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Abstract: This paper is concerned with adaptive mesh refinement strategies for the spatial discretization
of parabolic problems with dynamic boundary conditions in polyhedral domains. This includes the
characterization of inf–sup stable discretization schemes for a stationary model problem as a preliminary
step. Based on an alternative formulation of the system as a partial differential–algebraic equation, we
introduce a posteriori error estimators which allow local refinements as well as a special treatment of
the boundary. We prove reliability and efficiency of the estimators and illustrate their performance in
several numerical experiments.
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1 Introduction

Within this paper, we consider a linear parabolic model problem with so-called dynamic boundary con-
ditions in a bounded and polyhedral (Lipschitz) domain Ω ⊆ Rd , d ∈ {2,3}, on a time horizon [0,T ],
0 < T < ∞, namely

u̇−∆αu = f̂ in Ω, (1a)

u̇−∆Γ,κu+∂α,νu = ĝ on Γ := ∂Ω (1b)

with initial condition u(0) = u0 and right-hand sides f̂ , ĝ. Therein, we write

∆αu := ∇ · (α∇u), ∆Γ,κu := ∇Γ · (κ∇Γu)

for the weighted Laplacians with uniformly positive diffusion coefficients α ∈ L∞(Ω) and κ ∈ L∞(Γ).
In the special case κ ≡ 1, the differential operator in (1b) equals the well-known Laplace–Beltrami
operator; see [25, Ch. 16.1]. Moreover, ∂α,νu := ν · (α∇u) denotes the normal derivative corresponding
to the differential operator in (1a) with unit outer normal vector ν .

Condition (1b) itself is a differential equation and enables the reflection of effective properties on the
boundary of the domain [20, 26]. To be more precise, this means that the momentum on the boundary is
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taken into account during the modeling process rather than being neglected as for standard boundary con-
ditions. Because of this flexibility, this and similar models have attained increasing popularity nowadays,
cf. [26, 37, 44]. Although well-understood from a theoretical point (see, e.g., [22, 42]), the numerical
approximation is only tackled by a small number of papers; see [31, 45] as well as the early work [21].

Within this paper, we benefit from a special formulation of (1) as partial differential–algebraic equation
(PDAE); see [4, 32] for an introduction. This means that we interpret the equations as a coupled system
with an additional variable acting only on the boundary; see [34, Ch. 5.3] as well as [3]. The resulting
PDAE approach has already proven advantageous from a numerical point of view in the context of
heterogeneous boundary conditions [6], phase separation models such as the Cahn–Hilliard equation [7],
and the design of bulk–surface splitting schemes [5, 8, 16]. The main instrument of the PDAE approach
is the possibility to apply different discretization schemes in the bulk Ω and on the boundary Γ, e.g.,
based on different meshes TΩ and TΓ. This is also exploited in the present paper and is of special
interest in applications where the solution oscillates rapidly on the boundary. Such oscillations also call
for adaptive mesh refinements in order to improve the computational efficiency. Adaptive strategies, on
the other hand, are based on a posteriori error estimates, which were first introduced for elliptic problems;
see [2, 36, 43].

The paper is structured as follows. After the introduction of the PDAE model in Section 2.1, we shortly
consider the temporal discretization and introduce a stationary model problem with a saddle point struc-
ture. Afterwards, we discuss inf–sup stable finite element schemes for this model problem in Section 2.3.
Based on classical finite element literature, we construct (local) a posteriori error estimators in Section 3.
Of special emphasis is the possibility to distinguish needed refinements of the bulk mesh on the boundary
(denoted by TΩ|Γ) and the boundary mesh TΓ. Moreover, we prove that these estimators are reliable as
well as efficient, meaning that the estimators are indeed in the range of the actual error. We complete
the paper with a number of numerical experiments in Section 4. This includes stationary problems on
different polyhedral domains but also a dynamic problem such as (1).

Notation

Throughout the paper we write a ≲ b to indicate that there exists a generic constant C, independent of
any spatial and temporal discretization parameters, such that a ≤Cb.

2 Weak Formulation and Discretization

In this preliminary section, we introduce the weak operator formulation of the model problem (1) in
PDAE form. Moreover, we discuss the discretization in time and space.

2.1 Weak formulation

With the introduction of an auxiliary variable p := tru (with tr denoting the usual trace operator) as
proposed in [3] and the spaces

V := H1(Ω), Q := H1(Γ), M := H−1/2(Γ),

the weak form of (1) can be expressed as the following PDAE: Find u : [0,T ]→ V , p : [0,T ]→ Q, and
a Lagrange multiplier λ : [0,T ]→ M such that[

u̇
ṗ

]
+

[
Ku

Kp

][
u
p

]
+

[
−B∗

u

B∗
p

]
λ =

[
f̂
ĝ

]
in (V ×Q)∗, (2a)

Buu−Bp p = 0 in M ∗. (2b)
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This formulation includes the differential operators Ku : V → V ∗ and Kp : Q → Q∗ given by

⟨Kuu,v⟩ :=
∫

Ω

α∇u ·∇vdx, ⟨Kp p,q⟩ :=
∫

Γ

κ ∇Γ p ·∇Γqdx

as well as the trace operator Bu : V → M ∗ and the canonical embedding Bp : Q → M ∗.

We would like to emphasize that (2) depicts an extended formulation where the connection of u and its
trace p is explicitly stated in the form of a constraint. In contrast to the classical formulation (1), the
PDAE (2) includes a Lagrange multiplier as additional variable which satisfies λ = ∂α,νu if the solution
is sufficiently smooth. Moreover, the system comes together with initial data u(0) = u0 and p(0) = p0,
which is called consistent if they coincide on the boundary, i.e., if Buu0 = Bp p0. The existence of a
unique (distributional) solution of system (2) for consistent initial data follows from the inf–sup stability
of the constraint operator together with the Gårding inequality of the differential operators; see [3] as
well as [19].

At this point, we would like to emphasize that a direct spatial discretization of (2) leads to a differential–
algebraic equation (of differentiation index 2). In general, this implies numerical difficulties within
the temporal discretization, cf. [27, 28]. Since the right-hand side of the constraint (2b) is homogeneous,
however, these instabilities do not occur for consistent initial values and an index reduction is not needed,
cf. [27, p. 33].

Within this paper, we follow the Rothe method for the discretization of system (2), i.e., we first discretize
in time and then in space [30]. The time discretization is shortly discussed in the following subsection,
whereas we will focus on the spatial discretization using adaptive finite elements in each time step in
Section 2.3.

2.2 Temporal discretization

We first consider the application of the implicit Euler scheme to (2) with constant step size τ . Given
approximations un ∈ V and pn ∈ Q of u and p at time point tn := nτ , respectively, we seek un+1 ∈ V ,
pn+1 ∈ Q, and λ n+1 ∈ M as the solution of[

un+1

pn+1

]
+

[
τKu

τKp

][
un+1

pn+1

]
+

[
−τB∗

u

τB∗
p

]
λ

n+1 =

[
f̃
g̃

]
in (V ×Q)∗, (3a)

Buun+1 −Bp pn+1 = 0 in M ∗. (3b)

Therein, f̃ (and similarly g̃) is some right-hand side which depends on the previous approximation un

(respectively pn).

Remark 2.1. For semilinear applications, i.e., if we allow f and g to depend on u and p, respectively,
we obtain the same linear structure as long as the nonlinear terms are treated explicitly.

In summary, an implicit Euler discretization leads to the following (stationary) problem, which needs to
be solved in every time step: Given f ∈ V ∗ and g ∈ Q∗, find u ∈ V , p ∈ Q, and λ ∈ M such that[

u
p

]
+

[
τKu

τKp

][
u
p

]
+

[
−τB∗

u

τB∗
p

]
λ =

[
f
g

]
in (V ×Q)∗,

Buu−Bp p = 0 in M ∗.

This motivates the model problem, which we will consider in Section 3, namely

(σ −∆α)u = f , (4a)

(σ −∆Γ,κ) p+λ = g, (4b)
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tru− p = 0. (4c)

Note that this model is written in its strong form because of which the Lagrange multiplier (being equal
to the weighted normal trace) disappears in the first equation. Moreover, the newly introduced parame-
ter σ > 0 corresponds to τ−1 in the case of an implicit Euler discretization.

Remark 2.2 (Discretization by Runge–Kutta methods). Assume a Butcher tableau

c A
bT

with an invertible coefficient matrix A ∈Rs,s, which defines an algebraically stable Runge–Kutta scheme.
According to [46, Sect. 8.3 f.], this leads to a stable approximation. Furthermore, we assume that −A
is globally stable, which is equivalent to the existence of a symmetric matrix D ∈ Rs,s such that D and
DA−1 +A−T D are positive definite [33, Th. 13.1.1]. Then, the calculation of the internal stages un+1 ∈
V s, pn+1 ∈ Qs, λλλ

n+1 ∈ M s can be treated similarly to the implicit Euler method considered above. In
comparison to (3), un+1 (and analogously pn+1 and λ n+1) needs to be replaced by un+1. The operators
are replaced by their Kronecker product with D, e.g., K turns into D⊗K . Moreover, the operator
DA−1 ⊗ id pops up in front of un+1 and pn+1. Finally, f̃ (and analogously g̃) contains the approximation
of the previous time point un = (1− bT A−1e)un−1 + bT A−1un, n = 1,2, . . ., with e = [1, . . . ,1]T ∈ Rs;
cf. [46, Ch. 5 & 8].
For the translation of the upcoming analysis given in Section 3 to the Runge–Kutta case, one uses that
the assumptions on the matrix D imply

∥un+1∥2
[L2(Ω)]s ≲ (DA−1un+1,un+1)[L2(Ω)]s ≲ ∥un+1∥2

[L2(Ω)]s ,

|un+1|2[H1(Ω)]s ≲ ⟨(D⊗Ku)un+1,un+1⟩≲ |un+1|2[H1(Ω)]s .

Examples of diagonal matrices D for the Gauss–Legendre, Radau IA, and Radau IIA methods can be
found at [28, p. 220 f.].

2.3 Stable spatial discretization

We first collect a number of standard finite element spaces, which will be used in the following. Given a
regular triangulation TΩ of the computational domain Ω, which is assumed to be polyhedral, the space
of (discontinuous) piecewise polynomials of degree k ≥ 0 is denoted by

Pd
k (TΩ) :=

{
v ∈ L2(Ω)

∣∣v|T is a polynomial of degree ≤ k for all T ∈ TΩ

}
.

The subspace of functions which are additionally elements of H1(Ω), is denoted by Pk(TΩ). It is well-
known that this space can be characterized by

Pk(TΩ) = Pd
k (TΩ)∩C(Ω);

see, e.g., [10, Th. II.5.2]. Given a regular triangulation TΓ of the boundary Γ we denote analogously
the space of (possibly discontinuous) piecewise polynomial functions and its subspace of continuous
functions by Pd

k (TΓ) and Pk(TΓ), respectively.

For the construction of stable finite element schemes, we further introduce the space of bubble functions.
In two space dimensions, the edge-bubble function ψE equals the scaled product of the two nodal basis
functions corresponding to the nodes of the edge E. For d = 3, ψE denotes the face-bubble (E being a
face in TΩ) and equals the scaled product of the three corresponding nodal basis functions, cf. [43]. This
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leads to the space

Eℓ(TΩ) :=
{

v ·ψE
∣∣v|T is a polynomial of degree ≤ ℓ for all T ∈ TΩ,

ψE is an edge/face-bubble for E ⊆ Γ
}
⊆ Pℓ+d(TΩ).

Now let Vh, Qh, and Mh denote finite-dimensional subspaces of V , Q, and M . Due to the saddle point
structure of the model problem, these spaces need to satisfy a discrete inf–sup condition, which reads

inf
λh∈Mh\{0}

sup
(uh,ph)∈Vh×Qh\{0}

⟨Buuh −Bp ph,λh⟩Γ

∥λh∥M

(
∥uh∥2

V +∥ph∥2
Q

)1/2
≥ β > 0 (5)

for some positive constant β being independent of the mesh sizes. Here, ⟨ · , · ⟩Γ denotes the dual product
in M , which only acts on Γ. In a first result, we show that this stability condition is independent of the
choice of the space Qh.

Theorem 2.3 (Equivalence of inf–sup stable discretizations). Consider a conforming Galerkin
scheme Vh ⊆ V = H1(Ω), Qh ⊆ Q = H1(Γ), and Mh ⊆ M = H−1/2(Γ), which includes the approxi-
mation property of the family Vh, i.e., infvh∈Vh ∥u−vh∥V → 0 as h → 0+ for all u ∈ V . Then, the discrete
inf–sup condition (5) is satisfied if and only if there exists a positive constant β̂ (independent of the mesh
size) such that

inf
λh∈Mh\{0}

sup
uh∈Vh\{0}

⟨Buuh,λh⟩Γ

∥λh∥M ∥uh∥V
≥ β̂ > 0. (6)

Proof. (⇒) We prove the if-part by contrapositive and assume that (6) is not satisfied. Then, there exists
a sequence {λ ∗

h } ⊆ M with λ ∗
h ∈Mh and ∥λ ∗

h ∥M = 1 such that

ah := sup
uh∈Vh\{0}

⟨Buuh,λ
∗
h ⟩Γ

∥uh∥V
→ 0 as h → 0+.

Since the sequence is uniformly bounded, there exists a subsequence h′ of h with λ ∗
h′ ⇀ λ ∗ in M as

h′ → 0+. Let g ∈ M ∗ \ {0} be arbitrary. The surjectivity of Bu ∈ L (V ,M ∗), [10, Ch. III, Th. 4.2],
implies the existence of a u ∈ V with Buu = g. Due to the assumed approximation property of Vh, there
exists a sequence {uh}h ⊆ V with uh ∈ Vh, uh ̸= 0, and limh→0+ uh = u in V . By the strong convergence
of {uh}h and the weak convergence of {λh′}h′ , we have

0 ≤ |⟨g,λ ∗⟩Γ|= lim
h′→0+

|⟨Buuh′ ,λ
∗
h′⟩Γ|= lim

h′→0+
∥u∥V

|⟨Buuh′ ,λ
∗
h′⟩Γ|

∥uh′∥V
≤ lim

h′→0+
∥u∥V ah′ = 0.

Hence, λ ∗ = 0 holds and the entire sequence {λ ∗
h } vanishes weakly in M = H−1/2(Γ), cf. [24, Ch. I,

Lem. 5.4]. Moreover, the sequence vanishes strongly in Q∗ = H−1(Γ), since the weak limit is unique
and the embedding H−1/2(Γ) ↪→ H−1(Γ) is compact [41, Prop. 3.2 & 3.4]. Finally, this leads to

lim
h→0+

inf
λh∈Mh\{0}

sup
(uh,ph)∈Vh×Qh\{0}

⟨Buuh −Bp ph,λh⟩Γ

∥λh∥M

(
∥uh∥2

V +∥ph∥2
Q

)1/2

≤ lim
h→0+

sup
(uh,ph)∈Vh×Qh\{0}

⟨Buuh −Bp ph,λ
∗
h ⟩Γ(

∥uh∥2
V +∥ph∥2

Q

)1/2

≤ lim
h→0+

sup
uh∈Vh\{0}

⟨Buuh,λ
∗
h ⟩Γ

∥uh∥V
+ sup

ph∈Qh\{0}

⟨Bp ph,λ
∗
h ⟩Γ

∥ph∥Q

≤ lim
h→0+

ah +∥λ
∗
h ∥Q∗ = 0,
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where we have used that Bp is the embedding operator of Q = H1(Γ) into M ∗ = H1/2(Γ). Thus, the
inf–sup expression cannot be bounded uniformly from below by a β > 0.

(⇐) The only-if-part follows immediately by

sup
(uh,ph)∈Vh×Qh\{0}

⟨Buuh −Bp ph,λh⟩Γ(
∥uh∥2

V +∥ph∥2
Q

)1/2
≥ sup

uh∈Vh\{0}

⟨Buuh,λh⟩Γ

∥uh∥V
≥ β̂ ∥λh∥M .

Remark 2.4. In the limit case κ ≡ 0, there is no differential operator acting on the boundary and the
boundary conditions are called locally reacting. The corresponding solution spaces then read V =
H1(Ω), Q = L2(Γ), and M = L2(Γ). In this setting, one can show analogously to Theorem 2.3 that
conforming finite element spaces are inf–sup stable if and only if the subproblem with Vh = {0} is inf–
sup stable.

A direct consequence of Theorem 2.3 is that it is sufficient to consider the inf–sup condition with ph = 0.
Hence, one example class of inf–sup stable discretizations reads

Vh := Pk(TΩ)⊕Eℓ(TΩ)⊆ V , Qh ⊆ Q, Mh := Pd
ℓ (TΩ|Γ)⊆ M

with k ≥ 1, ℓ ≥ 0; see [36, Th. 2.3.7]. We would like to emphasize that the mesh used for the definition
of Mh may be different to TΩ|Γ as long as it is synchronized with the mesh used for the bubble functions.
Moreover, the scheme

Vh := P1(TΩ)⊆ V , Qh ⊆ Q, Mh := P1(TΩ|Γ)⊆ M

is inf–sup stable; see [6, Prop. 3.4]. The corresponding generalization to higher polynomial degrees reads
as follows.

Lemma 2.5. The conforming finite element spaces

Vh := Pk(TΩ)⊆ V , Qh ⊆ Q, Mh := Pk(TΩ|Γ)⊆ M

satisfy the discrete inf–sup condition (5) for arbitrary k ≥ 1 and Qh.

Proof. The case k = 1 is shown in [6, Prop. 3.4]. The statement for general k can be proven equivalently.
Here, we use that there exists an extension operator from Pk(TΩ|Γ) ⊆ H1/2(Ω) to Pk(TΩ) ⊆ H1(Ω)
which is continuous and preserves boundary values; cf. [29, Lem. 5.1] and [39, Th. 2.1]. In particular, its
operator-norm depends only on Ω and the regularity of the triangulation TΩ.

Recall that all presented stable schemes still have the freedom to set the discrete space Qh. In the follow-
ing, Qh will be a standard finite element space but defined on another triangulation TΓ. Having in mind
applications with strong fluctuations or heterogeneities on the boundary, TΓ usually equals a refinement
of TΩ|Γ.

Remark 2.6. The choice Vh = P2(TΩ), Qh = P1(TΓ), and Mh = P1(TΩ|Γ) is stable and yields a
priori rates of order h2 for u and h for p and λ (in the respective H1-norms). Due to the different spatial
dimensions, this then implies a balanced order of one in terms of the degrees of freedom.
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3 A Posteriori Error Estimation

After the discussion on the temporal discretization and inf–sup stable finite element schemes, we now
turn to the construction of efficient and reliable a posteriori error estimators. Following the Rothe method,
the aim is an adaptive spatial discretization in each time step. Note that the formulation as coupled system
in (2) amplifies the use of adaptive schemes as we can optimize TΩ (for the spaces Vh, Mh) as well as
TΓ (for Qh). Throughout this paper, we assume TΩ and TΓ to be shape regular; see [10, Ch. II.5].
Note that this automatically implies the shape regularity of TΩ|Γ. Within this section, we consider the
two-dimensional setting but comment on necessary adjustments in the three-dimensional case.

By EΩ we denote the set of edges corresponding to the triangulation TΩ, which can be decomposed
into E in

Ω
(interior edges) and E bd

Ω
(boundary edges). Moreover, hT and hE denote the mesh sizes for

elements and edges of a triangulation TΩ, respectively. For a partition TΓ of the boundary, we write hI

for the mesh size of these elements. For the upcoming analysis, we consider the following assumption.

Assumption 3.1 (Spatial discretization).

(i) The discretization scheme is inf–sup stable and it holds that P1(TΩ) ⊆ Vh, P1(TΓ) ⊆ Qh, and
P1(TΩ|Γ)⊆Mh or Pd

0 (TΩ|Γ)⊆Mh.
(ii) TΓ is a refinement of TΩ|Γ. Moreover, there exists a positive constant ρ > 0 such that hE ≤ ρhI

holds uniformly for the mesh sizes hI and hE of every I ∈ TΓ with I ⊆ E ∈ E bd
Ω

.
(iii) The diffusion coefficients satisfy α ∈ Pd

1 (TΩ) and κ ∈ Pd
1 (TΓ).

As explained in Section 2.2, we deal with the model problem (4). Working again with the weak form, we
consider the system

σ(u,v)L2(Ω)+ ⟨Kuu,v⟩−⟨λ ,v⟩Γ = ( f ,v)L2(Ω),

σ(p,q)L2(Γ)+ ⟨Kp p,q⟩+ ⟨λ ,q⟩Γ = (g,q)L2(Γ),

⟨u− p,µ⟩Γ = 0

for test functions v ∈ V , q ∈ Q, µ ∈ M and the parameter σ which is related to the time step size.

Remark 3.2. The upcoming analysis can be performed similarly for semilinear applications; see [43,
Sect. 5.2.3]. We, however, focus on the linear case, since our main interest is the treatment of the two
different meshes on the boundary.

To shorten notation, we define the product space X := V ×Q×M equipped with the norm

∥[u, p,λ ]∥2 := ∥u∥2
V +∥p∥2

Q +∥λ∥2
M .

Moreover, we introduce the bilinear form B : X ×X → R, which is directly related to the model prob-
lem, by

B
(
[u, p,λ ], [v,q,µ]

)
=

∫
Ω

σuv+α∇u ·∇vdx+
∫

Γ

σ pq+κ ∇Γ p ·∇Γqds+
∫

Γ

(u− p)µ − (v−q)λ ds.

Note that we use the symbolic integral notation for the boundary terms as they equal the L2-inner product
if the arguments are sufficiently smooth. Obviously, the bilinear form B is continuous. Furthermore,
following the lines of [43, Prop. 4.68], one can show that B is inf–sup stable, i.e., there exists a positive
constant βB > 0 such that

sup
[v,q,µ]∈X , ∥[v,q,µ]∥=1

B
(
[u, p,λ ], [v,q,µ]

)
≥ βB∥[u, p,λ ]∥. (7)

7
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With B at hand, the introduced weak form of the model problem can be written as

B
(
[u, p,λ ], [v,q,µ]

)
=

∫
Ω

f vdx+
∫

Γ

gqds

for all [v,q,µ] ∈ X . Correspondingly, given discrete spaces Vh ⊂ V , Qh ⊂ Q, and Mh ⊂ M and the
product space Xh := Vh ×Qh ×Mh, we obtain a discrete solution triple [uh, ph,λh] ∈ Xh as the unique
solution of

B
(
[uh, ph,λh], [vh,qh,µh]

)
=

∫
Ω

f vh dx+
∫

Γ

gqh ds

for all [vh,qh,µh] ∈ Xh. Standard arguments such as in [12, Sect. II.2.2] imply the a priori estimate∥∥[u−uh, p− ph,λ −λh]
∥∥≲ inf

[vh,qh,µh]∈Xh

∥u− vh∥H1(Ω)+∥p−qh∥H1(Γ)+∥λ −µh∥H−1/2(Γ),

where the H−1/2(Γ)-norm is defined via

∥λ∥H−1/2(Γ) = sup
ν∈H1/2(Γ)\{0}

⟨λ ,ν⟩H−1/2,H1/2

∥ν∥H1/2(Γ)

.

At this point, we would like to recall that we are especially interested in cases where strong fluctuations
occur on the boundary. This means, in particular, that we expect Qh to be a refinement of Vh restricted
to the boundary. Moreover, this motivates the use of adaptive methods, which are based on a posteriori
error estimates. These are topic of the upcoming subsection.

3.1 Construction of local estimators

Following the methodology of [36, 43], we aim to construct a posteriori error estimators which can
distinguish necessary refinements for the approximations of u|Γ and p, respectively. Within this section,
the triple [u, p,λ ] ∈ X denotes the weak solution to the model problem (4) and [uh, ph,λh] ∈ Xh its
discrete counterpart. As a consequence of (7), we have the error bound

∥u−uh∥H1(Ω)+∥p− ph∥H1(Γ)+∥λ −λh∥H−1/2(Γ)

≤
√

3
βB

sup
[v,q,µ]∈X , ∥[v,q,µ]∥=1

B
(
[u−uh, p− ph,λ −λh], [v,q,µ]

)
.

In order to bound the right-hand side, we integrate by parts and obtain

B
(
[u−uh, p− ph,λ −λh], [v,q,µ]

)
= ∑

T∈TΩ

∫
T

(
f −σuh +∆αuh

)
vdx− ∑

E∈E in
Ω

∫
E

[
α∇uh ·nE

]
E vds+ ∑

E∈E bd
Ω

∫
E

(
λh −α∇uh ·nE

)
vds

+ ∑
I∈TΓ

∫
I

(
g−σ ph +∆Γ,κ ph −λh

)
qds− ∑

x∈NΓ

[
κ∇Γ ph

]
x q(x)−

∫
Γ

(
uh − ph

)
µ ds

for every [v,q,µ] ∈ X . Recall that E in
Ω

and E bd
Ω

denote the set of interior and boundary edges of the
triangulation TΩ, respectively. Moreover, NΓ equals the set of nodes of TΓ and [ · ]E the jump along an
edge E.

Making use of the mentioned Galerkin orthogonality, namely

B
(
[u−uh, p− ph,λ −λh], [vh,qh,µh]

)
= 0

for all [vh,qh,µh] ∈ Xh, we can add arbitrary discrete test functions. Hence, including vh ∈ Vh as any
quasi-interpolant of v (such as the Clément interpolant [15]) and qh ∈ Qh as the (pointwise) interpolant

8
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of q, we can estimate

B
(
[u−uh, p− ph,λ −λh], [v,q,µ]

)
= B

(
[u−uh, p− ph,λ −λh], [v− vh,q−qh,µ]

)
≤ ∑

T∈TΩ

∥∥ f −σuh +∆αuh
∥∥

L2(T )∥v− vh∥L2(T )+ ∑
E∈E in

Ω

∥∥[α∇uh ·nE ]E
∥∥

L2(E)∥v− vh∥L2(E)

+ ∑
E∈E bd

Ω

∥∥λh −α∇uh ·nE
∥∥

L2(E)∥v− vh∥L2(E)+ ∑
I∈TΓ

∥∥g−σ ph +∆Γ,κ ph −λh∥L2(I)∥q−qh∥L2(I)

+ ∑
x∈NΓ

∣∣[κ∇Γ ph]x
∣∣ |q(x)−qh(x)|︸ ︷︷ ︸

=0

+∥uh − ph∥H1/2(Γ)∥µ∥H−1/2(Γ)

≲ ∑
T∈TΩ

hT
∥∥ f −σuh +∆αuh

∥∥
L2(T )∥v∥H1(ωT )+ ∑

E∈E in
Ω

h
1/2

E

∥∥[α∇uh ·nE ]E
∥∥

L2(E)∥v∥H1(ωE )

+ ∑
E∈E bd

Ω

h
1/2

E

∥∥λh −α∇uh ·nE
∥∥

L2(E)∥v∥H1(ωE )

+ ∑
I∈TΓ

hI
∥∥g−σ ph +∆Γ,κ ph −λh∥L2(I)∥q∥H1(I)+∥uh − ph∥H1/2(Γ)∥µ∥H−1/2(Γ)

≲

(
∑

T∈TΩ

h2
T

∥∥ f −σuh +∆αuh
∥∥2

L2(T )+ ∑
E∈E in

Ω

hE
∥∥[α∇uh ·nE ]E

∥∥2
L2(E)+ ∑

E∈E bd
Ω

hE
∥∥λh −α∇uh ·nE

∥∥2
L2(E)

+ ∑
I∈TΓ

h2
I

∥∥g−σ ph +∆Γ,κ ph −λh∥2
L2(I)+∥uh − ph∥2

H1/2(Γ)

)1/2 ∥∥[v,q,µ]∥∥.
Here, we have used standard (quasi) interpolation results as presented, e.g., in [13]. This includes the
well-known element and edge patches, denoted by ωT and ωE , respectively. Further note that the differ-
ence truh− ph occurs globally, since the H1/2(Γ)-norm is not additive. For a local version, we use that TΓ

is a refinement of TΩ|Γ and restrict ourselves to a bisection strategy for the refinement of TΓ. This leads
to a local estimate which only depends on the shape regularity of the bulk mesh TΩ. Before we show the
local estimate, we fix the refinement strategy in the following assumption.

Assumption 3.3. Given the restriction of the bulk mesh to the boundary TΩ|Γ, there exists a sequence of
refinements using bisection to obtain the boundary mesh TΓ.

We would like to emphasize that Assumption 3.3 is satisfied, if the initial meshes of Γ and Ω are refined
by bisection and newest vertex bisection (NVB) [38], respectively.

Lemma 3.4. Given Assumptions 3.1 and 3.3, it holds that

∥uh − ph∥2
H1/2(Γ)

≲ ∑
I∈TΓ

h−1
I ∥uh − ph∥2

L2(I) (8)

with a hidden constant only depending on the polygonal domain Ω with its boundary Γ and the shape
regularity of the triangulation TΩ.

Proof. By the assumed bisection strategy, there exists a refinement T̃Ω of TΩ such that TΓ = T̃Ω|Γ
with the shape regularity of T̃Ω only depending on the shape regularity of TΩ; see [17, Sect. A.1]. In
particular, truh − ph ∈ Pk(T̃Ω|Γ) with k being the maximal polynomial degree of Vh and Qh. The stated
estimate then follows by [36, Lem. 2.4.6].

Remark 3.5. Estimate (8) remains valid for d = 3 if one uses NVB to obtain TΓ. The proof follows by
the same steps as in the two-dimensional setting.

9
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Remark 3.6. Without the specific refinement strategy for TΓ from Assumption 3.3, one can show that

∥uh − ph∥2
H1/2(Γ)

≲

(
hΓ,max

hΓ,min

)1/2

∑
I∈TΓ

h−1
I ∥uh − ph∥2

L2(I).

Here, hΓ,max (respectively hΓ,min) denotes the maximal (minimal) mesh width of the triangulation TΓ.
Lemma 3.4 states that a refinement based on Assumption 3.3 yields a quasi-uniform triangulation for
which this ratio is bounded.

Finally, we define the following local quantities, which will serve as local error estimators, namely

η
2
T := h2

T

∥∥ f −σuh +∆αuh
∥∥2

L2(T ) for T ∈ TΩ, (9a)

η
2
E := hE

∥∥[α∇uh ·nE ]E
∥∥2

L2(E) for E ∈ E in
Ω , (9b)

η
2
E := hE

∥∥λh −α∇uh ·nE
∥∥2

L2(E)+ ∑
I∈TΓ, I⊆E

h−1
I

∥∥uh − ph
∥∥2

L2(I) for E ∈ E bd
Ω , (9c)

η
2
I := h2

I

∥∥g−σ ph +∆Γ,κ ph −λh
∥∥2

L2(I) for I ∈ TΓ. (9d)

The remainder of this section is devoted to the verification of the reliability and efficiency of these
estimators.

Remark 3.7. In the above derivation of the error estimators, we have used that functions in H1(Γ) are
continuous for a one-dimensional boundary Γ of a two-dimensional domain Ω. This allows us to neglect
the jumps of p over the nodes of TΓ. If Ω is a subset of R3, however, we have to consider these jumps,
which are now jumps over edges. As a consequence, the estimators in (9) need to be extended by

η
2
D := hD

∥∥[κ∇Γ ph ·nD]D
∥∥2

L2(D)
for D ∈ EΓ (10)

with EΓ being the set of edges of TΓ and hD the length of an edge D ∈ EΓ.

3.2 Reliability and efficiency

The reliability of the introduced a posteriori estimators follows directly by construction and is summa-
rized in the following theorem.

Theorem 3.8 (Reliability of the error estimator). Let ηT , ηE , and ηI be defined as in (9) and let Assump-
tions 3.1 and 3.3 be satisfied. Then the discretization error can be bounded by∥∥[u−uh, p− ph,λ −λh]

∥∥2
= ∥u−uh∥2

H1(Ω)+∥p− ph∥2
H1(Γ)+∥λ −λh∥2

H−1/2(Γ)

≲ ∑
T∈TΩ

η
2
T + ∑

E∈EΩ

η
2
E + ∑

I∈TΓ

η
2
I ,

where the hidden constant only depends on the polynomial degrees used for the finite element spaces, the
polygonal domain Ω with its boundary Γ, and the shape regularity of the triangulations TΩ and TΓ, and
the coefficients α , κ , and σ .

Remark 3.9. The reliability in the three-dimensional case follows similarly to Theorem 3.8, where we
have the additional term ∑D∈EΓ

η2
D on the right-hand side, cf. Remark 3.7.

Theorem 3.8 guarantees that the error estimators provide an upper bound of the error. It remains to prove
the efficiency of the estimators, i.e., the guarantee that they are (up to a constant) also a lower bound.

10
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In the following lemmas, we always assume that Assumption 3.1 is satisfied. Similar to Theorem 3.8, all
hidden constants will only depend on the dimension, the polynomial degrees of the finite element spaces,
the polygonal domain with its boundary, the shape regularity of the meshes, the diffusion coefficients,
and the constant ρ . We first consider the estimators ηT and ηI .

Lemma 3.10. The estimators ηT and ηI satisfy

η
2
T ≲ σ

2h2
T ∥u−uh∥2

L2(T )+∥α∥2
L∞(T )|u−uh|2H1(T )+h2

T inf
fh∈Vh

∥ f − fh∥2
L2(T ) (11a)

as well as

η
2
I ≲ σ

2h2
I ∥p− ph∥2

L2(I)+∥κ∥2
L∞(I)|p− ph|2H1(I)+hI ∥λ −λh∥2

H−1/2(I)+h2
I inf

gh∈Qh
∥g−gh∥2

L2(I). (11b)

These estimates further imply

∑
T∈TΩ

η
2
T ≲ ∥u−uh∥2

H1(Ω)+ ∑
T∈TΩ

h2
T inf

fh∈Vh
∥ f − fh∥2

L2(T ), (12a)

∑
I∈TΓ

η
2
I ≲ ∥p− ph∥2

H1(Γ)+hΓ,max ∥λ −λh∥2
H−1/2(Γ)

+ ∑
I∈TΓ

h2
I inf

gh∈Qh
∥g−gh∥2

L2(I). (12b)

Proof. Estimate (11a) follows by the standard bubble function technique, see, e.g., [36, Lem. 2.6.10(1)].
For (11b), we note that every segment I ∈ TΓ is a part of a hyperplane HI ∼= Rd−1. With this, one
proves (11b) analogously to (11a), where one uses that for every ν ∈ H1

0 (I) – extended by zero outside
of I – it holds the interpolation inequality

∥ν∥2
H1/2(I) =

∫
I
ν(x)2 dx+

∫
I

∫
I

|ν(x)−ν(y)|2

∥x− y∥d
Rd

dxdy

≤
∫
HI

ν(x)2 dx+
∫
HI

∫
HI

|ν(x)−ν(y)|2

∥x− y∥d
Rd

dxdy

= ∥ν∥2
H1/2(Rd−1)

≲ ∥ν∥H1(Rd−1)∥ν∥L2(Rd−1) = ∥ν∥H1(I)∥ν∥L2(I),

see [35, Ch. 1 Prop. 2.3 & Th. 7.1]. Inequality (12a) is a immediate consequence of (11a) together with
hT ≤ |Ω|. Finally, (12b) can be shown in the same manner as (11b) if adjusted to the entire boundary Γ.

To obtain an upper bound on ηE , we distinguish interior and boundary edges.

Lemma 3.11. For an interior edge E ∈ E in
Ω

it holds that

η
2
E ≲ σ

2h2
E ∥u−uh∥L2(ωE )+∥α∥2

L∞(ωE )
|u−uh|2H1(ωE )

+ ∑
T∈TΩ, T⊆ωE

η
2
T

and, hence,
∑

E∈E in
Ω

η
2
E ≲ ∥u−uh∥2

H1(Ω)+ ∑
T∈TΩ

h2
T inf

fh∈Vh
∥ f − fh∥2

L2(T ).

Proof. The proof follows the lines of [2, Lem. 3.6].

Lemma 3.12. For a boundary edge E ∈ E bd
Ω

we define the boundary edge patch ωE,Γ by

ωE,Γ :=
{

E ′ ∈ E bd
Ω | E ∩E ′ ̸= /0

}

11
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and TE as the (unique) element in TΩ with edge E. Then, it holds that

η
2
E ≲ ∥u−uh∥2

H1(ωTE )
+∥p− ph∥2

H1(ωE,Γ)
+h

1/2

E ∥λ −λh∥2
H−1/2(E)+h2

TE
inf

fh∈Vh
∥ f − fh∥2

L2(TE )

and, hence,

∑
E∈E bd

Ω

η
2
E ≲ ∥u−uh∥2

H1(Ω)+∥p− ph∥2
H1(Γ)+∥λ −λh∥2

H−1/2(Γ)
+ ∑

E∈E bd
Ω

h2
TE

inf
fh∈Vh

∥ f − fh∥2
L2(TE )

.

Proof. Combining the arguments of [36, Lem. 2.6.12], [2, Lem. 3.6], and the one used for the derivation
of (11b), we have

hE ∥λh −α∇uh ·nE∥2
L2(E) ≲ σ

2h2
E ∥u−uh∥L2(TE )+∥α∥2

L∞(TE )
|u−uh|2H1(TE )

+h
1/2

E ∥λ −λh∥2
H−1/2(E)+η

2
TE

and, hence, for the entire boundary

∑
E∈E bd

Ω

hE ∥λh −α∇uh ·nE∥2
L2(E) ≲ ∥u−uh∥2

H1(Ω)+∥λ −λh∥2
H−1/2(Γ)

+ ∑
E∈E bd

Ω

η
2
TE
.

For an estimate of the second summand of ηE , we set µ :=∑I∈TΓ,I⊆E h−1
I (uh− ph)χI ∈ L2(Γ) ↪→H−1/2(Γ)

with the characteristic function χI . We now distinguish the two cases Pd
0 (TΩ|Γ)⊆Mh and P1(TΩ|Γ)⊆

Mh, cf. Assumption 3.1(1).

Case Pd
0 (TΩ|Γ)⊆Mh: If piecewise constant functions are part of Mh, we define the mean integral of µ

as µh := 1
|E|

∫
E µ dx ·χE ∈Mh. Then, the continuous and discrete constraint imply that

∑
I∈TΓ, I⊆E

h−1
I ∥uh − ph∥2

L2(I) =
∫

E
µ (uh − ph)dx

=
∫

E
(µ −µh)

(
uh −u− (ph − p)

)
dx

≤ ∥µ −µh∥H−1/2(E)
(
∥u−uh∥H1/2(E)+∥p− ph∥H1/2(E)

)
.

By [1, Prop. 2.2 & 4.8], there exists a constant only depending on the shape regularity of TΩ|Γ such that

∥µ −µh∥H−1/2(E) = sup
q∈H1/2(E)\{0}

(µ −µh,q)L2(E)

∥q∥H1/2(E)

= sup
q∈H1/2(E)\{0}

(µ,q− 1
|E|

∫
E qdx)L2(E)

∥q∥H1/2(E)

≲ h
1/2

E ∥µ∥L2(E) ≤
√

ρ

(
∑

I∈TΓ,I⊆E
h−1

I ∥uh − ph∥2
L2(I)

)1/2

.

Combining the latter two estimates, we conclude that

∑
I∈TΓ,I⊆E

h−1
I ∥uh − ph∥2

L2(I) ≲ ∥u−uh∥2
H1/2(E)+∥p− ph∥2

H1/2(E).

With Lemma 3.10 and appropriate Sobolev embeddings, we get the stated estimate for ηE . Finally, the
estimate of the sum follows by

∑
E∈E bd

Ω

∥ν∥2
H1/2(E) = ∑

E∈E bd
Ω

∥ν∥2
L2(E)+

∫
E

∫
E

|ν(x)−ν(y)|2

∥x− y∥d
Rd

dxdy

12
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≤ ∑
E∈E bd

Ω

∥ν∥2
L2(E)+

∫
E

∫
Γ

|ν(x)−ν(y)|2

∥x− y∥d
Rd

dxdy

= ∥ν∥2
L2(Γ)+

∫
Γ

∫
Γ

|ν(x)−ν(y)|2

∥x− y∥d
Rd

dxdy = ∥ν∥2
H1/2(Γ)

,

where the integrals over Γ are defined via local charts.

Case P1(TΩ|Γ)⊆Mh: Let PE : L2(ωE,Γ)→ P1(TΩ|ωE,Γ)⊆ H1(ωE,Γ) be the (weighted) Clément oper-
ator

PE r =
m

∑
k=1

(r,φk)L2(ωE,Γ)

(1,φk)L2(ωE,Γ)

φk

with the nodal basis functions φk, k = 1, . . . ,m, of P1(TΩ|ωE,Γ). Since µ vanishes outside of E, its
quasi-interpolation PE µ is zero on the relative boundary ∂ωE,Γ. Hence, PE µ can be extended by zero to
a function in Mh. Similar to the previous case, we obtain the estimate

∑
I∈TΓ,I⊆E

h−1
I ∥uh − ph∥2

L2(I) ≤ ∥µ −PE µ∥H−1/2(ωE,Γ)

(
∥u−uh∥H1/2(ωE,Γ)

+∥p− ph∥H1/2(ωE,Γ)

)
.

By [11, Lem. 3.1], we have ∥µ −PE µ∥L2(ωE,Γ) ≲ ∥µ∥L2(E) as well as

∥µ −PE µ∥[H1(ωE,Γ)]∗ = sup
q∈H1(ωE,Γ)\{0}

(µ,q−PEq)L2(E)

∥q∥H1(ωE,Γ)

≲ hE ∥µ∥L2(E)

with constants only depending on the regularity of TΩ|Γ. Here, we have used that PE is symmetric with
respect to the L2(ωE,Γ)-inner product. With [40, Ch. 34 & Lem. 36.1] and [35, Ch. 1 Prop. 2.3 & Th. 6.2],
we conclude that

∥µ −PE µ∥H−1/2(ωE,Γ)
≲ ∥µ −PE µ∥

1/2

[H1(ωE,Γ)]∗
∥µ −PE µ∥

1/2

L2(ωE,Γ)
≲ h

1/2

E ∥µ∥L2(E).

The remainder of the proof follows the lines of the first case.

It remains to summarize the previous estimates. The combination of Lemmas 3.10, 3.11, and 3.12 yield
the following efficiency result, showing that the error estimators are bounded from above by the actual
error plus oscillation terms of the right-hand sides.

Theorem 3.13 (Efficiency of the error estimator). Given Assumption 3.1, the error estimators defined
in (9) satisfy

∑
T∈TΩ

η
2
T + ∑

E∈EΩ

η
2
E + ∑

I∈TΓ

η
2
I

≲ ∥u−uh∥2
H1(Ω)+∥p− ph∥2

H1(Γ)+∥λ −λh∥2
H−1/2(Γ)

+ ∑
T∈TΩ

h2
T inf

fh∈Vh
∥ f − fh∥2

L2(T )+ ∑
I∈TΓ

h2
I inf

gh∈Qh
∥g−gh∥2

L2(I)

=
∥∥[u−uh, p− ph,λ −λh]

∥∥2
+ ∑

T∈TΩ

h2
T inf

fh∈Vh
∥ f − fh∥2

L2(T )+ ∑
I∈TΓ

h2
I inf

gh∈Qh
∥g−gh∥2

L2(I).

The hidden constant only depends on the polynomial degrees of the finite element spaces, the polygonal
domain Ω with its boundary Γ, the shape regularity of the triangulations TΩ and TΓ, the coefficients α

and κ , as well as the constants σ and ρ .

Remark 3.14. Theorem 3.13 shows that the estimated errors are bounded by the actual error plus data
oscillation terms. Given a discretization satisfying Assumption 3.1 and right-hand sides in the respective
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H1-spaces, theses terms can be estimated by

∑
T∈TΩ

h2
T inf

fh∈Vh
∥ f − fh∥2

L2(T )+ ∑
I∈TΓ

h2
I inf

gh∈Qh
∥g−gh∥2

L2(I) ≲ ∑
T∈TΩ

h4
T ∥ f∥2

H1(T )+ ∑
I∈TΓ

h4
I ∥g∥2

H1(I)

as shown in [10, Ch. II, Cor. 7.7]. Thus, in comparison with the error ∥[u−uh, p− ph,λ −λh]∥, the data
oscillation terms are of higher order and may be neglected.

Remark 3.15. Analogously to ηE in Lemma 3.11, the additional error estimator ηD defined in (10) is
bounded by

η
2
D ≲ σ

2h2
D ∥p− ph∥L2(ωD)+∥κ∥2

L∞(ωD)
|p− ph|2H1(ωD)

+ ∑
I∈TΓ,I⊆ωD

η
2
I

for a three-dimensional polyhedral domain Ω. Here, ωD is defined with respect to TΓ as ωE to TΩ.
Furthermore, Lemmas 3.10, 3.11, and 3.12 are also valid for Ω ⊆R3, implicating again the efficiency of
the error estimators.

3.3 Refinement and coarsening

With the shown reliability and efficiency of the error estimators (9), we can now discuss sound strategies
for the generation of spatial meshes for the semi-discrete system (3).

For elliptic problems, it is well-known that a refinement using NVB based on a Dörfler marking [18]
yields an optimal strategy [14]. Hence, we apply this refinement strategy in every time step. However,
since NVB is based on element marking rather than marking elements and edges, we attribute the esti-
mator ηE of an edge E among all ηT and ηI with T ⊆ ωE and I ⊆ E, respectively. The resulting error
estimators are denoted by η̃T and η̃I , respectively. Then we use the Dörfler marking with a parameter
θ ∈ (0,1), i.e., we mark all elements in (minimal) sets MΩ ⊆ TΩ and MΓ ⊆ TΓ such that

(1−θ)

(
∑

T∈TΩ

η̃
2
T + ∑

I∈TΓ

η̃
2
I

)
≤ ∑

T∈MΩ

η̃
2
T + ∑

I∈MΓ

η̃
2
I

and refine every marked element using bisection or NVB, respectively.

For time-dependent problems, the region of the bulk or boundary with the largest estimated errors can
change in every time step. Hence, taking the final meshes of the previous time step as the initial meshes
for the current time step may lead to a fast growing number of degrees of freedom. In particular, a
strongly refined discretization in a certain region may become obsolete after some time. Therefore, it
makes sense not only to refine the meshes over time but to allow coarsening as well if needed; see [9,
Sec. 4.4.4]. Here, we follow the heuristically motivated coarsening strategy of [23, Sec. 7.2]. For this,
we mark elements T ∈ TΩ and I ∈ TΓ for a coarsening step if they satisfy

η̃T , η̃I ≤ γ tol
|TΩ|+ |TΓ|

(13)

for a given tolerance tol and a parameter γ ∈ (0,1). Note that in the case of a semi-discretized system,
the right-hand sides f n and gn include the approximations of the previous time step un−1

h and pn−1
h ,

respectively. After a possible coarsening, the meshes at the current time point tn may not be refinements
of the meshes from time tn−1 anymore. In order to represent un−1

h and pn−1
h in these meshes, we consider

their L2-best approximations. This produces additional errors in the right-hand sides, which can be
estimated similarly to the oscillation data discussed in Remark 3.14. Hence, we obtain additional error
terms of the form ∑T∈T n

Ω
h4

T ∥un−1
h ∥2

H1(T )+∑I∈T n
Γ

h4
I ∥pn−1

h ∥2
H1(I).

To summarize, in every time step one first refines the bulk and the boundary mesh using NVB and
bisection, respectively, in combination with the Dörfler marking strategy until the estimated error is
below a given tolerance. This yields approximations of u, p, and λ for the current time point. Afterwards,
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we coarsen the meshes by repetitively marking elements T and I satisfying (13) until either no marked
elements are left or only elements are marked where a coarsening would contradict Assumption 3.1.(ii).
The resulting meshes are then used as starting point for the upcoming time step.

4 Numerical Experiments

In this final section, we demonstrate the performance of the newly introduced a posteriori error estimators
applied to the stationary model problem (4) as well as a parabolic problem with dynamic boundary
conditions.

In all examples, we consider a two-dimensional domain and diffusion coefficients α ≡ 1, κ ≡ 1. As
refinement strategy, we use bisection as refinement for TΓ and NVB for TΩ as discussed in Section 3.3
with the implementation taken from [23]. For the computation of the errors, we use a reference solution,
which is computed on a refined mesh. More precisely, we consider in each step the current mesh obtained
by the adaptive process with two additional uniform refinements.

4.1 Stationary problem on the unit square

In this first example, we consider the stationary model problem (4) on the unit square, i.e., on Ω= (0,1)2.
The right-hand sides are given by

f ≡ 0.04, g(x,y) = xycos(10πx)cos(10πy)

and we set σ = 1 as well as θ = 0.75 for the marking process. The resulting convergence history for the
scheme

Vh = P1(TΩ), Qh = P1(TΓ), Mh = P1(TΩ|Γ) (14)

is illustrated in Figure 1. Note that the x-axis includes the sum of the degrees of freedom for u, p, and λ .
The plot clearly shows the improvement caused by the adaptive process as we reach a convergence rate
of 0.65 rather than 0.5 for a uniform refinement. Note that a rate larger than 0.5 is only possible due to
the mixture of different schemes (and dimensions). Considering the single components, one observes for
u, p, and λ convergence rates of 0.5, 1.0, and 1.5, respectively. Moreover, one can observe that error and
estimator, which are defined as

error :=
∥∥[u−uh, p− ph,λ −λh]

∥∥, estimator :=
(

∑
T∈TΩ

η
2
T + ∑

E∈EΩ

η
2
E + ∑

I∈TΓ

η
2
I

)1/2

are indeed of the same order as expected due to Theorems 3.8 and 3.13.

The resulting mesh of the adaptive process is shown in Figure 2. It clearly shows a refinement of the
upper right corner for TΩ as well as for TΓ. This is due to the fact that the right-hand side g as well as
the solution oscillate strongly in this region.

4.2 Stationary problem on the L-shape

The second example works on the L-shape, i.e., on a non-convex computational domain. Here, we
consider the right-hand sides

f ≡ 4, g(x,y) = 4(x2 − x+ y2 − y)

and again σ = 1, θ = 0.75. We compare two different stable finite element schemes.

First, we use piecewise linear elements as in (14). As shown in Figure 3, this yields the rate 0.375 for a
uniform refinement and the optimal rate 0.5 in the adaptive case.
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Figure 1. Convergence history for the stationary model problem of Section 4.1. The dashed line in gray
indicates order 0.5, whereas the solid gray line indicates order 0.65.

Figure 2. Illustration of the bulk mesh TΩ (left) and the boundary mesh TΓ (right) after 40 adaptive
refinement steps.
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Figure 3. Convergence history for the stationary model problem of Section 4.2 using piecewise linear
elements. The gray lines indicate orders 0.375 (dashed) and 0.5 (solid).

Second, we consider a piecewise quadratic approximation for u and p in combination with a piecewise
constant approximation of the Lagrange multiplier, i.e.,

Vh = P2(TΩ), Qh = P2(TΓ), Mh = Pd
0 (TΩ|Γ). (15)

Note that this is indeed a stable scheme according to the derivations of Section 2.3. The convergence
results are shown in Figure 4 and demonstrate an even higher numerical gain of the adaptive procedure.
If the discrete multiplier space Mh is set to P1(TΩ|Γ) or P2(TΩ|Γ), we observe the same rates. Hence,
we omit the corresponding error plots here.

An illustration of the adaptive mesh refinement is given in Figure 5. Note that both meshes show re-
finements in the same regions. Nevertheless, u restricted to the boundary has 190 degrees of freedom,
whereas p is defined on a mesh with 1030 degrees of freedom. This additional refinement of the boundary
is only possible because of the special formulation of the system equations as coupled system. Without
the separation of u|Γ and p, we would need a refinement of TΩ|Γ in order to get the same accuracy. This,
however, would call for an significant increase of the degrees of freedom due to the higher topological
dimension of the bulk.

4.3 Parabolic problem with dynamic boundary conditions

Within this final numerical example, we consider the dynamic problem

u̇−∆u = 0.1 in Ω = (0,1)2,

u̇−∆Γu+∂nu = xycos(πtx)cos(πty) on Γ = ∂Ω.

with homogeneous initial data. For the computation, we set [1,10] as time horizon and apply the implicit
Euler scheme with constant step size τ = 1.5 ·10−2 for the time stepping. For the spatial discretization, we
consider piecewise quadratic elements as in (15). At every time point, we check if the estimated spatial
error is smaller than 10−6. If not, we use the mentioned Dörfler marking strategy with parameter θ = 0.75
and refine the meshes until this condition is satisfied. Hence, no coarsening is used in this experiment.
In the beginning, we start with 41, 16, and 8 degrees of freedom for u, p, and λ , respectively. At the end
of the simulation, the numbers are 4912, 20674, and 301. The detailed development of the degrees of
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Figure 4. Convergence history for the stationary model problem of Section 4.2 using piecewise quadratic
elements for u, p and piecewise constants for λ . The gray lines indicate orders 0.375 (dashed)
and 1.0 (solid).

Figure 5. Illustration of the bulk mesh TΩ (left) and the boundary mesh TΓ (right) after 40 adaptive
refinement steps.
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Figure 6. Evolution of the degrees of freedom for u, p, and λ over time without (left) and with (right)
coarsening of Qh.

freedom over time is illustrated in Figure 6 (left).

As a proof of concept, we repeat this experiment with a coarsening strategy for the boundary mesh. As
marking condition, we use η̃I ≤ 1/(4 ·106 |TΓ|); cf. Section 3.3. The associated degrees of freedom over
time are shown in Figure 6 (right). Obviously, the numbers are always smaller compared to the simulation
without coarsening and are minimal for t ≈ 1.5,2.5, . . ., i.e., whenever g(t) = 0. This coincides with the
times where the degrees of freedom of p stay almost constant in the simulation without coarsening. At
these points, a sound representation of p does not need a fine mesh and the coarsening works as intended.
We would like to mention that the simulation with coarsening takes much longer than the one without.
The degrees of freedom in the present example, however, are still quite low and we expect a dominant
performance if regions needing a very fine discretization change more frequently.

Finally, we present the approximated solution u at the final time point t = 10 in Figure 7. One can see
that the solution is oscillating strongly at the boundary parts (0,1)×{1} and {1}× (0,1). To capture
this behavior numerically, we need more degrees of freedom for p. On the other hand, the approximation
of u gets along on a coarser mesh, since the solution is not so oscillatory in the bulk.

5 Conclusion

In this paper, we have introduced an adaptive procedure for the simulation of parabolic problems with
dynamic boundary conditions. Based on a PDAE formulation, we are able to construct local error es-
timators, which distinguish necessary refinements of the bulk mesh along the boundary, i.e., of TΩ|Γ,
and the boundary mesh TΓ. Moreover, we have characterized inf–sup stable finite element schemes for
the spatial discretization. Within a number of numerical experiments, we have shown that the proposed
algorithm reaches optimal convergence rates. In addition, one can observe that the boundary mesh gets
more refined than TΩ|Γ, which yields notable computational savings.

Acknowledgement

Major parts of this work were carried out while the first author was affiliated with the Institute of Math-
ematics and the Centre for Advanced Analytics and Predictive Sciences (CAAPS) at the University of
Augsburg.

19



Robert Altmann et al. | AFEM for Parabolic Problems with Dynamic Boundary Conditions

Figure 7. Numerical solution u at the final time point T = 10 for the parabolic problem of Section 4.3.
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