affects today’s infrastructures as a whole [1]. With these advancements, an increase in 
processing speed is desirable. Consequently, the performance of conventional methods and 
technologies are growing insufficient, thus motivating the invention of new techniques and the 
need of modern data architectures, as they are denoted by the terms Big Data and Big Data 
architecture [2]. Organizations that implement aforementioned technologies can experience 
a significant i ncrease i n p erformance [ 3] d ue t o m ore e fficient de cision ma king, re duced ex-
penses and a more result-oriented portfolio of services while improving customer relations [4]. 
However, implementing the respective applications is still a challenging task [4]. Contributing 
to this problem, the newly implemented algorithms and solutions might evolve over time, thus 
rendering the effort pointless, if the Big Data architecture is not adapted accordingly. This 
results in a rising demand for designs, which consist of building blocks that can be modified 
and replaced independently from each other, contrasting isolated implementations and appli-
cations [5]. Implementing microservices as the building blocks of Big Data architecture appears 
to be a feasible solution due to high degree of modularization [6]. Therefore, the research 
question is:

What Factors should be considered to build a microservice favored Big Data architecture?

To provide an answer, at first, the concepts of microservices and Big Data are described. 
This is followed by a look at what research has already done in the area of microservices in Big 
Data. This shall be a foundation to derive success factors for a successful microservice based
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Big Data architecture. Afterwards, an exemplary Big Data architecture with isolated elements
will be transformed into a microservice favored Big Data architecture. he advantages and disad-
vantages are discussed and compared with the specified success factors. Finally, a conclusion
is given, also highlighting potentially beneficial directions for future research endeavors.

2 Background

Big Data and microservices are introduced in the following. Their mode of operation and im-
portant properties are described. Also monolithic architectures as alternatives to microservice
based systems are described and a state of the art of microservices in Big Data is given.

2.1 Big Data

While initially being referred to as a synonym for large amounts of data that cannot be easily
handled by relational databases and technologies of that time, today Big Data covers a vari-
ety of advanced data characteristics, technologies, paradigms and methods [1]. During this
time, the concept has undergone significant changes that dramatically changed the term from
a hype topic [7] to the foundation of most of the data-driven and data-intensive projects known
today [4]. Despite that long lasting maturation and a highly active research community [8], no
distinct and universally applied definition was found that precisely describes the nature and
elements of that term [1]. Notwithstanding that, according to one of the most widely used def-
initions, Big Data “consists of extensive data sets -primarily in the characteristics of volume,
variety, velocity, and/or variability -that require a scalable architecture for efficient storage, ma-
nipulation, and analysis” [9]. Another definition which can be used is that Big Data is a field
that systematically deals, extracts information of, or finds ways to analyze data volumes that
are for example too complex, too fast-moving, too large or too weakly structured to be analyzed
using manual and conventional data processing methods [10]. Similar to the pure definition
itself, many differences about the description of the data exist. While some of the data charac-
teristics are observed as core characteristics, namely volume, variety and velocity, others are
treated unequally [11]. Volume refers to the size and number of elements to be processed, the
variety focuses on the structure of data, which can be either unstructured, semi-structured or
structured. Furthermore, the velocity describes the speed the data is incoming and processed
with [12]. Apart from the pure lack of experts and qualified staff [13], the comprehensive plan-
ning, engineering and integration of architectures represents a cumbersome task [1]. Many
practitioners and researchers noted this problem and attempted to reduce the prevailing com-
plexity through the design and developments of promising solutions, such as reference architec-
tures [14], decision support systems [4], automation approaches [15] or the application of new
technologies [6]. Especially in times at which highly decentralized or loosely coupled environ-
ments are sought more than ever, as in the case of very large business application scenarios,
the use of Big Data in combination with the latter remains desirable.

2.2 Monolithic Architectures

Monolithic architectures follow a traditional model for software in which the structure is a single
and indivisible unit [16]. A monolith has one code base with multiple modules, like the described
Big Data architecture in Section 5. Those modules can consist of one or multiple layers [17].
Figure 1 shows an example with three layers [18]:

I Front-end user interface that runs on user devices
II Logic components that run on a server

III Back-end database in which the application data is stored

Therefore, the modularization of such systems is limited by the resources they share (i.e, the
database) and the components cannot be executed independently [19]. The central component
and control can lead to a large code base, which makes the code difficult to understand and
modify as well as less expandable [20]. As a result, the development slows down. Another effect
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is that continuous deployment can become difficult [21], since a small change to a part of the
application requires the entire monolith to be rebuilt and deployed [21]. Big Data technologies
are often very specific, and so is the connection between them. Special adapters, interfaces or
services must be provided so that they are compatible. A ”loosening” of the system and flexible
exchange is only possible to a very limited extent, if at all. Accordingly, such a system can
appear monolithic to the user, whereas the conceptual design and implementation, on closer
inspection, appear rather isolated and less flexible.

Monolithic Architecture

UI

Business Logic

Data Access Layer

Microservice Architecture

UI

Microservice Microservice Microservice Microservice

Figure 1. On the left side there is a monolithic architecture which contains all features and
services versus on the right side the microservices architecture with decomposed services that
work together to get the same functionality.

2.3 Microservices

Microservices are an opposite approach to monolithic architectures [17]. While there is no pre-
cise definition for the term microservice [22], they can be described as an approach to develop
a single application by decomposing it into a suite of small services [23]. Each of them runs in
their own process and communicates with lightweight mechanisms. These services, because
being so independent, only need a minimum of central management [24]. They are based
on business functions and can be deployed separately by continuous deployment tools. Due
to their independence, they can be written in different programming languages and can be
based on different technologies, for example for the data storage. Common characteristics for
microservices are described in the following. The first one is ”Organized around Business Ca-
pabilities”. The microservice approach leads to structuring teams around business capabilities
instead of traditionally building teams based on the technology layer. Consequently, the teams
are cross-functional and encompass the full range of skills required for development and pre-
vent the “logic everywhere” siloed architectures [22]. This comes with the constraint that the
team realizing this concept can’t be based on strict hierarchical communication [25]. The sec-
ond one is ”Componentization, or Modularity”. Componentization is known to be a generally
good practice in software engineering. Achieving a high degree of modularity is often consid-
ered as difficult [26]. Because systems are broken down into services that are independently
deployable, componentization is achieved with the microservice architecture by design. For
small internal changes, only the affected service has to be redeployed. The third one is ”De-
centralized Data Management”. Every microservice has its own storage and its own technology
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to manage its store. This leads to a decentralized data storage which is isolated from other ser-
vices. Different services can therefore have different conceptual models, e.g. they operate
on different attributes of the same data entities. The fourth one is ”Evolutionary Design”. The
evolutionary design is a typical feature of a microservice architecture, where services decom-
position is used as a driving force to enable frequent and controlled changes in the system [27].
The microservices are specialized, so minor changes on the feature request can lead to im-
plementing new services which can be easily added to the existing application. However, in
case of only small changes, those can usually be based on their predecessor. The fifth one
is ”Smart endpoints and dumb pipes” [22]. The services run isolated from each other. They
are decoupled, cohesive and have their own domain logic. They use lightweight protocols for
communication, which are often used in a REST-ish manner and as basic as possible. The sixth
one is ”Products not Projects”. The aim of most application developments is to deliver a piece of
software which is considered to be complete. While developing a service, the team preferably
develops its service as a standalone product. The seventh one is ”Decentralized Governance”.
Because of the decentralized architecture, which relies on independently deployable compo-
nents, the centralized governance can be relaxed [28]. Every service in the system can be
build based on its own technology that is most suitable for the task. This leads to high flexibility
in the choice of tools and implementation technology. Additionally it allows us to adopt to new
technologies on a smaller scale first [23]. The properties are summarized in Table 1.

Table 1. An overview of the typical properties of microservices.

Property Description
Organized around Business Ca-
pabilities

Developer teams are structured around Business Capa-
bilities instead of the technology layer.

Componentization or Modularity The system is broken down into services that are inde-
pendently deployable.

Decentralized Data Management Every service has its own storage and its own technology
to manage its store.

Evolutionary Design For each service the best fitting technology (e.g. pro-
gramming language, framework) can be used.

Smart Endpoints and Dumb
Pipes

Components need to be able to access required data and
other components through pipelines [22].

Products not Projects The microservice is supposed to be a finished standalone
product.

Decentralized Governance Every service in the system can be build based on its
own technology that is most suitable for the task.

3 Microservices in Big Data

There are several contributions for example [27]–[29], which explore to what extent Big Data can
be used in microservice architectures. This is generally considered in the context of IoT. Fur-
thermore, some approaches also use microservices to build a Big Data architecture. Zhelev and
Rozeva showed that microservices can be used to build an event-driven Big Data architecture
that relies heavily on the implementation of microservices [30]. Also Miao et al. implemented a
microservice based Big Data Analysis Platform for Online Educational Applications [31]. Both
describe how they build their architecture and they also described that the main challenge is to
keep the data integrity. Freymann et al. described how modular services such as microservices
can be used to tackle the six fundamental challenges: Volume, Velocity, Variety, Complexity,
Veracity and Value [6]. They found that the modular architecture should have the properties
described in Table 2. Like Zhelev and Miao, they outlined that data integrity is a challenge but
really important for a successful Big Data architecture. Furthermore, the use of microservices
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for the application of test-driven development to the Big Data domain is proposed in the work
of Staegemann et al. [32].

Table 2. In the table the properties of the modular architecture are described, which was used
to build a Big Data architecture [6].

Property Description
Modularity The architecture divides and structures a system into

software and hardware modules realized by microser-
vices.

Adaptability This is the ability of the architecture to modify and extend
a system [33].

Scalability Scalability supports the expansion of a solution horizon-
tally and vertically by its hardware and software compo-
nents [6].

Data Handling A proper deal handling is important to organize large
amount of data.

Distributed System Distributed Systems ”enable load balancing, distribution
of computational power, data storage and efficient paral-
lel” [6].

Infrastructure Management An overall management of the system to get trans-
parency [34].

4 Success Factors of Microservices in Big Data

Based on the findings from Section 3 and the definitions and characteristics of Big Data and
microservices, certain factors can be identified that facilitate a successful implementation of
microservice favored Big Data architectures. The projects described in Section 3 have taken
data integrity as a challenge in implementing their architecture. In many Big Data architectures,
a structured and segregated system is created, to prevent unplanned modifications during the
data processing, transformation or persistence. With the modular structure, there is no such
instance. Every process can hold its own data and change it. In turn, this change can be
relevant for other processes. If these changes are not communicated further, this can lead to
serious errors and failure. Therefore, the first success factor for microservice favored Big Data
architectures is maintaining data integrity. Many projects using microservices for Big Data sys-
tems have tried to apply best practices. But since their systems often require a high degree of
flexibility and specialization, the implementation was massively facilitated by loosening them a
bit. This effect has also been described by Krylovskiy et al. for building large-scale Smart City
IoT platforms [27]. A microservice architecture with Big Data is implemented successfully by
deviating from best practices for the architectures. This shows that it isn’t mandatory to always
follow strict rules and that it is also possible to deviate from them if it makes the implementation
easier. This is the second success factor. Based on the findings described in Section 3 and
the characteristics of microservices described in Section 2.3, further important factors can be
extracted. One of them is that microservices benefit greatly from their extensibility. This is also
highlighted in the work of Freymann et al. [6]. New components can be added without further
ado. This makes it possible to swap out components with relative ease. Furthermore, it is easy
to scale the system horizontally and vertically [28]. Another success factor it the technological
independence of the individual components. This also allows to use the most suitable tech-
nology for each component, instead of being forced to adhere to predefined standards. For
example, [35] describes a fraud detection system that uses different databases - one for the
user’s past activity, another for a blacklist, a third one for a white list of activities etc. Each of
these services can follow a different architecture and a different internal mechanism. Lastly, the
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individual independent components must communicate in a way among themselves that fits
the architecture they are following. When dealing with microservices, this is done via pipelines,
which follow the ”smart endpoints and dumb pipes” approach. That means, the components
should not aim at forming fine-grained and complex communication structures with other com-
ponents. Instead, they should try to be ”as decoupled and as cohesive as possible” [22]. Those
factors are also summarized in Table 3.

Table 3. The success factors for building a microservice favored Big Data architecture are
described in this table.

Success Factor Description
Data Integrity The data has to be consistent through every process and

every change.
Don’t be a Slave of Rules Best practices can be relaxed if it is deemed beneficial to

build a successful architecture.
Extensibility To refine or update an existing architecture, new compo-

nents are to be added easily [22].
Technological Independence For each service the best fitting technology (e.g. pro-

gramming language, framework) can be used.
Pipelines Components need to be able to access required data and

other components through pipelines [22].

5 Example Transformation

In the previous section, the success factors were explained. In the following, a Big Data archi-
tecture is transformed into a microservice favored architecture. There are many different Big
Data architectures, generic ones such as the Lambda architecture [36], the Kappa architec-
ture [37] as well as domain-specific ones as in the example of the IoT Big Data Architecture
proposed in [38]. In the following, a widely used initial architecture is used for the transforma-
tion [38]. This can be used as an example to show how one should also proceed with other
systems. Due to its already modular structure, there are few hurdles to overcome. As will be
shown in the following, this architecture benefits greatly from the transformation. The architec-
ture is presented first, followed by an explanation of the transformation. The advantages and
challenges are then discussed and the success factors presented in Section 4 are examined.

5.1 Exemplary Big Data Architecture

The fundamental building blocks of Big Data architectures are data sources, batch processing,
real time message ingestion, analytical data storage, analysis and reporting and orchestration,
as they are visualized in Figure 2.

To start with Big Data applications, one or multiple sources of data are required. The spe-
cific kind of sources may vary and may, inter alia, involve application data from databases, files
produced by the application itself (e.g. log files) or real-time data from sensors or other IoT
devices. Before an analysis can be performed, the data has to be processed first. The initial
filtering, aggregation and further preparation for analysis is usually conducted via batch pro-
cessing [38]. This process of reading and writing source files to a new destination after filtering
them takes a long time, depending on the quantity of data. If the data set consists of real-time
messages, the application has to provide a way to handle them. Such real-time messages
are received in the form of a stream, from which the data can for example be saved by simply
dropping the messages into a folder or analyzed in real-time, with only the results being stored.
To support scale-out processing, reliable delivery and other queueing semantics, an ingestion
store as a buffer may be needed. Once preparations are finished, Big Data applications usually
store the data in a structured format, which in turn can be efficiently used by analysis tools. To
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further the aspect of efficiency, the components mentioned above have to be connected and
applied repeatedly on the data. Technologies that aid the automation of these workflows are
called orchestration technologies [38].

Data Sources

Data Storage

Real-time message
ingestion

Batch processing

Stream 
processing

Analysis and 
reporting

Analytical 
data store

Orchestration

Figure 2. The structure of a Big Data architecture. It contains the components described above
and also the dependencies between them. (As shown in [38].)

5.2 Transformation

The central control of the routines in the orchestration is closely interwoven in the presented
architecture. Therefore, slightly simplified, it can be abstracted as one element. In the first step,
this module is removed. For the repeating routines, an extra module can be written in each
case, which accesses the required components through interfaces. Thus the functionality is
maintained, but at the same time one moves away from closely intertwined constructs. Since
the described architecture already possesses a modular structure, the individual components
can be transferred into their own services. The following must be considered with the transfer:

• Dependencies: Required services are addressed via pipelines.
• Interfaces: Other services can use the results, which must be provided by interfaces.

If each service ensures these points, a coherent transformation can take place. Correspond-
ing services can address other services via pipelines and interfaces. This means, that the
dependencies can be transferred from the old model without further ado. So the previously
thought-out processing steps are retained, but at the same time the rigid structure is broken.
By its very nature, a Big Data architecture is usually dealing with very large amounts of data.
The data source is a separate service. However, it must be ensured in any case that, if a ser-
vice wants to make constant changes to a certain part of the dataset, this is also communicated
to the data service. This is necessary to ensure the consistency of the data, one of the success
factors mentioned in Section 4. Likewise, from a performance point of view, it makes a lot of
sense for certain services to keep a part of the data with them as well. At this point, the best
practice of microservices, which states that each service owns its own data, is relaxed. This
is in accordance with the second success factor (”Don’t be a slave of rules”). However, this is
not possible with the Big Data architecture, since the data cannot always be clearly assigned
to each service. It therefore makes sense for a service to cache certain data, but for the entire
dataset to be managed by an extra service. In further research it should be investigated in
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Data Sources Data Storage

Real-time 
message
ingestion

Batch 
processing

Routine 1

Routine 2

Stream 
processing

Analysis and 
reporting

New Process
1

New Process
2

Analytical 
data store

Figure 3. The result of the transformation. The whole structure is significantly more modular,
but still contains all components except for the orchestration. In addition, two services have
been added as examples, each of which shows a routine that would otherwise find a place in
the orchestration.

which dimension the overhead and the performance change it. Up to this point no clear state-
ment can be made. Thanks to the use of interfaces, we can now extend our structure easily by
new components as are exemplary shown in Figure 3. By this, our architecture fulfills another
of the success factors from Section 4. Figure 3 also shows the other components the now
microservice-based architecture resulting from the transformation that has been undertaken.

5.3 Advantages and Challenges

The architecture shown combines a lot of positive aspects from both worlds. That means, the
advantages of the individual mother architectures can also be transferred here. By decompos-
ing the individual components into services, the ideal technology (e.g., specific algorithms or
programming languages) can be used for each service. This architecture is also extensible.
New services can be added without further ado. Via pipelines and appropriate interfaces they
can request the processing necessary data of the respective services. With extensibility comes
scalability. Big Data architectures support horizontal scaling [39]. Since the functionality was
split into microservices, with the dependencies and components being adopted, not only the
architecture is horizontally and vertically scalable, but also distinct parts of it can be adjusted
to the respective circumstances and needs [40]. This makes the microservice favored architec-
ture just as powerful as the reference architecture but at the same time brings the advantages
of microservice architectures: Technological Independence, Evolutionary Design and Exten-
sibility [41]. Big Data architectures are already complex from scratch. Although the transfer
to a microservice architecture removes some of the complexity, new complexity is added from
another side. This is because organizing the interfaces is complex during the initial transition.
Another problem is the overhead of maintaining data consistency.

5.4 Evaluation of the Transformation in View of the Success Factors

In the following, we will compare the success factors presented in Section 4 with the architecture
presented. During the transformation, effort is taken to set pipelines in such a way that, if a
service wants to make consistent changes to the data, it must communicate this to the service
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managing the data, data sources, and this assumes the change. Likewise, a service compares
its data with the data of the data service. This fulfills the point of data consistency and thus the
first success factor. The communication between the individual services is very much based
on pipelines, which are only available for data transfer. The data is in turn made available
by well thought-out interfaces. This principle of smart endpoints and dumb pipes is fulfilled
and thus also the second success factor, Pipelines. As already shown, new services can
be added without further ado, so the third success factor - Extensibility - is also fulfilled. By
decoupling them into individual services, they can be implemented in technologies that are
best suited to them. That in turn is the next success factor, Technology Independence. During
the transformation it was shown that the best practices were relaxed to ensure the most efficient
and functional transfer possible. Therefore, the last success factor Don’t be a slave of rules has
also been fulfilled.

6 Conclusion

This paper showed which factors should be fulfilled in order to successfully build a microservice
favored Big Data achitecture. Furthermore, an exemplary Big Data architecture was trans-
formed step by step into a microservice based architecture on the conceptual level and ex-
amined with regard to the success factors. Thus, it was shown that this approach offers great
potential in theory. In future research, the practical implementation should be examined in more
detail. From a theoretical point of view, questions of data management and synchronization are
still interesting. This would also be a question to be investigated in future research. In general,
microservices offer a great perspective in Big Data and should be focused on more in the future.
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