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1 Introduction

There has been significant recent interest in infinite-dimensional differential algebraic equations (DAEs)
[6, 10, 8, 12] and particularly in linear quadratic optimal control and (differential or algebraic) Riccati
equations for infinite-dimensional DAEs [9, 1]. In this article we show how results and methods from
[2, 13, 14] can be utilized to obtain an algebraic Riccati equation for an infinite-horizon linear quadratic
optimal control problem for a very general class of infinite-dimensional DAEs.

This article is structured as follows. In Section 2 we review relevant notions from [2]. In Section 3 we
precisely formulate the linear quadratic optimal control problem for the class of DAEs considered. We
will utilize the (internal) Cayley transform to solve this problem. Therefore, in Section 4 we study the
Cayley transform, in Section 5 we recall the solution of the discrete-time linear quadratic optimal control
problem and reformulate this in a suitable form, and in Section 6 we relate the Cayley transform and
linear quadratic optimal control as in [13, 14]. In Section 7 we present our main result: the solution to the
linear quadratic optimal control problem for the considered class of DAEs through an algebraic Riccati
equation. In Section 8 we illustrate this with a simple, but interesting, finite-dimensional example. The
result in Section 7 assumes that every initial state has finite cost. In [14] we actually considered a more
general case and as already noted in [17] for DAEs the case where not every initial state has finite cost
is especially relevant. Therefore in Section 9 we consider this more general case; for that we introduce
some further concepts from [2], we formulate a more general version of the result from Section 7, we
compare that results to [17] and we consider a finite-dimensional example for which not every initial
state has finite cost.

https://creativecommons.org/licenses/by/4.0/
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2 Preliminaries

In this section we discuss some general notions from [2] on the input/state/output (i/s/o) node approach
to DAEs which are relevant for our later results on infinite-horizon linear quadratic optimal control and
algebraic Riccati equations.

Definition 2.1. Let U , X and Y be Hilbert spaces. An i/s/o node is a multi-valued operator S : dom(S)⊂[X
U
]
→
[X
Y
]
. The graph of the i/s/o node S is (note that the components are the different way around than

usual, this is to conform to the convention used in [2]):

gph(S) =
{[

r
q

]
: q ∈ dom(S), r ∈ Sq

}
.

The i/s/o node is called closed if S is a closed multi-valued operator (i.e. when gph(S) is a closed
subspace) and bounded if S is a bounded single-valued operator with domain

[X
U
]
.

The definition of i/s/o node is adapted from [2, Definition 4.1.5]. Time-domain trajectories of various
kinds (classical, generalized and mild) are defined in [2, Definitions 4.1.5 and 4.1.7]. These notions
capture that in some suitable sense time-domain trajectories should satisfy

[
ẋ
y

]
∈ S
[

x
u

]
, i.e.


ẋ
y
x
u

 ∈ gph(S). (1)

Since we won’t need time-domain trajectories in the sense of [2], we will not elaborate further.

Remark 2.2. The connection between i/s/o nodes and the “conventional” approach to DAEs becomes
most clear from the notion of a kernel representation from [2, Definition 4.1.16] (see also [2, Lemma
4.1.15]): for a closed i/s/o node there exist a Hilbert space Z and bounded single-valued everywhere-
defined operators E : X →Z , M : X →Z , Nin : U →Z and Nout : Y →Z such that

gph(S) =




z
y
x
u

 ∈


X
Y
X
U

 : Ez+Nouty = Mx+Ninu

 ,

and conversely, the above defines the graph of a closed i/s/o node. The notion of time-domain trajectory
then means that in some suitable sense it should satisfy

Eẋ+Nouty = Mx+Ninu.

Note that compared to the usual form of a DAE, there are no separate equations for Eẋ and y, but these
instead are generally coupled. This makes i/s/o nodes more general than “conventional” DAEs (an
example of an i/s/o node which is not a conventional DAE is given in Example 8.4).

Example 2.3. Let U , X , Z and Y be Hilbert spaces and let A : X → Z , B : U → Z , C : X → Y ,
D : U → Y and E : X → Z be bounded single-valued everywhere-defined operators. The conventional
DAE

Eẋ = Ax+Bu, y = Cx+Du,
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is described by the closed i/s/o node

gph(S) =




z
y
x
u

 ∈


X
Y
X
U

 : Ez = Ax+Bu, y = Cx+Du

 .

Definition 2.4. For λ ∈ C, the formal i/s/o resolvent of the i/s/o node S is the multi-valued operator
Ĝ(λ ) from

[X
U
]

to
[X
Y
]

whose graph is given by

gph(Ĝ(λ )) =


0 0 1 0
0 1 0 0
−1 0 λ 0
0 0 0 1

gph(S).

The i/s/o resolvent set ρ(S) of S consists of those λ ∈ C for which Ĝ(λ ) is a bounded single-valued
operator with domain

[X
U
]
. The i/s/o node is called resolvable if ρ(S) is non-empty and future-resolvable

if ρ(S)∩C+ ̸= /0. For λ ∈ ρ(S) we have

Ĝ(λ ) =

[
Â(λ ) B̂(λ )

Ĉ(λ ) D̂(λ )

]
,

where Â is called the state/state resolvent, B̂ is called the input/state resolvent, Ĉ is called the state/output
resolvent and D̂ is called the input/output resolvent.

The notions in Definition 2.4 are taken from [2, Definition 5.5.8]. For the connection with linear quadratic
optimal control, we need the notion of future-resolvable (i.e. ρ(S) contains an element in the open right-
half plane) rather than the weaker notion of resolvable.

We have

gph(S) =


λ 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

gph(Ĝ(λ )).

Remark 2.5. Related to Remark 2.2, by [2, Lemma 5.5.5] we have for a closed i/s/o node

gph(Ĝ(λ )) =




x
y
x0

u

 ∈


X
Y
X
U

 : (λE −M)x+Nouty = Ex0 +Ninu

 .

Example 2.6. The i/s/o resolvent set of the conventional DAE from Example 2.3 consists of those λ ∈ C
for which λE−A has a (bounded single-valued everywhere-defined) inverse and the various resolvent
operators are given by

Â(λ ) = (λE−A)−1E, B̂(λ ) = (λE−A)−1B,

Ĉ(λ ) = C(λE−A)−1E, D̂(λ ) = C(λE−A)−1B+D.

Remark 2.7. By [2, Theorems 10.2.9 and 10.2.14], the (formal) i/s/o resolvent of a resolvable i/s/o node
is an i/s/o pseudoresolvent and conversely. Under the name resolvent linear system, i/s/o pseudoresol-
vents were studied in [13] in connection with linear quadratic optimal control. The representation results
of [2] now allow us to connect the results from [13] more clearly to DAEs.
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Definition 2.8. Let Ω be a non-empty open subset of C. A frequency domain Ω trajectory of an i/s/o
node is a quadruple (x̂, ŷ,x0, û) where x̂, ŷ and û are holomorphic functions defined on Ω with values in
X , Y and U respectively and x0 ∈ X such that for all λ ∈ Ω

x̂(λ )
ŷ(λ )

x0

û(λ )

 ∈ gph(Ĝ(λ )).

Remark 2.9. The above is [2, Definition 11.1.1]. By [2, Lemma 11.1.6], for a resolvable i/s/o node with
Ω ⊂ ρ(S), for every x0 ∈ X and every holomorphic U -valued û, there exist unique x̂ and ŷ such that the
quadruple forms an Ω trajectory; namely[

x̂(λ )
ŷ(λ )

]
= Ĝ(λ )

[
x0

û(λ )

]
.

The following definition allows us to add an output to an i/s/o node. This is relevant in linear quadratic op-
timal control since the optimal control can be characterized by adding a certain output and subsequently
putting that additional output equal to zero.

Definition 2.10. Let S be an i/s/o node, let Y0 be a Hilbert space and let C =
[
C1 C0

]
:
[X
X
]
→Y0 and

D =
[
D1 D0

]
:
[Y
U
]
→Y0 be (bounded single-valued everywhere-defined) operators. The nonstandard

output extension Sext of S with observation extension C and feedthrough extension D is defined by

gph(Sext) =




z[

C1z+C0x+D1y+D0u
y

]
x
u

 ∈


X[
Y0
Y

]
X
U

 :


z
y
x
u

 ∈ gph(S)

 .

A standard output extension is a nonstandard output extension where C1 = 0 and D1 = 0.

We equivalently have by [2, (5.1.12b)]

gph(Sext) =


1 0 0 0[

C1
0

] [
D1
1

] [
C0
0

] [
D0
0

]
0 0 1 0
0 0 0 1

gph(S),

and we can recover S from Sext by [2, (5.1.13b)] through

gph(S) =


1 0 0 0
0
[
0 1

]
0 0

0 0 1 0
0 0 0 1

gph(Sext).

Definition 2.10 is from [2, Definition 5.1.23 (ii)] and [2, Definition 5.1.33 (ii)]. If S is bounded, then a
nonstandard output extension is equivalent to a standard output extension [2, Lemma 6.2.1 (vii)].

Lemma 2.11. For any nonstandard output extension Sext of a resolvable i/s/o node S we have that
ρ(Sext) = ρ(S).

Proof. This follows from [2, Lemma 5.5.15].
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3 Linear quadratic optimal control

For the purposes of linear quadratic optimal control, we restrict the set Ω in Definition 2.8 to be a subset
of ρ(S)∩C+ (as was done in [14]). In that case, for certain Ω trajectories we can give a time-domain
interpretation.

Definition 3.1. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of ρ(S)∩C+.
For x0 ∈ X the set of i/o stable Ω trajectories is defined as follows. Let u ∈ L2(R+;U) and let û be the
restriction to Ω of the Laplace transform of u. Let ŷ be the output component of the corresponding Ω

trajectory. If there exists a (necessarily unique) y ∈ L2(R+;Y) whose Laplace transform restricted to Ω

equals ŷ, then we call (y,u) an i/o stable Ω trajectory with initial condition x0.

We say that S satisfies the Ω finite cost condition if for all x0 ∈ X the corresponding set of i/o stable Ω

trajectories is non-empty.

Remark 3.2. The above essentially coincides with the notion of stable input/output pairs from [13]. The
difference is that in [13] an additional assumption is made on the resolvent linear system (i.e. resolvable
i/s/o node) which allows for frequency domain trajectories for Ω an exponential region to always be
interpreted as Laplace transforms of distributions. By using the ideas in [14], we can circumvent this
additional assumption (and can allow for more general Ω).

Remark 3.3. The definition of trajectories and therefore of the optimal control problem considered
depends on the choice of Ω. In most applications, ρ(S)∩C+ is connected and then the choice of Ω

is immaterial (see [14]). More generally, ρ(S)∩C+ usually contains a subset of the form [r,∞) for some
r > 0 and the natural choice of Ω is then as (a subset of) this connected component of ρ(S)∩C+ (this is
the choice which is made in [13]).

Definition 3.4. The linear quadratic optimal control problem for a future-resolvable i/s/o node is: for
given x0 ∈ X find the i/o stable Ω trajectory with initial condition x0 of minimal norm, i.e. minimize
∥u∥2

L2(R+;U)
+∥y∥2

L2(R+;Y)
.

4 The internal Cayley transform

As in [14] and [13], the easiest way to approach the linear quadratic optimal control problem at this
high level of generality is through utilizing the internal Cayley transform to translate the problem to a
discrete-time linear quadratic optimal control problem.

Definition 4.1. For α ∈ C with Re(α) > 0, the Cayley transform of the i/s/o node S is the multi-valued
operator Sd from

[X
U
]

to
[X
Y
]

whose graph is given by

gph(Sd) =


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1

gph(S).

Definition 4.1 is from [2, Definition 14.9.7].

We have [2, (14.9.6(b)]

gph(S) =


α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1

gph(Sd),
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and

gph(Ĝ(α)) =


1√

2Re(α)
0 1√

2Re(α)
0

0 1 0 0
0 0

√
2Re(α) 0

0 0 0 1

gph(Sd),

and (see [2, proof of Lemma 14.9.8])

gph(Sd) =


√

2Re(α) 0 −1√
2Re(α)

0

0 1 0 0
0 0 1√

2Re(α)
0

0 0 0 1

gph(Ĝ(α)).

If S is future-resolvable and α ∈ ρ(S)∩C+, then the Cayley transform with parameter α is a single-
valued bounded operator with domain

[X
U
]

and in particular it therefore can be written as

Sd =

[
Ad Bd
Cd Dd

]
,

for (single-valued bounded everywhere-defined) operators Ad : X → X , Bd : U → X , Cd : X → Y and
Dd : U →Y . Explicitly we have

Ad =−I +2Re(α) Â(α), Bd =
√

2Re(α)B̂(α), Cd =
√

2Re(α) Ĉ(α), Dd = D̂(α). (2)

The formal i/s/o resolvent of Sd (in accordance with Definition 2.4, but using w for the resolvent variable)
is given by

gph(Ĝd(w)) =


0 0 1 0
0 1 0 0
−1 0 w 0
0 0 0 1

gph(Sd) =


0 0 1√

2Re(α)
0

0 1 0 0
−
√

2Re(α) 0 1+w√
2Re(α)

0

0 0 0 1

gph(Ĝ(α)).

Using [2, (10.2.1c)] (which is basically the resolvent identity)

gph(Ĝ(α)) =


1 0 0 0
0 1 0 0

α −λ 0 1 0
0 0 0 1

gph(Ĝ(λ )), (3)

we obtain the following relation between the formal i/s/o resolvents

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0
−
√

2Re(α)+ 1+w√
2Re(α)

(α −λ ) 0 1+w√
2Re(α)

0

0 0 0 1

gph(Ĝ(λ )).

With the following correspondence between the resolvent variables

λ =
αw−α

w+1
, w =

α +λ

α −λ
,

6
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the above relation becomes

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0

0 0
√

2Re(α)

α−λ
0

0 0 0 1

gph(Ĝ(λ )).

From this we can deduce the following relation between the various resolvent operators

Âd(w) =
(α −λ )2

α +α
Â(λ )+

α −λ

α +α
I, B̂d(w) =

α −λ√
2Re(α)

B̂(λ ),

Ĉd(w) =
α −λ√
2Re(α)

Ĉ(λ ), D̂d(w) = D̂(λ ),

and we obtain that λ ∈ ρ(S) if and only if w ∈ ρ(Sd).

Lemma 4.2. The inverse Cayley transform of a nonstandard output extension of the Cayley trans-
form Sd of S is a nonstandard output extension of S; more particularly, the observation extensions and
feedthrough extensions are related by

C1 =
1√

2Re(α)
(Cd,1 −Cd,0) , D1 = Dd,1, C0 =

1√
2Re(α)

(αCd,1 +αCd,0) , D0 = Dd,0.

If the output extension of the Cayley transform is standard (i.e. Cd,1 = 0 and Dd,1 = 0), then the output
extension of S need not be standard since then C1 =

−1√
2Re(α)

Cd,0, which is generally nonzero.

Proof. This follows from
α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1




1 0 0 0[
Cd,1

0

] [
Dd,1

1

] [
Cd,0

0

] [
Dd,0

0

]
0 0 1 0
0 0 0 1




1√
2Re(α)

0 α√
2Re(α)

0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1



=


1 0 0 0[

C1
0

] [
D1
1

] [
C0
0

] [
D0
0

]
0 0 1 0
0 0 0 1

 .

5 Discrete-time linear quadratic optimal control

For a bounded i/s/o node

Sd =

[
Ad Bd
Cd Dd

]
,

(which in our application will come from the Cayley transform) we consider the discrete-time dynamics

(xd)n+1 = Ad(xd)n +Bd(xd)n, (yd)n =Cd(xd)n +Dd(ud)n, (4)

7
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i.e. 
(xd)n+1
(yd)n

(xd)n

(ud)n

 ∈ gph(Sd), (5)

(this should be compared to the continuous-time case (1), noting that in discrete-time the sense in which
the equation should be understood is completely obvious). We call (x,y,u) a discrete-time trajectory if
(5) is satisfied for all n ∈ N0.

For a discrete-time system we define for a given initial condition x0 ∈X the set of i/o stable discrete-time
trajectories as consisting of those ud ∈ ℓ2(N0;U) and yd ∈ ℓ2(N0;Y) for which there exists a xd : N0 →X
such that (xd)0 = x0 and (4) (or equivalently (5)) is satisfied. If for all x0 ∈ X this set is non-empty,
then it is said that the discrete-time finite cost condition holds. The discrete-time linear quadratic optimal
control problem is: for a given x0 ∈ X find the i/o stable discrete-time trajectory with initial condition x0

of minimal norm, i.e. minimize ∥ud∥2
ℓ2(N0;U)

+∥yd∥2
ℓ2(N0;Y)

.

By standard discrete-time theory (see e.g. [15]), if the discrete-time finite cost condition is satisfied, then
there exist Kd , Ld and X which satisfy the (Lur’e form of the) discrete-time Riccati equation:

A∗
dXAd −X +C∗

dCd = K∗
d Kd , (6a)

B∗
dXBd +D∗

dDd + I = L∗
dLd , (6b)

B∗
dXAd +D∗

dCd = L∗
dKd , (6c)

the optimal cost is given by ⟨Xx0,x0⟩ and the optimal control is given by

0 = Kd(xd)n +Ld(ud)n,

which noting that by the middle Lur’e equation (6b), Ld has the left-inverse (B∗
dXBd +D∗

dDd + I)−1L∗
d ,

can be explicitly written as

(ud)n =−(B∗
dXBd +D∗

dDd + I)−1L∗
dKd(xd)n =−(B∗

dXBd +D∗
dDd + I)−1 (B∗

dXAd +D∗
dCd)(xd)n.

Similarly, Ld and Kd can be eliminated from the Lur’e equations to obtain the standard form of the Riccati
equation

A∗
dXAd −X +C∗

dCd − (C∗
dDd +A∗

dXBd)(B∗
dXBd +D∗

dDd + I)−1(B∗
dXAd +D∗

dCd) = 0.

For our purposes it will be convenient to write the Lur’e form of the Riccati equation as

⟨zd ,Xzd⟩−⟨xd ,Xxd⟩+∥yd∥2 +∥ud∥2 = ∥wd∥2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(Sext
d ), (7)

where

gph(Sext
d ) =




zd[
wd
yd

]
xd
ud

 :


zd
yd
xd
ud

 ∈ gph(Sd), wd = Kdxd +Ldud

 .

Using Definition 2.10, Sext
d is the standard output extension of Sd with observation extension

[
0 Kd

]
and

feedthrough extension
[
0 Ld

]
(note that by [2, Lemma 6.2.1 (vii)] since Sd is bounded, any nonstandard

output extension is equivalent to a standard output extension).

8
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Theorem 5.1. If Sd satisfies the discrete-time finite cost condition, then for all x0 ∈ X a unique opti-
mal control exists, the optimal cost is given by ⟨Xx0,x0⟩, S has a standard output extension Sext

d with a
feedthrough extension which has left-invertible standard part such that (7) holds and the optimal control
is characterized by putting the additional output in Sext

d equal to zero.

Proof. This simply summarizes the material in this section.

6 The internal Cayley transform in linear quadratic optimal control

The crucial observation (utilized in [13] and in [14]) is that stable i/o trajectories in continuous- and
discrete-time correspond to each other. Let L denote the Laplace transform and note that by the Paley–
Wiener theorem for a Hilbert space K this is an isometric isomorphism between L2(R+;K) and the
Hardy space H2(C+;K). The Z-transform Z maps a sequence (hn)n∈N0 to the corresponding formal
power series ∑

∞
n=0 hnzn and gives an isometric isomorphism between ℓ2(N0;K) and the Hardy space of

the disc H2(D;K). Finally, for α ∈ C with Re(α)> 0, the linear fractional transformation

(Fαg)(z) =

√
Re(2α)

1+ z
g
(

α −αz
1+ z

)
, (F−1

α f )(λ ) =

√
Re(2α)

α +λ
f
(

α −λ

α +λ

)
,

gives an isometric isomorphism between the Hardy spaces H2(C+;K) and H2(D;K). For this latter
statement, see for example [18, Theorem 12.3.1].

Remark 6.1. In the above we use the discrete-time frequency domain variable z which in the stable case
belongs to the unit disc. The discrete-time resolvent parameter w relates to this z though w = 1

z . We
could have written the above in terms of w by utilizing the Hardy space of the exterior of the unit disc as
in done in for example [18, Theorem 12.3.1].

Lemma 6.2. Let S be a future-resolvable i/s/o node. Let Ω be a non-empty connected open subset of
ρ(S)∩C+ and let α ∈ Ω. Let Sd be the Cayley transform of S with parameter α . Let x0 ∈ X . The set
of i/o stable Ω trajectories of S and the set of i/o stable discrete-time trajectories of Sd , both with initial
condition x0, are isometrically isomorphic through the map Z−1FαL.

Proof. This is essentially contained in [14, Section 4.1] and also in [13, Theorem 6.5]. Neither of these
references use the notion of a future-resolvable i/s/o node (this notion didn’t exist at the time that those
references were written), but the arguments in these references remain valid for future-resolvable i/s/o
nodes.

Proposition 6.3. Let X : X → X be a bounded single-valued everywhere-defined self-adjoint operator.
Let S̃ be a closed i/s/o node with state space X , input space U and output space

[Y
U
]

and let S̃d be its
Cayley transform with parameter α ∈ C with Re(α) > 0. The following are equivalent: (here Ĝ is the
formal i/s/o resolvent of S̃ and λ ∈ C)

(i)

⟨z,Xx⟩+ ⟨Xx,z⟩+∥y∥2 +∥u∥2 = ∥w∥2 for all


z[
w
y

]
x
u

 ∈ gph(S̃);

9
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(ii)

⟨λ ẑ− x̂,Xx̂⟩+ ⟨X(λ ẑ− x̂), x̂⟩+∥ŷ∥2 +∥û∥2 = ∥ŵ∥2 for all


ẑ[
ŵ
ŷ

]
x̂
û

 ∈ gph(Ĝ(λ ));

(iii)

⟨zd ,Xzd⟩−⟨xd ,Xxd⟩+∥yd∥2 +∥ud∥2 = ∥wd∥2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

Proof. This follows easily from the relations between the graphs. As an example we show how the first
equation implies the third in detail. Let 

zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

Then there exists
z[
w
y

]
x
u

 ∈ gph(S̃), such that


zd[
wd
yd

]
xd
ud

=


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1




z[
w
y

]
x
u

 .
With this the third equation then is〈

1√
2Re(α)

z+
α√

2Re(α)
x,X

(
1√

2Re(α)
z+

α√
2Re(α)

x

)〉

−

〈
−1√

2Re(α)
z+

α√
2Re(α)

x,X

(
−1√

2Re(α)
z+

α√
2Re(α)

x

)〉
+∥y∥2 +∥u∥2 = ∥w∥2.

Simplifying this gives the first equation, which by assumption is satisfied, so that the third equation is
satisfied.

7 The algebraic Riccati equation for future-resolvable i/s/o nodes

The following theorem is our main result: it gives the solution of the linear quadratic optimal control
problem through an algebraic Riccati equation. In Section 9 the assumption that the Ω finite cost condi-
tion must be satisfied will be relaxed.

Theorem 7.1. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open subset of
ρ(S)∩C+. If the Ω finite cost condition is satisfied, then for every x0 ∈ X there exists a unique optimal
control, there exists a bounded single-valued everywhere-defined self-adjoint operator X : X →X such

10
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that the optimal cost is given by ⟨Xx0,x0⟩, S has a nonstandard output extension Sext with a feedthrough
extension which is standard and has left-invertible standard part and is such that

⟨z,Xx⟩+ ⟨Xx,z⟩+∥y∥2 +∥u∥2 = ∥w∥2 for all


z[
w
y

]
x
u

 ∈ gph(Sext); (8)

holds and the optimal control is characterized by putting the additional output in Sext equal to zero.

Proof. Let α ∈ Ω and let Sd be the Cayley transform of S with parameter α . Since the Ω finite cost
condition is satisfied for S, it follows from Lemma 6.2 that the discrete-time finite cost condition is
satisfied for Sd . By Theorem 5.1, a unique discrete-time optimal control exists, which by Lemma 6.2
transforms to a unique continuous-time optimal control. By Theorem 5.1 the discrete-time optimal cost
is given by ⟨Xx0,x0⟩, which by Lemma 6.2 is also the continuous-time optimal cost. By Theorem 5.1, Sd
has a standard output extension Sext

d whose feedthrough extension has a left-invertible standard part such
that the discrete-time Riccati equation (7) holds. By Lemma 2.11 the resolvent set of Sext

d is the same as
that of Sd . Define Sext as the inverse Cayley transform (with the same parameter α) of Sext

d . By Lemma
4.2, this is a nonstandard output extension of S, the feedthrough extension is standard (i.e. D1 = 0 in
Lemma 4.2 since Dd,1 = 0 as the discrete-time feedthrough extension is standard) and its standard part is
left-invertible (since D0 = Dd,0 and the discrete-time feedthrough Dd,0 is left-invertible). By Lemma 2.11
the resolvent set of Sext is the same as that of S. By Proposition 6.3 (applied with S̃ = Sext and therefore
S̃d = Sext

d ) we have that (8) holds (since (7) holds as we saw above). Since in discrete-time the optimal
control is characterized by putting the additional output in Sext

d equal to zero, the equivalent is true in
continuous-time because these output are Cayley transforms of each other.

The Riccati equation (8) is representation-independent in that we can substitute any representation of
S into it: for example a kernel representation from Remark 2.2 or (if such a representation exists) the
conventional DAE form from Example 2.3. A particularly attractive representation in this respect is an
image representation.

By [2, Lemma 4.1.15 and Definition 4.1.16], every closed i/s/o node S̃ has an image representation,
i.e. there exist a Hilbert space V and bounded single-valued everywhere-defined operators F : V → X ,
Lout : V → Y , K : V →X , Lin : V → U such that

gph(S̃) =




z
y
x
u

 ∈


X
Y
X
U

 : z = Fv, y = Loutv, x = Kv, u = Linv

 .

Applying this result with S̃ = Sext from Theorem 7.1, the Riccati equation (8) can be written as

F∗XK +K∗XF +L∗
out,yLout,y +L∗

inLin = L∗
out,wLout,w, (9)

and the optimal control is obtained from
Lout,wv = 0.

Of course, it is not always easy to explictly find an image representation of a given DAE (e.g. in terms
of the coefficients A, B, C, D, E of the conventional DAE form considered in Example 2.3), but once
such a represenation is obtained, (9) immediately gives the appropriate Riccati equation very explicitly
in terms of the operators appearing in the image representation.

11
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8 An example

Example 8.1. We return to the example of a conventional DAE from Example 2.3. In that case we have
for a nonstandard output extension as in Theorem 7.1 with a feedthrough extension which is standard

gph(Sext) =




z[
w
y

]
x
u

 : Ez = Ax+Bu, y = Cx+Du, w = K1z+K0x+L0u

 .

Note that setting w = 0 gives
K1z+K0x+L0u = 0,

which since L0 is left-invertible in the context of Theorem 7.1 gives (here L−1
0 is a left-inverse of L0):

u =−L−1
0 K1z−L−1

0 K0x.

We note that this feedback depends both on x and z; for trajectories this means that the optimal control
will be a feedback of both the state and its derivative (rather than only the state as is known to be the
case in the purely differential equation situation).

Example 8.2. We again consider the situation in Example 8.1. We show that in the purely differential
equation situation, the conclusions of Theorem 7.1 reduce to the usual ones.

Assume that E is invertible (i.e. has a bounded single-valued everywhere-defined inverse). Then we
can easily eliminate z and re-write the Riccati equation (8) as (here K := K1E−1A + K0 and L :=
L0 +K1E−1B)

⟨E−1Ax+E−1Bu,Xx⟩+ ⟨Xx,E−1Ax+E−1Bu⟩+∥Cx+Du∥2 +∥u∥2 = ∥Kx+L0u∥2.

Since u ∈ U and x ∈ X are arbitrary, this can be written as the Lur’e equations

A∗E−∗X +XE−1A+C∗C = K∗K,

D∗D+ I = L∗L,

B∗E−1X +D∗C = L∗K,

which can in turn be written as the standard algebraic Riccati equation

A∗E−∗X +XE−1A+C∗C− (XE−∗B+C∗D)(D∗D+ I)−1(B∗E−1X +D∗C) = 0.

The optimal control is characterized by 0 = K1z+K0x+L0u, which is

0 = Kx+Lu.

From this we obtain
u =−(D∗D+ I)−1 (B∗E−1X +D∗C

)
x.

Hence we have that the conclusions of Theorem 7.1 become the usual ones.

We note that [14] considers a more general version of this “usual” Riccati equation which allows for
example for the solution X to be unbounded (this relates to not every initial condition having a finite
cost).

12
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Example 8.3. We consider an example from [5] (see also [3, 11, 7]). Although this is a seemingly simple
finite-dimensional example, it is interesting since the “naive” algebraic Riccati equation

A∗ZE+E∗ZA+C∗C− (E∗ZB+C∗D)(I +D∗D)−1(B∗ZE+D∗C) = 0,

does not have a solution (see [3]). The example is of the conventional DAE form from Example 2.3 with

E =

[
1 0
0 0

]
, A =

[
0 1
1 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
.

Here

λE−A =

[
λ −1
−1 0

]
, (λE−A)−1 =

[
0 −1
−1 −λ

]
,

so that the i/s/o resolvent set equals C (which implies that the choice of Ω is immaterial; we choose Ω

equal to the open right half-plane C+ since this works nicely with Laplace transforms). We further have

gph(S) =




z
y
x
u

 : z1 = x2, 0 = x1 +u, y = x

 ,

and

Â(λ ) =

[
0 0
−1 0

]
, B̂(λ ) =

[
−1
−λ

]
, Ĉ(λ ) =

[
0 0
−1 0

]
, D̂(λ ) =

[
−1
−λ

]
.

Therefore the equations for Ω trajectories from Remark 2.9 are

ŷ(λ ) = x̂(λ ) =
[

−û(λ )
−x0

1 −λ û(λ )

]
.

From this we see that the Ω finite-cost condition is satisfied. We can choose u(t) = −x0
1e−t (which is in

L2(R+)) so that

û =
−x0

1
λ +1

, ŷ =
[

1
−1

]
x0

1
λ +1

,

and we see that ŷ is the Laplace transform of

y(t) =
[

1
−1

]
x0

1e−t ,

which is in L2(R+).

In this example it is easy to obtain an image representation (the idea is that z2, x2 and u can be chosen
as “free” variables which determine the others):

F =

[
0 1 0
1 0 0

]
, Lout,y = K =

[
0 0 −1
0 1 0

]
, Lin =

[
0 0 1

]
.

Writing (using that X is symmetric):

X =

[
X1 X0
X0 X2

]
, Lout,w =

[
L1 L2 L3

]
,

the image representation form (9) of the Riccati equation is 0 X2 −X0
X2 2X0 +1 −X1
−X0 −X1 2

=

 L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

 .

13
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From the top-left entry we obtain L1 = 0, from which we deduce using the first row that X0 = X2 = 0. The
bottom right 2-by-2 matrix then is [

1 −X1
−X1 2

]
=

[
L2

2 L2L3
L2L3 L2

3

]
.

From the diagonal entries we then obtain L2 =±1 and L3 =±
√

2. Since X1 ≥ 0 (because X is positive
semi-definite) L2 and L3 must have opposite signs. We choose L2 = 1 and L3 =−

√
2 (this sign choice is

immaterial) and obtain

X =

[√
2 0

0 0

]
, L =

[
0 1 −

√
2
]
.

Hence the optimal cost is ⟨Xx0,x0⟩=
√

2(x0
1)

2 and the optimal control is determined by

[
0 1 −

√
2
]z2

x2
u

= 0,

i.e.
u =

1√
2

x2,

as is also obtained in the above references using various different methods. Note that we can equivalently
write this as the output feedback

u =
1√
2

y2.

Example 8.4. The computations in Example 8.3 can be simplified by choosing a smaller state space. To
write the relation between the input, the (relevant part of the) initial state and the output in conventional
DAE form, a two-dimensional state is needed. However, because i/s/o nodes are more general than
conventional DAEs, it is possible to described the same relation using a one-dimensional state space
using i/s/o nodes. Consider the i/s/o node with X and U one-dimensional and Y two-dimensional given
by

gph(S) =




z
y
x
u

 : z = y2, y1 =−u, x =−u

 .

We have that the i/s/o resolvent set equals C and that

Â(λ ) = 0, B̂(λ ) =−1, Ĉ(λ ) =

[
0
−1

]
, D̂(λ ) =

[
−1
−λ

]
.

We in particular see that D̂ is the same as in Example 8.3 and that Ĉx1 = ĈE [ x1
x2 ], where Ĉ is the

state/output resolvent from Example 8.3. Since E [ x1
x2 ] is the “relevant part” of the initial state [ x1

x2 ], we see
that the state/output resolvents therefore also essentially coincide. Hence the i/s/o node from this example
and the one from Example 8.3 are from the linear quadratic optimal control perspective equivalent.

A kernel representation (as in Remark 2.2) is (here the space Z is three-dimensional)

E =

1
0
0

 , Nout =

0 −1
1 0
0 0

 , M =

0
0
1

 , Nin =

 0
−1
1

 .
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An image representation is (the idea is that y2 and u are “free”)

F =
[
1 0

]
, Lout,y =

[
0 −1
1 0

]
, K =

[
0 −1

]
, Lin =

[
0 1

]
.

The image representation form (9) of the Riccati equation is[
1 −X
−X 2

]
=

[
L2

1 L1L2
L1L2 L2

2

]
.

From this we obtain that L1 and L2 must have opposite signs (since their product equals −X) and picking
an arbitrary sign convention gives L1 =−1, L2 =

√
2, X =

√
2. Hence the optimal cost is

√
2(x0)2 and

the optimal control is determined by
−y2 +

√
2u = 0,

i.e.
u =

1√
2

y2.

This solution is consistent with what we obtained in Example 8.3 noting that x0 here corresponds to x0
1

there.

Note that the above cannot be written as a state feedback. Equivalently, the optimal output extension is
necessarily nonstandard: we can re-write the equation determining the optimal control as

−z+
√

2u = 0.

Therefore the observation extension is
[
−1 0

]
(i.e. C1 = −1 and C0 = 0, so this is nonstandard) and

the feedthrough extension is
[
0 0

√
2
]

(which is standard). Alternatively, from

−y2 +
√

2u = 0,

we have the standard observation extension
[
0 0

]
and the nonstandard feedthrough extension[

0 −1
√

2
]

(i.e. D1 =
[
0 −1

]
and D0 =

√
2). We however cannot have both a standard observation

extension and a standard feedthrough extension at the same time.

The construction of the i/s/o node in Example 8.4 from that in Example 8.3 can be done generally based
on obtaining a minimal i/s/o node with the same input/output resolvent as a given i/s/o node, see [2].

Example 8.5. It is possible to further simplify Example 8.4 by considering y2 as the input and y1 and
u as the outputs (this is related to the notion of canonical input space from [2, Definition 2.1.23]). We
therefore define

ũ = y2, ỹ =
[

y1
u

]
.

This change in perspective does not alter the cost function (or the state), but the dynamics instead become

ẋ = ũ, ỹ =
[

1
−1

]
x,

i.e. we have a standard state-space system with (E = 1 and)

A = 0, B = 1, C =

[
1
−1

]
, D =

[
0
0

]
.

The usual Riccati equation is 2−X2 = 0 and gives X =
√

2 and the state feedback F = −
√

2. The
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optimal control is therefore determined by

ũ =−
√

2x,

which noting that ũ = y2 and x =−ỹ2 =−u gives

y2 =
√

2u,

which is the same as what was obtained before.

9 Beyond the finite cost condition

To consider the case where not all initial conditions are required to have finite cost, we need some further
notions from [2].

Definition 9.1. Let S be an i/s/o node and let X1 ⊂ X be continuously embedded. Then the part Spart of
S in X1 is defined by

gph(Spart) = gph(S)∩


X1
Y
X1
U

 .
Definition 9.1 is adapted from [2, Definition 5.1.10 (i)] where it was assumed that X1 is a closed subspace
of X .

Remark 9.2. It is easy to see that the Cayley transform of the part of S in X1 equals the part in X1 of the
Cayley transform of S (i.e. taking the Cayley transform and taking the part commute).

9.1 The discrete-time case

We reconsider the situation of a bounded i/s/o node Sd with discrete-time dynamics from Section 5.

Definition 9.3. The initial state x0 ∈ X is said to have discrete-time finite cost if the corresponding set
of i/o stable trajectories is non-empty. We denote the subspace of discrete-time finite cost initial states by
Xd,finite.

By [15, Section 2], for every element x0 of Xd,finite, a unique minimal norm i/o stable trajectory
(umin

d ,ymin
d ) exists. This defines a closed nonnegative sesquilinear symmetric form q on X with domain

Xd,finite given by

q[x0
1,x

0
2] :=

〈[
umin

d,1
ymin

d,1

]
,

[
umin

d,2
ymin

d,2

]〉
,

which we call the discrete-time optimal cost sequilinear form. We will consider Xd,finite with the inner-
product

⟨x0
1,x

0
2⟩Xd,finite := ⟨x0

1,x
0
2⟩X +q[x0

1,x
0
2],

(this is called the graph inner product in [15, Section 4]). With this, Xd,finite is a Hilbert space which is
continuously embedded in X .

Definition 9.4. The bounded i/s/o node Sd satisfies the discrete-time input finite future cost condition if
all initial states in im(Bd) have discrete-time finite cost, i.e. if im(Bd)⊂Xd,finite.
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Remark 9.5. The above definition is adapted from [15, Definition 3.3] where the equivalent concept was
called the finite future incremental cost condition. See [15, Lemma 3.4] for this equivalence and for the
fact that AdXd,finite ⊂Xd,finite.

Definition 9.6. Let S and S1 be two bounded i/s/o nodes with the same input and output spaces and
where X1 ⊂X . We call S1 a restriction of S to X1 if the following two conditions hold

(i) Every discrete-time trajectory of S1 is also a discrete-time trajectory of S;
(ii) If (x,y,u) is a discrete-time trajectory of S with x(0) ∈ X1, then xn ∈ X1 for all n ∈ N and (x,y,u)

is a discrete-time trajectory of S1.

Definition 9.6 is adapted from [2, Definition 5.4.37] (which is in continuous-time) as indicated in [2,
Definition 6.5.7]. Moreover, we do not assume that X1 is a closed subspace of X as was done in [2,
Definition 5.4.37].

Lemma 9.7. Let Sd be a bounded i/s/o node and let X1 ⊂ X be continuously embedded. The following
are equivalent:

(i) Sd has a discrete-time restriction to X1;
(ii) Sd has a unique discrete-time restriction to X1;

(iii) AdX1 ⊂X1 and im(Bd)⊂X1;
(iv) The part of Sd in X1 is bounded.

If these equivalent conditions hold, then the part of Sd in X1 is the unique discrete-time restriction to X1
from (ii).

Proof. This is part of [2, Theorem 6.3.19] (the discrete-time version of which holds by [2, Lemma 6.5.8]).
There it was assumed that X1 ⊂ X is closed (rather than continuously embedded), but a continuous
embedding suffices for the proof.

If the discrete-time input finite future cost condition holds for Sd , then with X1 := Xd,finite the condition
(iii) in Lemma 9.7 is satisfied by Remark 9.5. Therefore by Lemma 9.7 we can restrict Sd to the space
of discrete-time finite cost states. Conversely, we see from Lemma 9.7 that the discrete-time input finite
future cost condition (which is implied by (iii)) is necessary for the restriction of Sd to the space of
discrete-time finite cost states to make sense.

Definition 9.8. Let Sd be a bounded i/s/o node. Let q be a closed nonnegative sesquilinear symmetric
form on X with domain X1 and equip X1 with the inner-product q[x1,x2] + ⟨x1,x2⟩X (so that X1 is a
Hilbert space which is continuously embedded in X ). We say that q satisfies the discrete-time Riccati
equation for Sd if

(i) the part Sd,part of Sd in X1 is bounded;
(ii) Sd,part has a standard output extension Sext

d,part with a feedthrough extension which has left-invertible
standard part and is such that

q[zd ,zd ]−q[xd ,xd ]+∥yd∥2 +∥ud∥2 = ∥wd∥2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(Sext
d,part). (10)

Sesquilinear symmetric forms can be ordered as follows: q1 ≤ q2 means that dom(q1) ⊃ dom(q2) and
q1[x,x]≤ q2[x,x] for all x ∈ dom(q2).
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Theorem 9.9. Let Sd be a bounded i/s/o node for which the discrete-time input finite cost condition holds.
Then the discrete-time optimal cost sequilinear form is the smallest solution of the discrete-time Riccati
equation. The optimal control is characterized by putting the additional output in Sext

d,part equal to zero.

Proof. This is [15, Theorem 3.14] once translated to the current terminology.

9.2 The continuous-time case

Definition 9.10. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of
ρ(S)∩C+. The initial state x0 ∈ X is said to have Ω finite cost if the corresponding set of i/o stable
Ω trajectories is non-empty. We denote the subspace of Ω finite cost initial states by Xfinite.

By [14, Section 3.1], for every element x0 of Xfinite, a unique minimal norm i/o stable Ω trajectory
(umin,ymin) exists. This defines a closed nonnegative sesquilinear symmetric form q on X with domain
Xfinite given by

q[x0
1,x

0
2] :=

〈[
umin

1
ymin

1

]
,

[
umin

2
ymin

2

]〉
,

which we call the Ω optimal cost sequilinear form. We will consider Xfinite with the inner-product

⟨x0
1,x

0
2⟩Xfinite := ⟨x0

1,x
0
2⟩X +q[x0

1,x
0
2].

With this, Xfinite is a Hilbert space which is continuously embedded in X .

Remark 9.11. If Ω is connected, α ∈ Ω and Sd is the Cayley transform with parameter α of S, then by
Lemma 6.2 we have that the Ω finite cost initial states for S and the discrete-time finite cost initial states
of Sd are the same, i.e. that Xfinite = Xd,finite.

Definition 9.12. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of ρ(S)∩
C+. Then S satisfies the Ω input finite future cost condition if for all λ ∈ Ω, all initial states in im(B̂(λ ))
have Ω finite cost.

Remark 9.13. The above definition is adapted from [14, Definition 5.7] where the corresponding concept
is defined with respect to a fixed α ∈ Ω (by [14, Theorem 5.9] this is equivalent to it holding for all λ ∈ Ω

if Ω is connected).

Lemma 9.14. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open subset of
ρ(S)∩C+. Then Â(λ )Xfinite ⊂Xfinite for all λ ∈ Ω.

Proof. Let α ∈ Ω and let Sd be the Cayley transform of S with parameter α . By Remark 9.11 we have
Xfinite =Xd,finite. By Remark 9.5 we have AdXd,finite ⊂Xd,finite, which by (2) is equivalent to Â(α)Xfinite ⊂
Xfinite. Since α ∈ Ω was arbitrary, we get the desired result.

Definition 9.15. Let S1 and S be two i/s/o nodes with the same input and output spaces and where
X1 ⊂X and let Ω be a non-empty open subset of C. We call S1 an Ω-restriction of S if the following two
conditions hold

(i) Every frequency domain Ω trajectory of S1 is also a frequency domain Ω trajectory of S;
(ii) If (x̂, ŷ,x0, û) is a frequency domain Ω trajectory of S with x0 ∈ X1, then x̂(λ ) ∈ X1 for all λ ∈ Ω

and (x̂, ŷ,x0, û) is a frequency domain Ω trajectory of S1.

Definition 9.15 is adapted from [2, Definition 11.1.44] where it was assumed that X1 is a closed subspace
of X .
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Lemma 9.16. Let S be a resolvable i/s/o node, let Ω ⊂ ρ(S) and let X1 ⊂X be continuously embedded.
Then the following are equivalent:

(i) S has an Ω-restriction to X1;
(ii) S has a unique resolvable Ω-restriction to X1 whose resolvent set includes Ω;

(iii) Â(λ )X1 ⊂X1 and B̂(λ )U ⊂ X1 for all λ ∈ Ω;
(iv) Spart is resolvable and Ω ⊂ ρ(Spart).

If these equivalent conditions hold, then the part of S in X1 is the unique Ω-restriction to X1 from (ii).

Proof. This is part of [2, Theorem 11.1.51]. There is was assumed that X1 ⊂ X is closed (rather than
continuously embedded), but a continuous embedding suffices for the proof.

If the Ω input finite future cost condition holds for S and Ω is connected, then with X1 := Xfinite the
condition (iii) in Lemma 9.16 is satisfied by Lemma 9.14. Therefore by Lemma 9.16 we can restrict S to
the space of Ω finite cost states. Conversely, we see from Lemma 9.16 that the Ω input finite future cost
condition (which is implied by (iii)) is necessary.

Definition 9.17. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of ρ(S)∩
C+. Let q be a closed nonnegative sesquilinear symmetric form on X with domain X1 and equip X1 with
the inner-product q[x1,x2]+ ⟨x1,x2⟩X (so that X1 is a Hilbert space which is continuously embedded in
X ). We say that q satisfies the Ω-Riccati equation for S if

(i) the part Spart of S in X1 is resolvable and satisfies Ω ⊂ ρ(Spart);
(ii) Spart has a nonstandard output extension Sext

part with a feedthrough extension which is standard and
has left-invertible standard part and is such that

q[z,x]+q[x,z]+∥y∥2 +∥u∥2 = ∥w∥2 for all


z[
w
y

]
x
u

 ∈ gph(Sext
part); (11)

Theorem 9.18. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open subset
of ρ(S)∩C+ for which the Ω input finite future cost condition holds. Then the Ω optimal cost sequilinear
form is the smallest solution of the Ω-Riccati equation. The optimal control is characterized by putting
the additional output in Sext

part equal to zero.

Proof. This is proven similarly to Theorem 7.1 using Remark 9.2.

9.3 Impulse controllability

To relate our results to available results on Riccati equations for DAEs, we briefly discuss the concept of
impulse controllability in the i/s/o node framework.

Definition 9.19. The classical state space X0 of the i/s/o node S equals

X0 :=

x ∈ X : ∃z,y,u such that


z
y
x
u

 ∈ gph(S)

=

{
x ∈ X : ∃u such that

[
x
u

]
∈ dom(S)

}
.

The above definition is adapted from [2, Definition 2.1.15].
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Remark 9.20. We have for λ ∈ C

X0 =

x ∈ X : ∃z,y,u such that


x
y

−z−λ

u

 ∈ gph(Ĝ(λ ))


=

x ∈ X : ∃ z̃,y,u such that


x
y
z̃
u

 ∈ gph(Ĝ(λ ))


= im

[
Â(λ ) B̂(λ )

]
.

Remark 9.21. From [4, Remark 4.1] for a finite-dimensional conventional DAE with det(sE−A) not the
zero polynomial (i.e. the corresponding i/s/o node is resolvable), the DAE being controllable at infinity
is equivalent to im

[
E B

]
= X . This in turn is equivalent to im

[
Â(λ ) B̂(λ )

]
= X . Combining this

with Remark 9.20 we see that the condition X0 = X coincides with controllability at infinity.

Definition 9.22. The multivalued part Z0 of the i/s/o node S equals

Z0 :=

z ∈ X :


z
0
0
0

 ∈ gph(S)

 .

The above definition is adapted from [2, Definition 2.1.15].

We have for λ ∈ C

Z0 =

x ∈ X :


0
0
x
0

 ∈ gph(Ĝ(λ ))

= N

([
Â(λ )

Ĉ(λ )

])
.

From this we see that x0 ∈ Z0 precisely when (0,0,x0,0) is a frequency domain Ω trajectory of the i/s/o
node. In particular, every initial condition in Z0 has zero optimal cost.

For a conventional DAE we have Z0 = N(E). Therefore for a conventional DAE we have Z0 = N(Â(λ ))
(which is not true for a general i/s/o node). From [4, Remark 4.6] for a finite-dimensional conventional
DAE with det(sE−A) not the zero polynomial (i.e. the corresponding i/s/o node is resolvable), the DAE
being impulse controllable is equivalent to im

[
Â(λ ) B̂(λ )

]
+ N(Â(λ )) = X . Using also Remark

9.21, this is X0+Z0 =X . Since for a general i/s/o node this notion also involves the output (for example
though the state/output resolvent Ĉ(λ ) which appears in the characterization of Z0), referring to this as a
controllability property would in general be a misnomer.

For an input/state system (i.e. with output space Y = {0}) we have that X0 +Z0 = X is equivalent to
im
[
Â(λ ) B̂(λ )

]
+N(Â(λ )) = X , i.e. to impulse controllability of the input/state system.

9.4 Comparison with [17]

We compare Theorem 9.18 to the Riccati equation obtained in [17]. We first note that [17] is for
finite-dimensional conventional DAEs whereas our results hold more generally for (possibly infinite-
dimensional) i/s/o nodes. Another difference is that [17] considers the linear quadratic optimal control
problem “with state stability” whereas we do not consider stability of the state. Also [17] considers more
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general quadratic cost functionals than ∥u∥2
L2(R+;U)

+ ∥y∥2
L2(R+;Y)

(our methods would allow for such
more general quadratic cost functionals if the corresponding discrete-time results had been available).

In [17] the Riccati equation is considered on the “system space” Vsys. Using [16, Proposition 3.3] we
can describe this space inductively in i/s/o node terms. Let S1 = S and define Sk+1 as the part of Sk in the
classical state space of Sk. It follows from [16, Proposition 3.3] that (for a finite-dimensional conventional
DAE) there exists a k0 such that Sk = Sk0 for all k ≥ k0 and that dom(Sk0) = Vsys. The restriction of S to
Vsys has graph (here Z0 is the multi-valued part of S)

gph(Sk0)+


Z0
0
0
0

 .
In [17] it is this restriction which is considered rather than the part Sk0 . However, since elements in the
second component of the above sum contribute zero terms to the Riccati equation (11), this difference is
immaterial.

By [16, Proposition 2.9], without loss of generality, a conventional DAE can be considered in feedback
equivalence form. Focusing on the non-differential part only, and making the dimension the smallest
integer large enough so that the system is not impulse controllable (in the sense of [4, Definition 2.1]) we
arrive at the examples in Section 9.5 which further illustrate the connection with [17].

9.5 An example

Example 9.23. Consider the conventional DAE (with no output, i.e. Y = {0}) with X = R3 and U = R

E =

0 1 0
0 0 1
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1
0
0

 .
This gives

gph(S) =


z

x
u

 : z2 = x1 +u, z3 = x2, x3 = 0

 .

Then ρ(S) = C (and we choose Ω = C+) and

(λE−A)−1 =

−1 −λ −λ 2

0 −1 −λ

0 0 −1

 , Â(λ ) =

0 1 −λ

0 0 −1
0 0 0

 , B̂(λ ) =

−1
0
0

 .
We have

X0 =


x1

x2
0

 : x1,x2 ∈ R

 , Z0 =


z1

0
0

 : z1 ∈ R

 .

Since X0 +Z0 ̸= X , this system is not impulse controllable. Since this system is in feedback equivalence
form, the system space from [16] can be calculated using [16, (3.2)] and equals

Vsys =




x1
x2
x3
u

 : x2 = x3 = 0,x1 =−u

 .
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However, it is instructive to calculate this inductively as in Section 9.4. The part of S in its classical state
space equals (compared to gph(S) we have z3 = 0 since z must belong to the classical state space)

gph(S2) =


z

x
u

 : z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

The classical state space of S2 is

X2 =


x1

0
0

 : x1 ∈ R

 ,

and the part of S2 in X2 equals (compared to gph(S2) we have z2 = 0 since z ∈ X2)

gph(S3) =


z

x
u

 : 0 = z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

The classical state space X3 of S3 equals X2 and therefore the induction stops. We have

dom(S3) =

{[
x
u

]
: 0 = x1 +u, x2 = x3 = 0

}
,

which is indeed Vsys as determined above.

Example 9.24. We continue Example 9.23. We now consider Y = R3 and the output y = x. With this
output, the cost being finite implies stability of the state, so there is no difference between the problem
“with state stability” and without this stability requirement. Let

C =

1 0 0
0 1 0
0 0 1

 , D =

0
0
0

 .
Then

Ĉ(λ ) = Â(λ ), D̂(λ ) = B̂(λ ).

Frequency domain trajectories satisfy

ŷ1(λ ) = x0
2 −λx0

3 − û(λ ), ŷ2(λ ) =−x0
3, ŷ3(λ ) = 0. (12)

The condition that ŷ1 and û are Laplace transforms of L2(0,∞) functions implies that x0
2 −λx0

3 must be
as well; this implies x0

2 = x0
3 = 0. Therefore the space of finite cost states is

Xfinite =


x1

0
0

 : x1 ∈ R

 .

Since im(B̂(λ )) ⊂ Xfinite, the input finite future cost condition is satisfied (but the finite future cost con-
dition is not). The part of S in Xfinite is

gph(Sfinite) =


z

x
u

 : 0 = z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

We see that Sfinite equals S3 from Example 9.23 and that dom(Sfinite) = Vsys (as expected since y = x).

For an initial condition in Xfinite we have from (12) that y1 =−u, y2 = y3 = 0 no matter what the initial
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condition in Xfinite is. Therefore clearly u = 0 is the optimal control and the optimal cost equals zero.
We indeed see that q = 0 is a solution of the Riccati equation (11) with the standard output extension
w =

√
2u. From Theorem 9.18 we then indeed conclude (since zero must be the smallest solution) that

the optimal cost is zero and the optimal control satisfies
√

2u = 0 (i.e. is zero).

More generally than just verifying that the obvious candidate solution solves the Riccati equation, we
can write down the Riccati equation using an image representation of Sfinite. Since many components are
known to be zero, we only need to consider z1, x1, y1 and u. We then obtain the image representation (the
idea being that z1 and u are “free” and uniquely determine the other variables)

F =
[
1 0

]
, K = Lout =

[
0 −1

]
, Lin =

[
1 0

]
.

This gives the Riccati equation (as in (9))[
0 −X
−X 2

]
=

[
L2

1 L1L2
L1L2 L2

2

]
,

which gives L1 = 0, X = 0 and L2 =
√

2, which is consistent with what we obtained above.

Using that

Vsys = im


−1
0
0
1

 ,
the Riccati equation in [17] is

[
−1 0 0 1

][A∗PE+E∗PA+C∗C E∗PB+C∗D
B∗PE+D∗C I +D∗D

]
−1
0
0
1

=
[
−1 0 0 1

][K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
which gives

[
−1 0 0 1

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−1
0
0
1

=
[
−1 0 0 1

][K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
which has as solution P ∈ R3×3 an arbitrary symmetric matrix and

K =
[
0 0 0

]
, L =

√
2.

The stability condition from [17] is also satisfied for this solution since for all λ ∈ C

rank
[
−λE+A B

K L

]
= rank


1 −λ 0 1
0 1 −λ 0
0 0 1 0
0 0 0

√
2

= 4.

According to [17, Theorem 5.7(a)] the optimal cost equals ⟨PEx0,Ex0⟩ for all x0 ∈ Vdiff. In this example
Vdiff = Xfinite and we therefore see that the optimal cost equals zero (independent of the initial condition
x0 ∈ Vdiff). According to [17, Theorem 5.7(a)] the optimal control and optimal state satisfy Kx+Lu = 0,
which gives u = 0. We conclude that (as should be the case) we have consistency between our results
and those of [17].

Example 9.25. We continue Example 9.23 with a different output than in Example 9.24. Consider now
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Y = R and y = x3. Then
C =

[
0 0 1

]
, D = 0,

and
Ĉ(λ ) =

[
0 0 0

]
, D̂(λ ) = 0.

We see that for all initial conditions and all inputs the output is zero. Therefore the space of finite cost
states equals the whole state space: Xfinite = X . It is also clear that the optimal cost is zero and the
optimal control is zero (independent of the initial condition). We indeed see that q = 0 is a solution of
the Riccati equation (11) with the standard output extension w = u. From Theorem 9.18 we then indeed
conclude (since zero must be the smallest solution) that the optimal cost is zero and the optimal control
satisfies u = 0 (i.e. is zero). Note that the system space Vsys plays no role in this example and [17] is not
applicable.

10 Conclusion

We considered linear quadratic optimal control for infinite dimensional differential-algebraic equations
(more specifically, for future-resolvable input/state/output nodes) and obtained an algebraic Riccati equa-
tion for the quadratic form which gives the optimal cost and which characterizes the optimal control.

For simplicity of exposition, we only considered the most standard cost function for the linear quadratic
optimal control problem and the associated algebraic Riccati equation, however the method is applicable
to general quadratic cost functions.

Also for simplicity of exposition, we considered input/state/output nodes rather than state/signal nodes
(i.e. we assumed that the signal component is a priori split into an input and an output). However, the
cost in linear quadratic optimal control is an input/output invariant notion in the sense of [2, Section
5.6.1] and therefore does not depend on the decomposition of the signal component into an input and an
output. The objective of writing the input as a state feedback is however not an input/output invariant
notion and as illustrated in Example 8.5, it can be beneficial to take a state/signal perspective. With the
relevant input/state/output results from [2] replaced by the corresponding state/signal results from [2],
state/signal equivalents of our results can be obtained.
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