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Abstract: We analyze different approaches to differential-algebraic equations with attention to the
implemented rank conditions of various matrix functions. These conditions are apparently very different
and certain rank drops in some matrix functions actually indicate a critical solution behavior. We look
for common ground by considering various index and regularity notions from literature generalizing
the Kronecker index of regular matrix pencils. In detail, starting from the most transparent reduction
framework, we work out a comprehensive regularity concept with canonical characteristic values
applicable across all frameworks and prove the equivalence of thirteen distinct definitions of regularity.
This makes it possible to use the findings of all these concepts together. Additionally, we show why not
only the index but also these canonical characteristic values are crucial to describe the properties of the
DAE.
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1 Introduction

WHAT PROVEN CONCEPTS DIFFER IS REMARKABLE,
BUT WHAT THEY HAVE IN COMMON IS ESSENTIAL.

Who coined the term DAEs? is asked in the engaging essay [57] and the answer is given there: Bill
Gear. The first occurrence of the term Differential-Algebraic Equation can be found in the title of
Gear’s paper from 1971 Simultaneous numerical solution of differential-algebraic equations[26] and
in his book [25] where he considers examples from electric circuit analysis. The German term Algebro-
Differentialgleichungssysteme comes from physicists and electronics engineers and it is first found as a
chapter title in the book Rechnergestützte Analyse in der Elektronik from 1977, [18], in which the above
two works are already cited. Obviously, electric circuit analysis accompanied by the diverse computer-
aided engineering that was emerging at the time gave the impetus for many developments in the following
50 years. Actually, there are several quite different approaches with a large body of literature, such as
the ten volumes of the DAE-Forum book series, but still too few commonalities have been revealed. We
would like to contribute to this, in particular by showing equivalences.

We are mainly focused on linear differential algebraic equations (DAEs) in standard form,

Ex′+Fx = q, (1)

in which E,F : I → Rm×m are sufficiently smooth, at least continuous, matrix functions on the interval
I ⊆ R so that all the index concepts we look at apply1. The matrix E(t) is singular for all t ∈ I .

If E and F are constant matrices, the regularity of the DAE means the regularity of the matrix pair
{E,F}, i.e., det(sE +F) which is a polynomial in s must not be identical zero. However, it must be
conceded that, so far, for DAEs with variable coefficients, there are partially quite different definitions of
regularity bound to the technical concepts behind them. Surely, regular DAEs have no freely selectable
solution components and do not yield any consistency conditions for the inhomogeneities. But that’s
not all, certain qualitative characteristics of the flow and the input-output behavior are just as important,
the latter especially with regard to the applications. We are pursuing the question: To what extent are
the various rank conditions which support DAE-index notions appropriate, informative and comparable?
The answer results from an overview of diverse approaches to DAEs emphasizing their commonalities.
We hope that our analysis will also contribute to a harmonization of understanding in this matter. To our
understanding, our main equivalence theorem from Section 8.1 is a significant step toward this direction.

In the vast majority of papers about DAEs, continuously differentiable solutions x ∈ C 1(I ,Rm) are
assumed, and smoother if necessary. On the other hand, since E(t) is singular for every t ∈I , obviously
only a part of the first derivative of the unknown solution is actually involved2 in the DAE (1). To
emphasize this fact, the DAE (1) can be reformulated by means of a suitable factorization E = AD as

A(Dx)′+Bx = q, (2)

in which B = F − AD′. This allows the admission of only continuous solutions x with continuously
differentiable parts Dx. However, we do not make use of this possibility here. Just as we focus on the
original coefficient pair {E,F} and smooth solutions in the present paper, we underline the identity,

A(Dx)′+Bx = Ex′+Fx, for x ∈ C 1(I ,Rm),

1With regard to linearizations of nonlinear DAEs, we explicitly do not assume that E,F are real analytic or from C∞.
2For instance, the Lagrange multipliers in DAE-formulations of mechanical systems do not belong to the differentiated un-

knowns.
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Estévez Schwarz, Lamour, März | The Common Ground of DAE Approaches

being valid equally for each special factorization. In addition, we will highlight, that the auxiliary co-
efficient triple {A,D,B} takes over the structural rank characteristics of {E,F}, and vice versa. With
this we want to clear the frequently occurring misunderstanding that so-called DAEs with properly and
quasi-properly stated leading term are something completely different from standard form DAEs.3

Based on the realization that the Kronecker index is an adequate means to understand DAEs with constant
coefficients, we survey and compare different notions which generalize the Kronecker index for regular
matrix pairs. We shed light on the concerns behind the concepts, but emphasize common features to a
large extent as opposed to simply list them next to each other or to stress an otherness without further
arguments. We are convinced that especially the basic rank conditions within the various concepts prove
to be an essential, unifying characteristic and give the possibility of a better understanding and use.

This paper is organized as follows. After clarifying important notions like solvability and equivalence
transformations in Sections 2 and 3, we start introducing a reference basic concept with its associated
characteristic values, that depend on the rank of certain matrices in Section 4. This basic notion is our
starting point to prove many equivalences.

The structure of the paper reflects that, roughly speaking, there are two types of frameworks to analyze
DAEs:

• Approaches based on the direct construction of a matrix chain or a sequence of matrix pairs without
using the so-called derivative array. The basic concept and all concepts discussed in Section 5 are
of this type. They turn out to be equivalent and lead to a common notion of regularity. This is also
equivalent to tranformability into specifically structured standard canonical form.

• Approaches based on the derivative array are addressed in Section 6. In this case, it turns out that
some of these are equivalent to the basic concept, whereas others are different in the sense that
weaker regularity properties are used. The latter ones lead to our notion of almost regular DAEs.

Table 1. Overview of the discussed index notions. The different regularity properties are defined in
Section 6.7.
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Elimination (Sec. 5.1) Regular Differentiation (Sec. 6.4)
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3A DAE with properly involved derivative or properly stated leading term is a DAE of the form (2) with the properties
im A = im AD, kerD = kerAD. We refer to [41] for the general description and properties.
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An overview of the approaches we discuss for linear DAEs can be found in Table 1. Illustrative examples
for the different types of regularity are compiled in Section 7.

All approaches use own characteristic values that correspond to ranks of matrices or dimensions of
subspaces and in the end it turns out that, in case of regularity, they can be calculated with so-called
canonical characteristic values and vice versa.

Section 8 starts with a summary of all the obtained equivalence results in a quite extensive theorem with
hopefully enlightening and pleasant content. Based on this, a discussion of the meaning of regularity
completed by an inspection of related literature follows.

Finally, in Section 9 we briefly outline the generalization of the discussed approaches to nonlinear DAEs
with a view to linearizations. To facilitate reading, some technical details are provided in the appendix.

2 Special arrangements for this paper

Throughout this paper the coefficients of the DAE (1) are matrix functions E,F : I → Rm×m that are
sufficiently smooth to allow the application of all the approaches discussed here, by convention of class
C m, and C µ , if applicable, if an index µ ≤ m is already known, but not from C ∞ and the real-analytic
function space. Our aim is to uncover the common ground between the various concepts, in particular
the rank conditions. We will not go into the undoubted differences between the concepts in terms of
smoothness requirements here, which are very important, of course. Please refer to the relevant literature.

This is neither a historical treatise nor a comprehensive overview of approaches and results, but rather
an attempt to reveal what is common to the popular approaches. Wherever possible, we cite widely
used works such as monographs and refer to the references therein for the classification of corresponding
original works.

Our particular goal is the harmonizing comparison of the basic rank conditions behind the various con-
cepts combined with the characterization of the class of regular pairs {E,F} or DAEs (1). Details re-
garding solvability statements within the individual concepts would go beyond the scope of this paper.
Here we merely point out the considerable diversity of approaches.

While on the one hand, in many papers, from a rather functional analytical point of view, attention is
paid to the lowest possible smoothness, suitable function spaces, rigorous solvability assertions, and
precise statements about relevant operator properties such as surjectivity, continuity, e.g., [29, 41, 44,
34], we observe that, on the other hand, solvability in the sense of the Definition 2.1 below is assumed
and integrated into several developments from the very beginning, e.g., [7, 37, 3].

We quote [7, Definition 2.4.1]4:

Definition 2.1. The system (1) is solvable on the interval I if for every m-times differentiable q, there is
at least one continuously differentiable solution to (1). In addition, solutions are defined on all of I and
are uniquely determined by their value at any t ∈ I .

Here we examine and compare only those approaches whose characteristics do not change under equiv-
alence transformations and which generalize the Kronecker index for regular matrix pairs. This rules out
the so-called structural index, e.g. [46, 48, 52, 49].

4See also Remark 6.13 below.
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A widely used and popular means of investigating DAEs is the so-called perturbation index, which ac-
cording to [30] can be interpreted as a sensitivity measure in relation to perturbations of the given prob-
lem. For time-invariant coefficients {E,F}, the perturbation index coincides with the regular Kronecker
index. We adapt [30, Definition 5.3] to be valid for the linear DAE (1) on the interval I = [a,b]:

Definition 2.2. The system (1) has perturbation index µp ∈ N if µp is the smallest integer such that for
all functions x : I → Rm having a defect δ = Ex′+Fx there exists an estimate

|x(t)| ≤ c{|x(a)|+ max
a≤τ≤t

|δ (τ)|+ · · ·+ max
a≤τ≤t

|δ (µp−1)(τ)|}, t ∈ I .

The perturbation index does not contain any information about whether the DAE has a solution for an
arbitrarily given δ , but only records resulting defects. In the following, we do not devote an extra section
to the perturbation index, but combine it with the proof of corresponding solvability statements and
repeatedly involve it in the relevant discussions.

We close this section with a comment on the index names below, more precisely on the various additional
epithets used in the literature such as differentiation, dissection, elimination, geometric, strangeness,
tractability, etc. We try to organize them and stick to the original names as far as possible, if there
were any. In earlier works, simply the term index is used, likewise local index and global index, other
modifiers were usually only added in attempts at comparison, e.g., [28, 45, 55]. After it became clear
that the so-called local index (Kronecker index of the matrix pencil λE(t)+F(t) at fixed t) is irrelevant
for the general characterization of time-varying linear DAEs, the term global index was used in contrast.
We are not using the extra label global here, as all the terms considered here could have this.

3 Comments on equivalence relations

Equivalence relations and special structured forms are an important matter of the DAE theory from the
beginning. Two pairs of matrix functions {E,F} and {Ē, F̄}, and also the associated DAEs, are called
equivalent5, if there exist pointwise nonsingular, sufficiently smooth6 matrix functions L,K : I →Rm×m,
such that

Ẽ = LEK, F̃ = LFK +LEK′. (3)

An equivalence transformation goes along with the premultiplication of (1) by L and the coordinate
change x = Kx̃ resulting in the further DAE Ẽx̃′+ F̃ x̃ = Lq.

It is completely the same whether one refers the equivalence transformation to the standard DAE (1) or
to the version with properly involved derivative (2) owing to the following relations:

Ã = LAK, D̃ = K−1DK, B̃ = LBK +LAK′K−1DK,

Ã = ÃD̃ = Ẽ, B̃ = F̃ − ẼD̃′.

The DAE (1) is in standard canonical form (SCF) [7, Definition 2.4.5], if

E =

[
Id 0
0 N

]
, F =

[
Ω 0
0 Im−d

]
, (4)

and N is strictly upper triangular.7

5In the context of the strangeness index globally equivalent, e.g. [39, Definition 2.1], and analytically equivalent in [7, Section
2.4.22]. We underline that (3) actually defines a reflexive, symmetric, and transitive equivalence relation {E,F} ∼ {Ẽ, F̃}.

6L is at least continuous, K continuously differentiable. The further smoothness requirements in the individual concepts differ;
they are highest when derivative arrays play a role.

7Analogously, N may also have strict lower triangular form.
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The matrix function N does not need to have constant rank or nilpotency index. Trivially, choosing

A = E, D = diag{Id ,0,1, . . . ,1}, B = F,

one obtains the form (2). Obviously, a DAE in SCF decomposes into two essentially different parts, on
the one hand a regular explicit ordinary differential equation (ODE) in Rd and on the other some algebraic
relations which require certain differentiations of components of the right-hand side q. More precisely,
if Nµ vanishes identically, but Nµ−1 does not, then derivatives up to the order µ − 1 are involved. The
dynamical degree of freedom of the DAE in SCF is determined by the first part and equals d.

In the particular case of constant N and Ω, the matrix pair {E,F} in (4) has Weierstraß–Kronecker form
[41, Section 1.1] or Quasi-Kronecker form [5], and the nilpotency index of N is again called Kronecker
index of the pair {E,F} and the matrix pencil λE +F , respectively.8

The basic regularity notion from Definition 4.4 below generalizes regular matrix pairs (pencils) and their
Kronecker index. Thereby, the Jordan structure of the nilpotent matrix N, in particular the characteristic
values θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0,

θ0 number of Jordan blocks of order ≥ 2,

θ1 number of Jordan blocks of order ≥ 3,

...

θµ−2 number of Jordan blocks of order µ,

play their role and one has d = rankE −∑
µ−2
i=0 θi. Generalizations of these characteristic numbers play a

major role further on.

For readers who are familiar with at least one of the DAE concepts discussed in this article, for a better
understanding of the meaning of the characteristic values θi we recommend taking a look at Theorem 8.1
already now.

4 Basic terms and beyond that

4.1 What serves as our basic regularity notion

In our view, the elimination-reduction approach to DAEs is the most immediately obvious and acces-
sible with the least technical effort, which is why we choose it as the basis here. We largely use the
representation from [50].

We turn to the ordered pair {E,F} of matrix functions E,F : I → Rm×m being sufficiently smooth, at
least continuous, and consider the associated DAE

E(t)x′(t)+F(t)x(t) = q(t), t ∈ I , (5)

as well as the accompanying time-varying subspaces in Rm,

kerE(t), S(t) = {z ∈ Rm : F(t)z ∈ im E(t)}, t ∈ I . (6)

Let Scan denote the so-called flow-subspace of the DAE, which means that Scan(t̄) is the subspace con-
taining the overall flow of the homogeneous DAE at time t̄, that is, the set of all possible function values
x(t̄) of solutions of the DAE Ex′+Fx = 09,

Scan(t̄) := {x̄ ∈ Rm : there is a solution x : (t̄ −δ , t̄ +δ )∩I → Rm, δ > 0,

of the homogeneous DAE such that x(t̄) = x̄}, t̄ ∈ I .

8In general the Kronecker canonical form is complex-valued and Ω is in Jordan form. We refer to [5, Remark 3.2] for a plea
not to call (4) a canonical form.

9Scan(t̄) is also called linear subspace of initial values which are consistent at time t̄, e.g., [3].
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In accordance with various concepts, see [32, Remark 3.4], we agree on what regular DAEs are, and show
that then the time-varying flow-subspace Scan(t̄) is well-defined on all I , and has constant dimension.

Definition 4.1. The pair {E,F} is called qualified on I if

im [E(t)F(t)] = Rm, rankE(t) = r, t ∈ I ,

with integers 0 ≤ r ≤ m.

Definition 4.2. The pair {E,F} and the DAE (5), respectively, are called pre-regular on I if

im [E(t)F(t)] = Rm, rankE(t) = r, dimS(t)∩kerE(t) = θ , t ∈ I ,

with integers 0 ≤ r ≤ m and θ ≥ 0. Additionally, if θ = 0 and r < m, then the DAE is called regular with
index one, but if θ = 0 and r = m, then the DAE is called regular with index zero.

We underline that any pre-regular pair {E,F} features three subspaces S(t), kerE(t), and S(t)∩kerE(t)
having constant dimensions r, m− r, and θ , respectively.

We emphasize and keep in mind that now not only the coefficients are time dependent, but also the
resulting subspaces. Nevertheless, we suppress in the following mostly the argument t, for the sake of
better readable formulas. The equations and relations are then meant pointwise for all arguments.

The different cases for θ = 0 are well-understood. A regular index-zero DAE is actually a regular implicit
ODE and Scan = S = Rm, kerE = {0}. Regular index-one DAEs feature Scan = S, dimkerE > 0, e.g.,
[29, 41]. Note that r = 0 leads to Scan = {0}. All these cases are only interesting here as intermediate
results.

We turn back to the general case, describe the flow-subspace Scan, and end up with a regularity notion
associated with a regular flow.

The pair {E,F} is supposed to be pre-regular. The first step of the reduction procedure from [50] is then
well-defined, we refer to [50, Section 12] for the substantiating arguments. In the first instance, we apply
this procedure to homogeneous DAEs only.

We start by E0 = E, F0 = F, m0 = m, r0 = r, θ0 = θ , and consider the homogeneous DAE

E0x′+F0x = 0.

By means of a basis Z0 : I → Rm0×(m0−r0) of (im E0)
⊥ = kerE∗

0 and a basis Y0 : I → Rm0×r0 of im E0
we divide the DAE into the two parts

Y ∗
0 E0x′+Y ∗

0 F0x = 0, Z∗
0F0x = 0.

From im [E0, F0] = Rm we derive that rankZ∗
0F0 = m0 − r0, and hence the subspace S0 = kerZ∗

0F0 has
dimension r0. Obviously, each solution of the homogeneous DAE must stay in the subspace S0. Choosing
a continuously differentiable basis C0 : I → Rm0×r0 of S0, each solution of the DAE can be represented
as x =C0x(1), with a function x(1) : I → Rr0 satisfying the DAE reduced to size m1 = r0,

Y ∗
0 E0C0x′(1)+Y ∗

0 (F0C0 +E0C′
0)x(1) = 0.

Denote E1 = Y ∗
0 E0C0 and F1 = Y ∗

0 (F0C0 +E0C′
0) which have size m1 ×m1. The pre-regularity assures

that E1 has constant rank r1 = r0 −θ0 ≤ r0. Namely, we have

kerE1 = kerE0C0 =C+
0 (kerE0 ∩S0), dimkerE1 = dim(kerE0 ∩S0) = θ0.

8
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Here, C0(t)+ denotes the Moore-Penrose generalized inverse of C0(t).

Next we repeat the reduction step,

Ei := Y ∗
i−1Ei−1Ci−1, Fi := Y ∗

i−1(Fi−1Ci−1 +Ei−1C′
i−1),

Yi−1,Zi−1,Ci−1 are smooth bases of the three subspaces
im Ei−1, (im Ei−1)

⊥, and Si−1 := kerZ∗
i−1Fi−1,

θi−1 = dim(kerEi−1 ∩Si−1),

(7)

supposing that the new pair {Ei,Fi} is pre-regular again, and so on. The pair {Ei,Fi} has size mi := ri−1
and Ei has rank ri = ri−1 −θi−1. This yields the decreasing sequence m ≥ r0 ≥ ·· · ≥ r j ≥ r j−1 ≥ ·· · ≥ 0
and rectangular matrix functions Ci : I → Rri−1×ri with full column-rank ri. Denote by µ the smallest
integer such that either rµ−1 = rµ > 0 or rµ−1 = 0. Then, it follows that (kerEµ−1)∩Sµ−1 = {0}, which
means in turn that

Eµ−1x′(µ−1)+Fµ−1x(µ−1) = 0

represents a regular index-1 DAE.

If rµ−1 = 0, that is Eµ−1 = 0, then Fµ−1 is nonsingular due to the pre-regularity of the pair, which leads
to Sµ−1 = {0}, Cµ−1 = 0, and a zero flow x(µ−1)(t) ≡ 0. In turn there is only the identically vanishing
solution

x =C0C1 · · ·Cµ−2x(µ−1) = 0

of the homogeneous DAE, and C0C1 · · ·Cµ−2Cµ−1 = 0.

On the other hand, if rµ−1 = rµ > 0 then x(µ−1) =Cµ−1x(µ), rankCµ−1 = rµ−1, and Eµ remains nonsin-
gular such that the DAE

Eµx′(µ)+Fµx(µ) = 0

is actually an implicit regular ODE living in Rmµ , mµ = rµ−1 and Sµ = Rrµ−1 . Letting Cµ = Imµ
= Irµ−1 ,

each solutions of the original homogeneous DAE (5) has the form

x =Cx(µ), C :=C0C1 · · ·Cµ−1 =C0C1 · · ·Cµ−1Cµ : I → Rm×rµ−1 , rankC = rµ−1.

Moreover, for each t̄ ∈I and each z ∈ im C(t̄), there is exactly one solution of the original homogeneous
DAE passing through, x(t̄) = z which indicates that im C = Scan.

As proved in [50], the ranks r = r0 > r1 > · · ·> rµ−1 are independent of the special choice of the involved
basis functions. In particular,

d := rµ−1 = r−
µ−2

∑
i=0

θi = rankC

appears to be the dynamical degree of freedom of the DAE.

The property of pre-regularity does not necessarily carry over to the subsequent reduction pairs, e.g.,[32,
Example 3.2].

Definition 4.3. The pre-regular pair {E,F} with r < m and the associated DAE (5), respectively, are
called regular if there is an integer µ ∈ N such that the above reduction procedure (7) is well-defined up
to level µ −1, each pair {Ei,Fi}, i = 0, . . . ,µ −1, is pre-regular, and if rµ−1 > 0 then Eµ is well-defined
and nonsingular, rµ = rµ−1. If rµ−1 = 0 we set rµ = rµ−1 = 0.

The integer µ is called the index of the DAE (5) and the given pair {E,F}. The index µ and the ranks
r = r0 > r1 > · · ·> rµ−1 = rµ are called characteristic values of the pair and the DAE, respectively.

9
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By construction, for a regular pair it follows that ri+1 = ri −θi, i = 0, . . . ,µ − 1. Therefore, in place of
the above µ +1 rank values r0, . . . ,rµ , the following rank and the dimensions,

r and θ0 ≥ θ1 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, (8)

θi = dim(kerEi ∩Si), i ≥ 0, (9)

can serve as characteristic quantities. Later it will become clear that these data also play an important
role in other concepts, too, which is the reason for the following definition equivalent to Definition 4.3.

Definition 4.4. The pre-regular pair {E,F}, E,F : I →Rm×m, with r = rankE < m, and the associated
DAE (5), respectively, are called regular if there is an integer µ ∈ N such that the above reduction
procedure is well-defined up to level µ − 1, with each pair {Ei,Fi}, i = 0, . . . ,µ − 1, being pre-regular,
and associated values (8).

The integer µ is called the index of the DAE (5) and the given pair {E,F}. The index µ and the values
(8) are called characteristic values of the pair and the DAE, respectively.

At this place we add the further relationship,

θi = dimker
[
Y ∗

i Ei

Z∗
i Fi

]
= mi − rank

[
Y ∗

i Ei

Z∗
i Fi

]
, i = 0, . . . ,µ −1, (10)

with which all quantities in (8) are related to rank functions.

Remark 4.5. If {E,F} is actually a pair of matrices E,F ∈ Rm×m, then the pair is regular with index
µ and characteristics θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, if and only if the matrix pencil is regular and the
nilpotent matrix in its Kronecker normal form shows

θ0 Jordan blocks of order ≥ 2,

θ1 Jordan blocks of order ≥ 3,

...

θµ−2 Jordan blocks of order µ.

Remark 4.6. As mentioned above, the presentation in this section mainly goes back to [50]. However, we
have not taken up their notations regular and completely regular for the coefficient pairs and reducible
and completely reducible for DAEs, but that of other works, what we consider more appropriate to the
matter.10

Not by the authors themselves, but sometimes by others, the index from [50] is also called geometric
index, e.g., [55, Subsection 2.4].

An early predecessor version of this reduction procedure was already proposed and analyzed in [15]
under the name elimination of the unknowns, even for more general pairs of rectangular matrix functions,
see also Subsection 5.1. The regularity notion given in [15] is consistent with Definition 4.4. Another
very related such reduction technique has been presented and extended a few years ago under the name
dissection concept [34]. This notion of regularity also agrees with Definition 4.4, see Section 5.2.

Theorem 4.7. Let the DAE (5) be regular on I with index µ and characteristic values (8).

(1) Then the subspace Scan(t)⊂Rm has dimension d = r−∑
µ−2
i=0 θi = rµ−1 for all t ∈ I , and the matrix

function C : I → Rm×d , C =C0 · · ·Cµ−2, generated by the reduction procedure is a basis of Scan.

10In [50], the coefficient pairs of DAEs which have arbitrary many solutions like [32, Example 3.2 ] may belong to regular
ones.

10
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(2) The DAE features precisely the same structure on each subinterval Isub ⊂ I .

Proof. Regarding the relation ri+1 = ri −θi, i = 0, . . . ,µ −2 directly resulting from the reduction proce-
dure, the assertion is an immediate consequence of [50, Theorem 13.3].

Two canonical subspaces varying with time in Rm are associated with a regular DAE [41, 32]. The
first one is the flow-subspace Scan. The second one is a unique pointwise complement Ncan to the flow-
subspace, such that

Scan(t)⊕Ncan(t) = Rm, Ncan(t)⊃ kerE(t), t ∈ I ,

and the initial condition x(t̄)− x̄ ∈ Ncan(t̄) fixes exactly one of the DAE solutions for each given
t̄ ∈ I , x̄ ∈ Rm without any consistency conditions for the right-hand side q or its derivatives, [32, Theo-
rem 5.1], also [41].

Theorem 4.8. If the DAE (5) is regular on I with index µ and characteristics (8), then the following
assertions are valid:

(1) The DAE is solvable at least for each arbitrary right-hand side q ∈Cm(I ,Rm).

(2) d = r−∑
µ−2
i=0 θi = rµ−1 is the dynamical degree of freedom.

(3) The condition r = ∑
µ−2
i=0 θi indicates a DAE with zero degree of freedom11 and Scan = {0}, i.e. d = 0.

(4) For arbitrary given q ∈Cm(I ,Rm), t̄ ∈ I , and x̄ ∈ Rm, the initial value problem

Ex′+Fx = q, x(t̄) = x̄,

is uniquely solvable, if the consistency condition (13) in the proof below is satisfied. Otherwise
there is no solution.

(5) The DAE has perturbation index µ on each compact subinterval of I .

Proof. (1): Given q ∈Cm(I ,Rm) we apply the previous reduction now to the inhomogeneous DAE (5).
We describe the first level only. The general solution of the derivative-free part Z∗

0F0x = Z∗
0q of the given

DAE reads now

x = (I − (Z∗
0F0)

+Z∗
0F0)x+(Z∗

0F0)
+Z∗

0F0x =C0x(1)+(Z∗
0F0)

+Z∗
0q,

and inserting into Y ∗
0 E0x′+Y ∗

0 F0x = Z∗
0q yields the reduced DAE E1x′(1)+F1x(1) = q(1), with

q(0) = q, q(1) = Y ∗
0 q(0)−Y ∗

0 E0((Z∗
0F0)

+Z∗
0q(0))

′−Y ∗
0 F0(Z∗

0F0)
+Y ∗

0 q(0).

Finally, using the constructed above matrix function sequence, each solution of the DAE has the form

x =C0x(1)+(Z∗
0F0)

+Z∗
0q(0) =C0(C1x(2)+(Z∗

1F1)
+Z∗

1q(1))+(Z∗
0F0)

+Z∗
0q(0) = · · ·

=C0C1 · · ·Cµ−2︸ ︷︷ ︸
=C

x(µ−1)+ p, (11)

p = (Z∗
0F0)

+Z∗
0q(0)+C0(Z∗

1F1)
+Z∗

1q(1)+ · · ·+C0C1 · · ·Cµ−2(Z∗
µ−1Fµ−1)

+Z∗
µ−1q(µ−1),

q( j+1) = Y ∗
j q( j)−Y ∗

j E j((Z∗
j Fj)

+Z∗
j q( j))

′−Y ∗
j Fj(Z∗

j Fj)
+Y ∗

j q( j), j = 0, . . . ,µ −2,

in which x(µ−1) is any solution of the regular index-one DAE

Eµ−1x′(µ−1)+Fµ−1x(µ−1) = q(µ−1).

11So-called purely algebraic systems.

11
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Since q and the coefficients are supposed to be smooth, all derivatives exist, and no further conditions
with respect to q will arise.

(4) Expression (11) yields x(t̄) =C(t̄)x[µ](t̄)+ p(t̄). The initial condition x(t̄) = x̄ splits by means of the
projector Πcan(t̄) onto Scan(t̄) along Ncan(t̄) into the two parts

Πcan(t̄)x̄ =C(t̄)x[µ](t̄)+Πcan(t̄)p(t̄), (12)

(I −Πcan(t̄))x̄ = (I −Πcan(t̄))p(t̄). (13)

Merely part (12) contains the component x(µ)(t̄), which is to be freely selected in Rrµ−1 , and
x(µ)(t̄) =C(t̄)+Πcan(t̄)(x̄− p(t̄)) is the only solution.

In contrast, (13) does not contain any free components. It is a strong consistency requirement and must be
given a priori for solvability. Otherwise this (overdetermined) initial value problem fails to be solvable.

(2),(3),(5) are straightforward now, for details see [32, Theorem 5.1].

The following proposition comprises enlightening special cases which will be an useful tool to provide
equivalence assertions later on. Namely, for given integers κ ≥ 2, d ≥ 0, l = l1+ · · ·+ lκ , li ≥ 1, m = d+ l
we consider the pair {E,F}, E,F : I → Rm×m, in special block structured form,

E =

[
Id

N

]
, F =

[
Ω

Il

]
, N =


0 N12 · · · N1κ

0 N23 N2κ

. . . . . .
...

Nκ−1,κ
0

 , (14)

with blocks Ni j of sizes li × l j.

If d = 0 then the respective parts are absent. All blocks are sufficiently smooth on the given interval I .
N is strictly block upper triangular, thus nilpotent and Nκ = 0.

We set further N = 0 for κ = 1. Obviously, then the pair {E,F} is pre-regular with r = d and θ0 = 0, and
hence the DAE has index µ = κ = 1. Below we are mainly interested in the case κ ≥ 2.

Proposition 4.9. Let the pair {E,F}, E,F : I → Rm×m be given in the form (14) and κ ≥ 2.

(1) If the secondary diagonal blocks Ni,i+1 : I → Rli×li+1 in (14) have full column-rank, that is,

rankNi,i+1 = li+1, i = 1, . . . ,κ −1,

then l1 ≥ ·· · ≥ lκ and the corresponding DAE is regular with index µ = κ and characteristic values

r = m− l1, θ0 = l2, . . . , θµ−2 = lµ .

(2) If the secondary diagonal blocks Ni,i+1 in (14) have full row-rank, that is,

rankNi,i+1 = li, i = 1, . . . ,κ −1,

then l1 ≤ ·· · ≤ lκ and the corresponding DAE is regular with index µ = κ and characteristic values

r = m− lµ , θ0 = lµ−1, . . . , θµ−2 = l1.

12
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Proof. (1) Suppose the secondary diagonal blocks Ni,i+1 have full column-ranks li+1. It results that
r = rankE = d + l − l1 = m− l1 and θ0 = dimS∩ kerE = dim(kerN ∩ im N) = rankN12 = l2, thus the
pair is pre-regular. For deriving the reduction step we form the two auxiliary matrix functions

Ñ =


N12 · · · N1κ

0 N23 N2κ

. . .
...

Nκ−1,κ
0 · · · 0

 : I → Rl×(l−l1), Ẽ =

[
Id

Ñ

]
: I → Rm×(m−l1),

which have full column rank, l − l1 and m− l1, respectively. By construction, one has im Ñ = im N,
im Ẽ = im E. The matrix function C = Ẽ serves as basis of the subspace

S =

{[
u
v

]
∈ Rd+l : v ∈ im N

}
.

Furthermore, with any smooth pointwise nonsingular matrix function M : I →R(m−l1)×(m−l1), the matrix
function Y = ẼM serves as a basis of im E. We will specify M subsequently.

Since Ñ∗Ñ remains pointwise nonsingular, one obtains the relations

A := [ 0︸︷︷︸
l1

Ñ∗Ñ︸︷︷︸
l−l1

] Ñ = Ñ∗Ñ [ 0︸︷︷︸
l1

Il−l1 ] Ñ = Ñ∗Ñ N̊1

with the structured matrix function

N̊1 =


0 N23 · · · N2κ

0 N34 N3κ

. . . . . .
...

Nκ−1,κ
0

 : I → R(l−l1)×(l−l1),

again with the full column-rank blocks Ni j.

We will show that the reduced pair {E1,F1} actually features an analogous structure. We have

E1 = Y ∗EC = M∗
[

Id
A

]
= M∗

[
Id

Ñ∗Ñ N̊1

]
= M∗

[
Id

Ñ∗Ñ

][
Id

N̊1

]
,

and

F1 = Y ∗FC+Y ∗EC′ = M∗
[

Id
Ñ∗Ñ

][
Ω

Il−l1 + N̊′
1

]
= M∗

[
Id

Ñ∗Ñ(Il−l1 + N̊′
1)

][
Ω

Il−l1

]
.

Regarding that Il−l1 + N̊′
1 is nonsingular, we choose

M∗ =

[
Id

(Il−l1 + N̊′
1)

−1(Ñ∗Ñ)−1

]
,

which leads to

E1 =

[
Id

(Il−l1 + N̊′
1)

−1

][
Id

N̊1

]
=

[
Id

(Il−l1 + N̊′
1)

−1N̊1

]
=:

[
Id

N1

]
,

F1 =

[
Ω

Il−l1

]
.

13
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By construction, see Lemma 11.4, the resulting matrix function N1 has again strictly upper triangular
block structure and it shares its secondary diagonal blocks with those from N (except for N12), that is

N1 =


0 N23 ∗ · · · ∗

0 N34 ∗
. . . . . .

...
Nκ−1,κ

0

 : I → R(l−l1)×(l−l1).

Thus, the new pair has an analogous block structure as the given one, is again pre-regular but now with
m1 = r = m− l1, r1 = m1 − l2 = m− l1 − l2, θ1 = rankN23 = l3. Proceeding further in such a way we
arrive at the pair {Eκ−2,Fκ−2},

Eκ−2 =

[
Id

Nκ−2

]
, Fκ−2 =

[
Ω

Ilκ−1+lκ

]
, Nκ−2 =

[
0 Nκ−1,κ
0 0

]
,

with mκ−2 = m− l1 −·· ·− lκ−2, rκ−2 = m− l1 −·· ·− lκ−1 = d + lκ , and θκ−2 = rankNκ−1,κ = lκ , and
the final pair {Eκ−1,Fκ−1},

Eκ−1 =

[
Id

0

]
, Fκ−1 =

[
Ω

Ilκ

]
, mκ−1 = d + lκ ,rκ−1 = d,θκ−1 = 0,

which completes the proof of the first assertion.

(2): We suppose now secondary diagonal blocks Ni,i+1 which have full row-ranks li, thus nullspaces
of dimension li+1 − li, i = 1, . . . ,κ − 1. The pair {E,F} is pre-regular and r = rankE = d + rankN =
d + l − lκ = m− lκ , and dimkerE ∩ S = dimkerN ∩ im N = l1 +(l2 − l1)+ · · ·+(lκ−1 − lκ−2) = lκ−1,
thus θ0 = lκ−1. The constant matrix function

C =


Id

Il1
. . .

Ilκ−1

0


serves as a basis of S and also as a basis of im E, Y =C. This leads simply to

E1 =C∗EC =

[
Id

N1

]
, F1 =C∗FC =

[
Ω

Il−lκ

]
,

with m1 = m− lκ , r1 = m1 − l, and

N1 =


0 N12 · · · N1,κ−1

0 N23 N2,κ−1
. . . . . .

...
Nκ−2,κ−1

0

 .

It results that θ1 = lκ−2. and so on.

In Section 5.6 and Section 11.3 we go into further detail about these two structural forms from Proposition
4.9 and also illustrate there the difference to the Weierstraß–Kronecker form with a simple example.

14
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4.2 A specifically geometric view on the matter

A regular DAE living in Rm can now be viewed as an embedded regular implicit ODE in Rd , which
in turn uniquely defines a vector field on the configuration space Rd . Of course, this perspective has
an impressive potential in the case of nonlinear problems, when smooth submanifolds replace linear
subspaces, etc. We will give a brief outline and references in Section 9 below. An important aspect hereby
is that one first provides the manifold that makes up the configuration space, and only then examines the
flow, which allows also a flow that is not necessarily regular. In this context, the extra notion degree of
the DAE introduced by [51, Definition 8]12 is relevant. It actually measures the degree of the embedding
depth.

In the present section we concentrate on the linear case and do not use the special geometric terminology.
Instead we adapt the notion so that it fits in with our presentation.

Let us start by a further look at the basic procedure yielding a regular DAE. In the second to last step of
our basis reduction, the pair {Eµ−1,Fµ−1} is pre-regular and θµ−1 = 0 on all I . If thereby rµ−1 = 0 then
there is no dynamic part, one has d = 0 and Scan = {0}. This instance is of no further interest within the
geometric context.

However, the interest comes alive, if rµ−1 > 0. Recall that by construction rµ−1 = r0 −∑
κ−2
i=0 θi = d. In

the regular case we see

im C0 · · ·Cµ−2 ⫌ im C0 · · ·Cµ−1 = im C0 · · ·Cµ , rµ−2 > rµ−1 = rµ .

If now the second to last pair would fail to be pre-regular, but would be qualified with the associated
rank function θµ−1 being positiv at a certain point t∗ ∈ I , and zero otherwise on I , then the eventually
resulting last matrix function Eµ(t) fails to remain nonsingular just at this critical point, because of
rankEµ(t) = rµ−1 −θµ−1(t). Nevertheless, we could state Cµ = Irµ−1 and arrive at

im C0 · · ·Cµ−2 ⫌ im C0 · · ·Cµ−1 = im C0 · · ·Cµ , rµ−2 > rµ−1 ≥ rµ(t).

Clearly, then the resulting ODE in Rrµ−1 and in turn the given DAE are no longer regular and one is
confronted with a singular vector field.

Example 4.10. Given is the qualified pair with m = 2,r = 1,

E(t) =
[

1 −t
1 −t

]
, F(t) =

[
2 0
0 2

]
, t ∈ R,

yielding

Z0 =

[
1
−1

]
, Z∗

0F0 =

[
2
−2

]
, C0 =

[
1
1

]
, Y0 =

[
1
1

]
,

E1(t) = 2(1− t), F1(t) = 4, m1 = r0 = 1,

kerE0(t)∩ker(Z∗
0F0)(t) = {z ∈ R2 : z1 − tz2 = 0,z1 = z2},

and further θ0(t) = 0 for t ̸= 1, but θ0(1) = 1. The homogeneous DAE has the solutions

x(t) = γ(1− t)2
[

1
1

]
, t ∈ R, with arbitrary γ ∈ R,

which manifests the singularity of the flow at point t∗ = 1. Observe that now the canonical subspace
varies its dimension, more precisely,

Scan(t∗) = {0}, Scan(t) = im C0, for all t ̸= t∗.
12Definition 9.9 below.
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Definition 4.11. The DAE given by the pair {E,F}, E,F : I → Rm×m has, if it exists, degree s ∈ N, if
the reduction procedure in Section 4.1 is well-defined up to level s−1, the pairs {Ei,Fi}, i = 0, . . . ,s−1,
are pre-regular, the pair {Es,Fs} is qualified,

im C0 · · ·Cs−1 ⫌ im C0 · · ·Cs, rs−1 > rs,

and s is the largest such integer. The subspace im C0 · · ·Cs is called configuration space of the DAE.

We mention that im C0 · · ·Cs = C0 · · ·Cs(Rrs) and admit that, depending on the view, alternatively, Rrs

can be regarded as the configuration space, too.

If the pair {E,F} is regular with index µ ∈ N, then its degree is s = µ −1 and

im C0 · · ·Cµ−2 ⫌ im C0 · · ·Cµ−1 = im C0 · · ·Cµ , rµ−2 > rµ−1 = rµ .

On the other hand, if the DAE has degree s and rs = 0 then it results that Cs = 0, in turn im C0 · · ·Cs =
{0} and θs = 0. Then the DAE is regular with index µ = s+ 1 but the configuration space is trivial.
As mentioned already, since the dynamical degree is zero, this instance is of no further interest in the
geometric context.

Conversely, if the DAE has degree s and rs > 0, then the pair {Es,Fs} is not necessarily pre-regular
but merely qualified such that, nevertheless, the next level {Es+1,Fs+1} is well-defined, we can state
ms+1 = rs, Cs+1 = Irs , and

rankEs+1(t) = ms+1 −dim(kerEs(t)∩kerZ∗
s (t)Fs(t)) = rs −θs(t), t ∈ I .

It comes out that if θs(t) vanishes almost overall on I , then a vector field with isolated singular points
is given. If θs(t) vanishes identically, then the DAE is regular.

This approach unfolds its potential especially for quasi-linear autonomous problems, see [50, 51] and
Section 9.2, however, the questions concerning the sensitivity of the solutions with respect to the pertur-
bations of the right-hand sides fall by the wayside.

5 Further direct concepts without recourse to derivative arrays

We are concerned here with the regularity notions and approaches from [15, 34, 37, 41] associated
with the elimination procedure, the dissection concept, the strangeness reduction, and the tractability
framework compared to Definition 4.4. The approaches in [15, 34, 37, 50] are de facto special solution
methods including reduction steps by elimination of variables and differentiations of certain variables.
In contrast, the concept in [41] aims at a structural projector-based decomposition of the given DAE in
order to analyze them subsequently.

Each of the concepts is associated with a sequence of pairs of matrix functions, each supported by certain
rank conditions that look very different. Thus also the regularity notions, which require in each case
that the sequences are well-defined with well-defined termination, are apparently completely different.
However, at the end of this section, we will know that all these regularity terms agree with our Definition
4.4, and that the characteristics (8) capture all the rank conditions involved.

When describing the individual method, traditionally the same characters are used to clearly highlight
certain parallels, in particular, {E j,Fj} or {G j,B j} for the matrix function pairs and r j for the charac-
teristic values. Except for the dissection concept, r j is the rank of the first pair member E j and G j,
respectively.

To avoid confusion we label the different characters with corresponding top indices E (elimination), D
(dissection), S (strangeness) and T (tractability), respectively. The letters without upper index refer to the
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basic regularity in Section 4.1. In some places we also give an upper index, namely B (basic), for better
clarity.

Theorem 5.9 below will provide the index relations µE = µD = µT = µS+1 = µB as well as expressions
of all rE

j , rD
j , rS

j , and rT
j in terms of (8).

5.1 Elimination of the unknowns procedure

A special predecessor version of the procedure described in [50] was already proposed and analyzed
in [15] and entitled by elimination of the unknowns, even for more general pairs of rectangular matrix
functions. Here we describe the issue already in our notation and confine the description to square matrix
functions.

Let the pair {E,F}, E,F : I → Rm×m, be qualified in the sense of Definition 4.1, i.e. im [E(t) F(t)] =
Rm, t ∈ I , and E(t) have constant rank r on I .

Let T,T c,Z, and Y represent bases of kerE,(kerE)⊥,(im E)⊥, and im E, respectively. By scaling with
[Y Z]∗ one splits the DAE

Ex′+Fx = q

into the partitioned shape

Y ∗Ex′+Y ∗Fx = Y ∗q, (15)

Z∗Fx = Z∗q. (16)

Then the (m− r)×m matrix function Z∗F features full row-rank m− r and the subspace S = kerZ∗F
has dimension r. Equation (16) represents an underdetermined system. The idea is to provide its general
solution in the following special way.

Taking a nonsingular matrix function K of size m × m such that Z∗FK =: [AB], with B : I →
R(m−r)×(m−r) being nonsingular, the transformation x = Kx̃ turns (16) into

Z∗FKx̃ =: Au+Bṽ = Z∗q, x̃ =
[

u
v

]
yielding v =−B−1Au+B−1Z∗q.

The further matrix function

C := K
[

Ir

−B−1A

]
: I → Rm×r,

has full column-rank r on all I and serves as basis of kerZ∗F = S. Each solution of (16) can be
represented in terms of u as

x =Cu+ p, p := K
[

0
B−1Z∗q

]
.

Next we insert this expression into (15), that is,

Y ∗ECu′+(Y ∗FC+Y ∗EC′)u = Y ∗q−Y ∗E p′−Y ∗F p. (17)

Now the variable v is eliminated and we are confronted with a new DAE with respect to u living in Rr.
By construction, it holds that

rank(Y ∗EC)(t) = m−dim(S(t)∩kerE(t)) =: m−θ(t).

17
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Therefore, the new matrix function has constant rank precisely if the pair {E,F} is pre-regular such that
θ is constant.

We underline again that the procedure in [50] and Section 4.1 allows for the choice of an arbitrary basis
for S. Obviously, the earlier elimination procedure of [15] can now be classified as its special version.

This way a sequence of matrix functions pairs {EE
j ,F

E
j } of size mE

j , j ≥ 0, starting from

mE
0 = m, rE

0 = r, EE
0 = E, FE

0 = F,

and letting

mE
j+1 = rE

j , EE
j+1 = Y ∗

j EE
j C j, rE

j+1 = rankEE
j+1, FE

j+1 = Y ∗
j FE

j C j +Y ∗
j EE

j C′
j.

The corresponding regularity notion from [15, p. 58] is then:

Definition 5.1. The DAE (5) is called regular on the interval I if the above process of dimension reduc-
tion is well-defined, i.e., at each level [EE

j FE
j ] =RmE

j and EE
j has constant rank rE

j , and there is a number
κ such that either EE

κ is nonsingular or EE
κ = 0, but then FE

κ is nonsingular.

This regularity definition obviously fully agrees with Definition 4.4 in the matter and also with the name,
but without naming the characteristic values. It is evident that

κ = µ and rE
j = rankEE

j = r−
j−1

∑
i=0

θi, j = 0, . . . ,µ, (18)

and each pair {EE
j , FE

j } must be pre-regular. The relevant solvability statements from [15] match those
in Section 4.1.

5.2 Dissection concept

A decoupling technique has been presented and extended to apply to nonlinear DAEs quite recently
under the name dissection concept [34]. The intention behind this is to modify the nonlinear theory
belonging to the projector based analysis in [41] by using appropriate basis functions along the lines of
[37] instead of projector valued functions. This is, by its very nature, incredibly technical. We filter out
the corresponding linear version here.

Let the pair {E,F}, E,F : I →Rm×m, be pre-regular with constants r and θ according to Definition 4.2.

Let T,T c,Z, and Y represent bases of kerE,(kerE)⊥,(im E)⊥, and im E, respectively. The matrix func-
tion Z∗FT has size (m− r)× (m− r) and

dimkerZ∗FT = T+(kerE ∩S) = θ , rankZ∗FT = m− r−θ =: a.

By scaling with [Y Z]∗ one splits the DAE

Ex′+Fx = q

into the partitioned shape

Y ∗Ex′+Y ∗Fx = Y ∗q, (19)

Z∗Fx = Z∗q. (20)

Owing to the pre-regularity, the (m− r)×m matrix function Z∗F features full row-rank m− r. We keep
in mind that S = kerZ∗F has dimension r.

18
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The approach in [34] needs several additional splittings. Let V,W be bases of (im Z∗FT )⊥, and im Z∗FT .
By construction, V has size (m− r)×a and W has size (m− r)×θ . One starts with the transformation

x =
[
T c T

]
x̃, x̃ =

[
x̃1
x̃2

]
, x = T cx̃1 +T x̃2.

The background is the associated possibility to suppress the derivative of the nullspace-part T x̃n similarly
as in the context of properly formulated DAEs and to set Ex′ =ET cx̃′1+ET c′x̃1+ET ′x̃2, which, however,
does not play a role in our context, where altogether continuously differentiable solutions are assumed.
Furthermore, an additional partition of the derivative-free equation (16) by means of the scaling with
[V W ]∗ is applied, which results in the system

Y ∗ET cx̃′1 +Y ∗(FT c +ET c′)x̃1 +Y ∗(FT +ET ′)x̃2 = Y ∗q, (21)

V ∗Z∗FT cx̃1 +V ∗Z∗FT x̃2 =V ∗Z∗q, (22)

W ∗Z∗FT cx̃1 =W ∗Z∗q. (23)

The matrix function W ∗Z∗FT c has full row-rank θ and V ∗Z∗FT has full row-rank a. Now comes another
split. Choosing bases G,H of kerW ∗Z∗FT c ⊂ Rθ and kerV ∗Z∗FT ⊂ Ra, as well as bases of respective
complementary subspaces, we transform

x̃1 =
[
Gc G

]
x̄1, x̄1 =

[
x̄1,1
x̄1,2

]
, x̃1 = Gcx̄1,1 +Gx̄1,2,

x̃2 =
[
Hc H

]
x̄2, x̄2 =

[
x̄2,1
x̄2,2

]
, x̃2 = Hcx̄2,1 +Hx̄2,2.

Thus equations (22) and (23) are split into

V ∗Z∗FT c(Gcx̄1,1 +Gx̄1,2)+V ∗Z∗FT Hcx̄2,1 =V ∗Z∗q, (24)

W ∗Z∗FT cGcx̄1,1 =W ∗Z∗q. (25)

The matrix functions V ∗Z∗FT Hc and W ∗Z∗FT cGc are nonsingular each, which allows the resolution to
x̄1,1 and x̄2,1. In particular, for q = 0 it results that x̄1,1 = 0 and x̄2,1 = Ex̄1,2, with

E :=−(V ∗Z∗FT Hc)−1V ∗Z∗FT cG.

Overall, therefore, the latter procedure presents again a transformation, namely

x = Kx̄, K =
[
T cGc T cG T Hc T H

]
, x̄ =


x̄1,1
x̄1,2
x̄2,1
x̄2,2

 ∈ Rθ ×Rr−θ ×Ra ×Rθ ,

and we realize that we have found again a basis of the subspace S, namely

S = im C, C = K


0 0

Ir−θ 0
E 0
0 Iθ

=
[
T cG+T HcE T H

]
,

which makes the dissection approach a particular case of [50] and Section 4.1. Consequently, the corre-
sponding reduction procedure from there is well-defined for all regular DAEs in the sense of our basic
Definition 4.4.

In [34] the approach is somewhat different. Again a sequence of matrix function pairs {ED
i , FD

i } is built
up starting from ED

0 = E, FD
0 = F . The construction of {ED

1 , FD
1 } is closely related to the system given
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by (21), (24), and (25), where the last two equations are solved with respect to x̄1,1 and x̄2,1 and these
variables are replaced in (21) accordingly. This leads to

ED
1 =

0 Y ∗ET cG 0 0
0 0 0 0
0 0 0 0

 , rankED
1 = rankY ∗ET cG = rankG = r−θ .

In contrast to the basic procedure in Section 4.1 in which the dimension is reduced and variables are
actually eliminated on each level, now all variables stay included and the original dimension m is kept
analogous to the strangeness concept in Section 5.3. We omit the further technically complex represen-
tation here and refer to [34]. It is evident that rankED

0 > rankED
1 and so on.

The characteristic values of the dissection concept are formally adapted to certain corresponding values
of the tractability index framework. It starts with rD

0 = r, and is continued in ascending order as the
following definition from [34, Definition 4.13, p. 83] says.

Definition 5.2. Let all basis functions exist and have constant ranks on I and let the sequence of the
matrix function pairs be well-defined. The characteristic values of the DAE (5) are defined as

rD
0 = r, rD

i+1 = rD
i +aD

i = rD
i + rankZ∗

i FD
i Ti, i ≥ 0.

If rD
0 = r = m then the DAE is said to be regular with dissection index zero. If there is an integer κ ∈ N

and rD
κ−1 < rD

κ = m then the DAE is said to be regular with dissection index µD = κ . The DAE is said to
be regular, if it is regular with any dissection index.

In particular, in the first step one has

rD
1 = r+a = r+(m− r−θ) = m−θ = (m− r)+ r−θ = (m− r)+ rankED

1 .

Owing to [34, Theorem 4.25, p.101], the tractability index (see Section 5.3) and the dissection index
coincide, and also the corresponding characteristic values, that is,

µ
D = µ

T , rD
i = rT

i , i = 0, . . . ,µD.

5.3 Regular strangeness index

The strangeness concept applies to rectangular matrix functions in general, but here we are interested in
the case of square sizes only, i.e., E,F : I → Rm×m. Within the strangeness reduction framework the
following five rank-values of the matrix function pair {E,F} play their role, e.g., [37, p. 59]:

r = rankE, (26)

a = rankZ∗FT, (algebraic part) (27)

s = rankV ∗Z∗FT c, (strangeness) (28)

d = r− s, (differential part) (29)

v = m− r−a− s, (vanishing equations) (30)

whereby T,T c,Z,V represent orthonormal bases of kerE, (kerE)⊥, (im E)⊥, and (im Z∗FT )⊥, respec-
tively. The strangeness concept is tied to the requirement that r,a, and s are well-defined constant integers.
Owing to [32, Lemma 4.1], the pair {E,F} is pre-regular, if and only if the rank-functions (26)-(30) are
constant and v = 0. In case of pre-regularity, see Definition 4.2, one has

a = m− r−θ , s = θ , d = r−θ .

20
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Let the pair {E,F} have constant rank values (26)–(30), and v = 0. We describe the related step from
{ES

0 ,F
S

0 } := {E,F} to the next matrix function pair {ES
1 ,F

S
1 }. Applying the basic arguments of the

strangeness reduction [37, p. 68f] the pair {E,F} is equivalently transformed to {Ẽ, F̃},

Ẽ =


Is

Id
0

0

 , F̃ =


0 F̃12 0 F̃14
0 0 0 F̃24
0 0 Ia 0
Is 0 0 0

 ,

with d + s = r, a+ s = m− r. This means that the DAE is transformed into the intermediate form

x̃′1 + F̃12x̃2 + F̃14x̃4 = q̃1,

x̃′2 + F̃24x̃4 = q̃2,

x̃3 = q̃3,

x̃1 = q̃4.

Replacing now in the first line x̃′1 by q̃′4 leads to the new pair defined as

ES
1 =


0

Id
0

0

 , FS
1 =


0 F̃12 0 F̃14
0 0 0 F̃24
0 0 Ia 0
Is 0 0 0

 .

Proceeding further in this way, each pair {ES
j ,F

S
j } must be supposed to be pre-regular for obtaining well-

defined characteristic tripels (rS
j ,a

S
j ,s

S
j) and vS

j = 0. Owing to [37, Theorem 3.14] these characteristics
persist under equivalence transformations. The obvious relation rS

j+1 = rS
j − sS

j guarantees that after a
finite number of steps the so-called strangeness sS

j must vanish. We adapt Definition 3.15 from [37]
accordingly13:

Definition 5.3. Let each pair {ES
j ,F

S
j }, j ≥ 0, be pre-regular and

µ
S = min{ j ≥ 0 : sS

j = 0}.

Then the pair {E,F} and the associated DAE are called regular with strangeness index µS and charac-
teristic values (rS

j ,a
S
j ,s

S
j), j ≥ 0. In the case that µS = 0 the pair and the DAE are called strangeness-free.

Finally, if the DAE Ex′+Fx = q is regular with strangeness index µS, this reduction procedure ends up
with the strangeness-free pair

ES
µS =

[
IdS

0

]
, FS

µS =

[
0

IaS

]
, dS := dS

µS , aS := aS
µS , dS +aS = m, (31)

and the transformed DAE showing a simple form, which already incorporates its solution, namely

˜̃x′1 = ˜̃q1,

˜̃x2 = ˜̃q2.

The function ˜̃x : I → Rm is a solution x : I → Rm of the original DAE transformed by a pointwise
nonsingular matrix function.

13The notion [37, Definition 3.15] is valid for more general rectangular matrix functions E,F . For quadratic matrix functions
E,F we are interested in here, it allows also nonzero values vS

j = m−rS
j −aS

j −sS
j , thus instead of pre-regularity of {ES

j ,F
S
j },

it is only required that rS
j ,a

S
j ,s

S
j are constant on I .
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As a consequence of Theorem 2.5 from [39], each pair {E,F} being regular with strangeness index µS

can be equivalently transformed into a pair {Ẽ, F̃},

Ẽ =

[
IdS ∗
0 N

]
, F̃ =

[
∗ 0
0 IaS

]
, dS := dS

µS , aS := aS
µS , (32)

in which the matrix function N is pointwise nilpotent with nilpotency index κ = µS + 1 and has size
aS×aS. N is pointwise strictly block upper triangular and the entries N1,2, . . . ,Nκ−1,κ have full row-ranks
l1 = sS

µS−1, . . . , lκ−1 = sS
0. Additionally, one has lκ = sS

0 + aS
0 = m− r, and N has exactly the structure

that is required in (14) and Proposition 4.9(2). It results that each DAE having a well-defined regular
strangeness index is regular in the sense of Definition 4.4.

5.4 Tractability index

The background of the tractability index concept is the projector based analysis which aims at an immedi-
ate characterization of the structure of the originally given DAE, its relevant subspaces and components,
e.g., [41]. In contrast to the reduction procedures with their transformations and built-in differentiations
of the right-hand side, the original DAE is actually only written down in a very different pattern using
the projector functions. No differentiations are carried out, but it is only made clear which components
of the right-hand side must be correspondingly smooth. This is important in the context of input-output
analyses and also when functional analytical properties of relevant operators are examined [44]. The de-
composition using projector functions reveals the inherent structure of the DAE, including the inherent
regular ODE. Transformations of the searched solution are avoided in this decoupling framework, which
is favourable for stability investigations and also for the analysis of discretization methods [41, 33].

As before we assume E,F : I → Rm×m to be sufficiently smooth and the pair {E,F} to be pre-regular.
We choose any continuously differentiable projector-valued function P such that

P : I → Rm×m, P(t)2 = P(t), kerP(t) = kerE(t), t ∈ I ,

and regarding that Ex′ = EPx′ = E(Px)′−EP′x for each continuously differentiable function x :→ Rm,
we rewrite the DAE Ex′+Fx = q as

E(Px)′+(F −EP′)x = q. (33)

Remark 5.4. The DAE (33) is a special version of a DAE with properly stated leading term or properly
involved derivative, e.g., [41],

A(Dx)′+Bx = q, (34)

which is obtained by a special proper factorizations of E, which are subject to the general requirements:
E = AD, A : I → Rn×m is continuous, D : I → Rm×n is continuously differentiable, B = F −AD′, and

kerA⊕ im D = Rn, kerD = kerE,

whereby both subspaces kerA and im D have continuously differentiable basis functions.

As mentioned already above, a properly involved derivative makes sense, if not all components of the
unknown solution are expected to be continuously differentiable, which does not matter here. In contrast,
in view of applications and numerical treatment the model (34) is quite reasonable [41].

In order to be able to directly apply the more general results of the relevant literature, in the following
we denote

P =: D, G0;= E, B0 := F −ED′, A := E.
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Observe that the pair {G0,B0} is pre-regular with constants r and θ at the same time as {E,F}. Now we
build a sequence of matrix functions pairs starting from the pair {G0,B0}. Denote N0 = kerG0 and choose
a second projector valued function P0 : I → Rm×m, such that kerP0 = N0. With the complementary
projector function Q0 := I −P0 and D− := P0 it results that

DD−D = D, D−DD− = D−, DD− = P0, D−D = P0.

On this background we construct the following sequence of matrix functions and associated projector
functions:

Set rT
0 = r = rankG0 and Π0 = P0 and build successively for i ≥ 1,

Gi = Gi−1 +Bi−1Qi−1, rT
i = rankGi, (35)

Ni = kerGi, N̂i = (N0 + · · ·+Ni−1)∩Ni, uT
i = dim N̂i,

fix a subset Xi ⊆ N0 + · · ·+Ni−1 such that N̂i +Xi = N0 + · · ·+Ni−1 and choose then a projector function
Qi : I → Rm×m to achieve

im Qi = Ni, Xi ⊆ kerQi, Pi = I −Qi, Πi = Πi−1Pi, (36)

and then form

Bi = Bi−1Pi−1 −GiD−(DΠiD−)′DΠi−1. (37)

By construction, the inclusions

im G0 ⊆ im G1 ⊆ ·· · im Gk ⊆ Rm,

N̂1 ⊆ N̂2 ⊆ ·· · ⊆ N̂k,

come off, which leads to the inequalities

0 ≤ rT
0 ≤ rT

1 ≤ ·· · ≤ rT
k ,

0 ≤ uT
1 ≤ ·· · ≤ uT

k .

The sequence G0, . . . ,Gk is said to be admissible if, for each i = 1, . . . ,k, the two rank functions rT
i , uT

i
are constant, Πi is continuous and DΠiD− is continuously differentiable. It is worth mentioning that the
matrix functions G0, . . . ,Gk of an admissible sequence are continuous and the products Πi and DΠiD−

are projector functions again [41]. Moreover, if uT
k = 0, then uT

i = 0, for i < k. We refer to [41, Section
2.2] for further useful properties.

Definition 5.5. [41, Section 2.2.2] The smallest number κ ≥ 0, if it exists, leading to an admissible
matrix function sequence ending up with a nonsingular matrix function Gκ is called the tractability index
(regular case)14 of the pair {E,F}, and the DAEs (1) and (34), respectively. It is indicated by κ =: µT .
The associated characters

0 ≤ rT
0 ≤ rT

1 ≤ ·· · ≤ rT
κ−1 < rT

κ = m, dT = m−
κ−1

∑
i=0

(m− rT
i ), (38)

are called characteristic values of the pair {E,F} and the DAEs (1) and (34), respectively. The pair
{E,F} and the DAEs (1) and (34), are called regular each.

By definition, if the DAE is regular, then rT
µT = m,uT

µT = 0 and all rank functions uT
i have to be zero and

play no further role here. The special possible choice of the projector functions P,P0, . . . ,Pµ−1 does not
affect regularity and the characteristic values [41].

14We refer to [41, Sections 2.2.2 and 10.2.1] for details and more general notions including also nonregular DAEs.
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Remark 5.6. An alternative way to construct admissible matrix function sequences for the regular case
if uT

i = 0, i ≥ 1, is described in [55, Section 2.2.4]. It avoids the explicit use of the nullspace projector
functions onto Ni. One starts with G0,B0, and Π0 as above, introduces M0 := I −Π0, G1 = G0 +B0M0,
and then for i ≥ 1:

choose a projector function Πi along N0 ⊕·· ·⊕Ni, with im Πi ⊆ Πi−1,

Bi = (Bi−1 −GiD−(DΠiD−)′D)Πi,

Mi = Πi−1 −Πi,

Gi+1 = Gi +BiMi.

Remark 5.7. If the pair {E,F} is regular in the sense of Definition 5.5 then the subspace ST
j (t),

ST
j (t) := {z ∈ Rm : B j(t)z ∈ im G j(t)}= kerW T

j (t)B j(t), W T
j := I −G jG+

j ,

has constant dimension r j on all I . Moreover,

rank[G j B j] = rank[G j W T
j B j] = rT

j +m− rT
j = m,

dimkerG j+1 = dim(kerG j ∩ST
j ) = m− rT

j+1, j = 0, . . . ,µT −1.

All intermediate pairs {G j,B j} are pre-regular. It is worth highlighting that in terms of the basic regu-
larity notion15 one has µT = µ and

dim(kerG j ∩ST
j ) = θ j, j = 0, . . . ,µ −1.

The decomposition

Im = ΠµT−1 +Q0 +Π0Q1 + · · ·+ΠµT−2QµT−1

is valid and the involved projector functions show constant ranks, in particular,

rankQ0 = m− rT
0 , rankΠi−1Qi = m− rT

i , i = 1, . . . ,µT −1, rankΠµT−1 = dT . (39)

Let the DAE (1) be regular with tractability index µT ∈ N and characteristic values (38). Then the
admissible matrix functions and associated projector functions provide a far-reaching decoupling of the
DAE, which exposes the intrinsic structure of the DAE, for details see [41, Section 2.4]. In particular,
the following representation of the scaled by G−1

µT DAE was proved in [41, Proposition 2.23]):

G−1
µT A(Dx)′+G−1

µT Bx = G−1
µT q,

G−1
µT A(Dx)′+G−1

µT Bx = D−(DΠµT−1x)′+G−1
µT BµT x

+
µT−1

∑
l=0

{Qlx− (I −Πl)Ql+1D−(DΠlQl+1x)′+VlDΠlx},

with Vl = (I −Πl){PlD−(DΠlD−)′−Ql+1D−(DΠl+1D−)′}DΠlD−.

Regarding the decomposition of the unknown function

x = ΠµT−1x+Q0x+Π0Q1x+ · · ·+ΠµT−2QµT−1x

15See Definition 4.4 and Theorem 5.9.
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and several projector properties, we get

G−1
µT A(Dx)′+G−1

µT Bx =D−(DΠµT−1x)′−
µT−1

∑
l=0

(I −Πl)Ql+1D−(DΠlQl+1x)′ (40)

+G−1
µT BµT ΠµT−1x+

µT−1

∑
l=0

VlDΠµT−1x

+Q0x+
µT−1

∑
l=0

QlΠl−1Qlx+
µT−2

∑
l=0

Vl

µT−2

∑
s=0

DΠsQs+1x.

The representation (40) is the base of two closely related versions of fine and complete structural decou-
plings of the DAE (1) into the so-called inherent regular ODE (and its compressed version, respectively),

(DΠµT−1x)′− (DΠµT−1D−)′DΠµT−1x+DΠµT−1G−1
µT BµT D−DΠµT−1x = DΠµT−1G−1

µT q, (41)

and the extra part indicating and including all the necessary differentiations of q. It is worth mentioning
that the explicit ODE (41) is not at all affected from derivatives of q.

While the first decoupling version is a swelled system residing in a m-dimensional subspace of R(µT+1)m,
the second version remains in Rm and represents an equivalently transformed DAE16. More precisely, ow-
ing to [41, Theorem 2.65], each pair {E,F} being regular with tractability index µT can be equivalently
transformed into a pair {Ẽ, F̃},

Ẽ =

[
IdT 0
0 N

]
, F̃ =

[
Ω 0
0 Im−dT

]
, (42)

in which the matrix function N is pointwise nilpotent with nilpotency index κ = µT and has size (m−
dT )× (m− dT ). N is pointwise strictly block upper triangular and the entries N1,2, . . . ,Nκ−1,κ have full
column-ranks l2 = m− rT

1 , . . . , lκ = m− rT
κ−1. Additionally, one has l1 = m− r, and N has exactly the

structure that is required in (14) and Proposition 4.9(1).

The projector based approach sheds light on the role of several subspaces. In particular, the two canonical
subspaces Scan and Ncan, see [32], originate from this concept, e.g., [41]. For regular pairs it holds that
Ncan = N0 + · · ·+NµT−1.

The following assertion provided in [43, 32] plays its role when analyzing DAEs and its canonical sub-
spaces.

Proposition 5.8. If the DAE (1) is regular with tractability index µT and characteristics 0 < rT
0 ≤ ·· ·<

rT
µT = m, then the adjoint DAE

−E∗y′+(F∗−E∗′)y = 0

is also regular with the same index and characteristics, and the canonical subspaces Scan,Ncan and
Sad j,can,Nad j,can, are related by

Ncan = kerC∗
ad jE, Nad j,can = kerC∗E∗,

in which C and Cad j are bases of the flow-subspaces Scan and Sad j,can, respectively.

16In the literature there are quite a few misunderstandings about this.
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5.5 Equivalence results and other commonalities

Theorem 5.9. Let E,F : I → Rm×m be sufficiently smooth and µ ∈ N. The following assertions are
equivalent in the sense that the individual characteristic values of each two of the variants are mutually
uniquely determined.

(1) The pair {E,F} is regular on I with index µ ∈ N and characteristics r < m, θ0 = 0 if µ = 1, and,
for µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0.

(2) The strangeness index µS is well-defined for {E,F} and regular, and µS = µ − 1. The associated
characteristics are the tripels

(rS
i , aS

i ,s
S
i ), i = 0, . . . ,µS, rS

0 = r, µ
S = min{i ∈ N0 : sS

i = 0}.

(3) The pair {E,F} is regular with tractability index µT = µ and characteristics

rT
0 = r, rT

0 ≤ ·· · ≤ rT
µ−1 < rT

µ = m.

(4) The pair {E,F} is regular with dissection index µD = µ and characteristics

rD
0 = r, rD

0 ≤ ·· · ≤ rD
µ−1 < rD

µ = m.

(5) The pair {E,F} is regular on I with elimination index µE = µ and characteristics r < m, θ0 = 0 if
µ = 1, and, for µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0.

Proof. Owing to [32, Theorem 4.3], it remains to verify the implication (3)⇒(1). A DAE being regular
with tractability index µT and characteristics (43) is equivalent to a DAE in the form (14) with κ = µT ,
r = rT

0 , and li = m− rT
i−1 for i = 1, . . . ,κ . Hence, by Proposition 4.9, the DAE is regular with index µ =

κ = µT and characteristic values r = rT
0 , m−θ0 = rT

1 , . . . ,m−θµ−2 = rT
µ−1, and m = m−θµ−1 = rT

µ .

Next we highlight the relations between the various characteristic values and trace back all of them to

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0.

Theorem 5.10. Let the pair {E,F} be regular on I with index µ ∈N and characteristics r < m, θ0 = 0
if µ = 1, and, for µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0.

Then the following relations concerning the various characteristic values arise:

(1) The pair {E,F} is regular with strangeness index µS = µ −1. The associated characteristics are

rS
0 = r,

sS
i = θi,

dS
i = rS

i −θi = r−
i

∑
j=0

θ j,

aS
i = m− rS

i −θi = m− r+
i−1

∑
j=0

θ j −θi,

vS
i = 0,

rS
i+1 = dS

i = r−
i

∑
j=0

θ j, i = 0, . . . ,µ −1.
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(2) The pair {E,F} is regular with tractability index µT = µ and characteristics

rT
0 = r, rT

i = m−θi−1, i = 1, . . . ,µ. (43)

(3) The pair {E,F} is regular with dissection index µD = µ and characteristics

rD
0 = r, rD

i = m−θi−1, i = 1, . . . ,µ.

(4) The pair {E,F} is regular on I with elimination index µE = µ and characteristics r < m, θ0 = 0 if
µ = 1, and, for µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0.

Thus, the statements of Theorems 4.7 and 4.8 apply equally to all concepts in this section. Every regular
DAE with index µ ∈N is a solvable system in the sense of Definition 2.1, and it has the pertubation index
µ .

Remark 5.11. Obviously, for a regular pair {E,F} with index µ , each of the above procedures is feasible
up to infinity and will eventually stabilize. This can now be recorded by setting

θk := 0, k ≥ µ.

Namely, in particular, the strangeness index is well defined and regular, µS = µ −1,

rS
0 = r, rS

i = rS
i−1 −θi−1, i = 1, . . . ,µ −1,

sS
i = θi, i = 0, . . . ,µ −1,

aS
i = m− rS

i −θi, i = 0, . . . ,µ −1.

After reaching the zero-strangeness sS
µ−1 = 0 the corresponding sequence {ES

i ,F
S

i } can be continued and
for i ≥ µ it becomes stationary [37, p. 73],

rS
i = rS

µ−1 = dS = d, i ≥ µ,

sS
i = 0, i ≥ µ,

aS
i = m− rS

µ−1 = m−d, i ≥ µ,

which goes along with θi = 0 for i ≥ µ and justifies the setting θk = 0 for k ≥ µ .

Corollary 5.12. The dynamical degree of freedom of a regular DAE is

d = r−
µ−2

∑
i=0

θi = dS = dT = dimScan.

After we have recognized that the rank conditions in Definition 4.4 are appropriate for a regular DAE,
the question arises what rank violations can mean.

Based on the above equivalence statements, the findings of the projector-based analysis on regular and
critical points, for instance in [55, 41] are generally valid. The characterization of critical and singular
points presupposes a corresponding definition of regular points.

Definition 5.13. Given is the pair {E,F}, E,F : I → Rm×m. The point t∗ ∈ I is said to be a regular
point of the pair and the associated DAE, if there is an open neighborhood U ∋ t∗ such that the pair
restricted to I ∩U , is regular. Otherwise t∗ ∈ I will be called critical or singular.

In the regular case the characteristic values (8) are then also assigned to the regular point. The set of all
regular points within I will be denoted by Ireg.

A subinterval Isub ⊂ I is called regularity interval if all its points are regular ones.
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We refer to [55, Chapter 4] for a careful discussion and classification of possible critical points. Section
7 below comprises a series of relevant but simple examples.

Critical points arise when rank conditions ensuring regularity are violated. We now realize that the
question of whether a point is regular or critical can be answered independently of the chosen approach.
According to our equivalence result, critical points arise, if at all, then simultaneously in all concepts at
the corresponding levels.

When viewing a DAE as a vector field on a manifold, critical points are allowed exclusively in the very
last step of the basis reduction, with the intention of then being able to examine singularities of the
flow, see Section 4.2. The concept of geometric reduction basically covers regular DAEs and those with
well-defined degree and configuration space, i.e. only rank changes in the very last reduction level are
permitted.

Remark 5.14. We end this section with an very important note: The strangeness index and the tractabil-
ity index are defined also for DAEs in rectangular size,with E,F : I → Rn×m, n ̸= m, but then they
differ substantially from each other [31, 41]. It remains to be seen whether and to what extent the above
findings can be generalized.

5.6 Standard canonical forms

DAEs in standard canonical form (SCF), that is,[
Id 0
0 N(t)

]
x′(t)+

[
Ω(t) 0

0 Ia

]
x(t) = q(t), t ∈ I , (44)

where N is strictly upper (or lower) triangular, but it need not have constant rank or index, see [7, Defi-
nition 2.4.5], play a special role in the DAE literature [7, 3]. Their coefficient pairs represent generaliza-
tions of the Weierstraß–Kronecker form17 of matrix pencils. If N is even constant, then the DAE is said
to be in strong standard canonical form. A DAE in SCF is also characterized by the simplest canonical
subspaces which are even orthogonal to each other, namely

Scan = im
[

Id
0

]
, Ncan = im

[
0
Ia

]
.

DAEs being transformable into SCF are solvable systems in the sense of Definition 2.1, but they are
not necessary regular, see Examples 7.7, 7.9 in Section 7. The critical points that occur here are called
harmless [55, 41] because they do not generate a singular flow. We will come back to this below.

Furthermore, not all solvable systems can be transformed into SCF as Example 7.8 below confirms. We
refer to [7] and in turn to Remark 6.13 below for the description of the general form of solvable systems.

In Sections 4.1 and 5.4 we already have faced DAEs in SCFs with a special structure, which in turn
represent narrower generalizations of the Weierstraß–Kronecker form. For given integers κ ≥ 2, d ≥ 0,
l = l1 + · · ·+ lκ , li ≥ 1, l = a, m = d + l the pair {E,F}, E,F : I → Rm×m, is structured as follows:

E =

[
Id

N

]
, F =

[
Ω

Il

]
, N =


0 N12 · · · N1κ

0 N23 N2κ

. . . . . .
...

Nκ−1κ

0

 , (45)

with blocks Ni j of sizes li × l j.

17Quasi-Weierstraß form in [4, 58]
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If d = 0 then the respective parts are absent. All blocks are sufficiently smooth on the given interval I .
N is strictly block upper triangular, thus nilpotent and Nκ = 0.

The following theorem proves that and to what extent regular DAEs are distinguished by a uniform inner
structure of the matrix function N and thus of the canonical subspace Ncan.

Theorem 5.15. Each regular DAE with index µ ∈N and characteristics r < m, θ0 = 0 if µ = 1, and, for
µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0,

is transformable into a structured SCF (45) where κ = µ and all blocks of the secondary diagonal have
full column rank, that means,

rankN12 = l2 = m− r, kerN12 = {0},
rankNi,i+1 = li+1 = θi−1, kerNi,i+1 = {0}, i = 1, . . . ,µ −1,

and the powers of N feature constant rank,

rankN = r−d = θ0 + · · ·+θµ−2,

rankN2 = θ1 + · · ·+θµ−2,

· · ·
rankNµ−1 = θµ−2.

Proof. Owing to Theorem 5.9 the DAE is regular with tractability index µT = µ and the associated
characteristics given by formula (43). By [41, Theorem 2.65], each DAE being regular with tractability
index µ can be equivalently transformed into a structured SCF, with N having the block upper triangular
structure as in (45), κ = µ , l1 = m− r, l2 = m− rT

1 , . . . , lκ = m− rT
κ−1. Now the assertion results by

straightforward computations.

Sometimes structured SCFs, in which the blocks on the secondary diagonal have full row rank, are more
convenient to handle, as can be seen in the case of the proof of Proposition 4.9, for example.

Corollary 5.16. Given is the strictly upper block triangular matrix function with full row-rank blocks on
the secondary block diagonal,

Ñ =


0 Ñ12 · · · Ñ1κ

0 Ñ23 Ñ2κ

. . . . . .
...

Ñκ−1κ

0

 : I → Rl×l,

with blocks Ñi j of sizes l̃i × l̃ j, rank Ñi,i+1 = l̃i, 1 ≤ l̃1 ≤ l̃2 ≤ ·· · ≤ l̃κ ,

l =
κ

∑
i=1

l̃i, rÑ = rank Ñ.

Then the following two assertions are valid:
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(1) The pair {Ñ, Il} can be equivalently transformed to a pair {N, Il} with full column-rank blocks on
the secondary block diagonal,

N =


0 N12 · · · N1κ

0 N23 N2κ

. . . . . .
...

Nκ−1κ

0

 : I → Rl×l,

with blocks Ni j of sizes li × l j, rankNi,i+1 = li+1, l1 ≥ l2 ≥ ·· · ≥ lκ ≥ 1,

l =
κ

∑
i=1

li, rN = rankN,

such there are pointwise nonsingular matrix functions L,K : I → Rl×l yielding

LNK = Ñ, LK +LNK′ = Il. (46)

Furthermore, both pairs {N, Il} and {Ñ, Il} are regular with index µ = κ and characteristics

rN = rÑ = l − l̃µ = l − l1,

θ0 = l̃µ−1 = l2,

θ1 = l̃µ−2 = l3,

· · ·
θµ−2 = l̃1 = lµ .

(2) The pairs {E,F} and {Ẽ, F̃}, given by

Ẽ =

[
Id 0
0 Ñ

]
, F̃ =

[
Ω 0
0 Il

]
, E =

[
Id 0
0 N

]
, F =

[
Ω 0
0 Il

]
,

with N from (1) having full column-rank blocks on the secondary block diagonal, are equivalent.
Both pairs are regular with index µ = κ and characteristics r = d+ rN and θ0, . . . ,θµ−2 from (1).

Proof. (1): The pair {Ñ, Il} is regular with the characteristics rÑ = l − l̃µ ,θ0 = l̃µ−1,θ1 =
l̃µ−2, . . . ,θµ−2 = l̃1 and d = 0 owing to Proposition 4.9(2). By Theorem 5.15 it is equivalent to the
pair {N, Il} which proves the assertion. The characteristic values are provided by Proposition 4.9.

(2): By means of the transformation

L =

[
Id 0
0 L̊

]
, K =

[
Id 0
0 K̊

]
: I → R(d+l)×(d+l),

in which L̊, K̊ : I → Rl×l represent the transformation from part (1) we verify the equivalence by

LEK =

[
Id 0
0 L̊NK̊

]
=

[
Id 0
0 Ñ

]
= Ẽ,

LFK +LEK′ =

[
Ω 0
0 L̊K̊

]
+

[
Id 0
0 L̊N

][
0 0
0 K̊′

]
=

[
Ω 0
0 L̊K̊ + L̊NK̊′

]
=

[
Ω 0
0 Il

]
= F̃ .

The characteristic values are provided by Proposition 4.9.

In case of constant matrices Ñ and N, K is constant, too, and relation (46) simplifies to the similarity
transform K−1ÑK = N.
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Example 5.17. Consider the following DAE in Weierstraß–Kronecker form:

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





x′1
x′2
x′3
x′4
x′5
x′6
x′7


+



x1
x2
x3
x4
x5
x6
x7


=



q1
q2
q3
q4
q5
q6
q7


with m = 7, r = 4, d = 0, θ0 = 3, θ1 = 1, θ2 = 0.

• An equivalent DAE with blockstructure (14) with full column rank secondary blocks is

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





x′4
x′6
x′1
x′5
x′7
x′2
x′3


+



x4
x6
x1
x5
x7
x2
x3


=



q4
q6
q1
q5
q7
q2
q3


with rankN1,2 = l2 = 3, rankN2,3 = l3 = 1, l1 ≥ l2 ≥ l3. θ0 = 3, θ1 = 1, θ2 = 0.

• An equivalent DAE with blockstructure (14) with full row rank secondary blocks is

0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





x′1
x′2
x′4
x′6
x′3
x′5
x′7


+



x1
x2
x4
x6
x3
x5
x7


=



q1
q2
q4
q6
q3
q5
q7


with rankN1,2 = l1 = 1, rankN2,3 = l2 = 3, l1 ≤ l2 ≤ l3. θ0 = 3, θ1 = 1, θ2 = 0.

Remark 5.18. Theorem 5.15 ensures that also each pair with regular strangeness index is equivalently
transformable into SCF. At this place it should be added that the canonical form18 of regular pairs figured
out in the context of the strangeness index [36, 37] reads

E =

[
Id M

N

]
, F =

[
Ω

Il

]
, N =


0 N12 · · · N1κ

0 N23 N2κ

. . . . . .
...

Nκ−1κ

0

 , (47)

M =
[
0 M2 · · · Mκ

]
,

with full row-rank blocks Ni,i+1 and l = a = m− d, κ − 1 = µS. In [37, Theorem 3.21] one has even
Ω = 0, taking into account that this is the result of the equivalence transformation

LEK =

[
Id K−1

11 M
N

]
, LFK +LEK′ =

[
0

Il

]
,

in which K11 is the fundamental solution matrix of the ODE y′+Ωy = 0. Nevertheless this form fails to
be in SCF if the entry M does not vanish. This is apparently a technical problem caused by the special
transformations used there.
18Global canonical form in [36]
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Remark 5.19. The structured SCF in Theorem 5.15 makes the limitation of the geometric view from
Section 4.2 above and Section 9.2 below obvious. These are regular DAEs with index µ , degree s= µ−1,

and as figuration space serves Rd resp. im
[

Id
0

]
. Of course, this enables the user to study the flow of the

inherent ODE u′+Ωu = p; however, the other part Nv′+ v = r, which involves the actual challenges
from an application point of view, no longer plays any role.

6 Notions defined by means of derivative arrays

6.1 Preliminaries and general features

Here we consider the DAE (1) on the given interval I ⊆ R. Differentiating the DAE k ≥ 1 times yields
the inflated system

Ex(1)+Fx = q,

Ex(2)+(E(1)+F)x(1)+F(1)x = q(1),

Ex(3)+(2E(1)+F)x(2)+(E(2)+2F(1))x(1)+F(2)x = q(2),

. . .

Ex(k+1)+(kE(1)+F)x(k)+ · · ·+(E(k)+ kF(k−1))x(1)+F(k)x = q(k),

or tightly arranged,

E[k]x
′
[k]+F[k]x = q[k], (48)

with the continuous matrix functions E[k] : I → R(mk+m)×(mk+m),
F[k] : I → R(mk+m)×m,

E[k] =


E 0 · · · 0

E(1)+F E · · · 0
E(2)+2F(1) 2E(1)+F

...
...

. . .
E(k)+ kF(k−1) · · · kE(1)+F E

 , F[k] =


F

F(1)

F(2)

...
F(k)

 , (49)

and the variables and right-hand sides

x[k] =


x

x(1)

x(2)
...

x(k)

 , q[k] =


q

q(1)

q(2)
...

q(k)

 : I → Rmk+m.

Set F[0] = F, E[0] = E, x[0] = x, q[0] = q, such that the DAE (1) itself coincides with

E[0]x
′
[0]+F[0]x = q[0]. (50)

By its design, the system (48) includes all previous systems with lower dimensions,

E[ j]x
′
[ j]+F[ j]x = q[ j], j = 0, . . . ,k−1,

and the sets

C[ j](t) = {z ∈ Rm : F[ j](t)z−q[ j](t) ∈ im E[ j](t)}, t ∈ I , j = 0, . . . ,k, (51)
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satisfy the inclusions

C[k](t)⊆ C[k−1](t)⊆ ·· · ⊆ C[0](t) = {z ∈ Rm : F(t)z−q(t) ∈ im E(t)}, t ∈ I . (52)

Therefore, each smooth solution x of the original DAE must meet the so-called constraints, that is,

x(t) ∈ C[k](t), t ∈ I .

In the following, the rank functions r[k] : I → R,

r[k](t) = rankE[k](t), t ∈ J , k ≥ 0, (53)

and the projector valued functions W[k] : I → R(mk+m)×(mk+m),

W[k](t) = Imk+m −E[k](t)E[k](t)
+, t ∈ J , k ≥ 0, (54)

will play their role, and further the associated linear subspaces

S[k](t) = {z ∈ Rm : F[k](t)z ∈ im E[k](t)}= kerW[k](t)F[k](t), t ∈ I , k ≥ 0. (55)

Obviously, it holds that

S[k](t)⊆ S[k−1](t)⊆ ·· · ⊆ S[0](t) = {z ∈ Rm : F(t)z ∈ im E(t)}, t ∈ I . (56)

It should be emphasized that, if the rank function r[k] is constant, then the pointwise Moore-Penrose
inverse E[k]

+ and the projector function W[k] are as smooth as E[k]. Otherwise one is confronted with
discontinuities.

Remark 6.1 (A necessary regularity condition). One aspect of regularity is that the DAE (1) should be
such that it has a correspondingly smooth solution to any m times continuously differentiable function
q : I → Rm. If this is so, all matrix functions[

E[k] F[k]
]

: I → R(mk+m)×(mk+2m)

must have full-row rank, i.e.,

rank
[
E[k](t) F[k](t)

]
= mk+m, t ∈ I , k ≥ 0. (57)

If, on the contrary, condition (57) is not valid, i.e., there are a k̄ and a t̄ such that

rank
[
E[k̄](t̄) F[k̄](t̄)

]
< mk̄+m,

then there exists a nontrivial w ∈ Rmk̄+m such that

w∗ [E[k̄](t̄) F[k̄](t̄)
]
= 0.

Regarding the relation

E[k̄](t̄)x
′
[k̄](t̄)+F[k̄](t̄)x(t̄) = q[k̄](t̄)

one is confronted with the restriction w∗q[k̄](t̄) = 0 for all inhomogeneities.

Remark 6.2 (Representation of C[k](t)). The full row rank condition (57), i.e. also

im [E[k](t)F[k](t)] = Rmk+m (58)
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implies

im W[k](t)[F[k](t)E[k](t)]︸ ︷︷ ︸
[W[k](t)F[k](t) 0]

= im W[k](t),

thus

im W[k](t)F[k](t) = im W[k](t), (59)

and in turn

C[k](t) = S[k](t)+(W[k](t)F[k](t))
+W[k](t)q[k](t), (60)

dimS[k](t) = m− rankW[k](t) = r[k](t)−mk. (61)

By representation (60), C[k](t) appears to be an affine subspace of Rm associated with S[k](t).

It becomes clear that under the necessary regularity condition (57) the dimensions of the subspaces S[k](t)
are fully determined by the ranks of E[k](t) and vice versa. In particular, then dimS[k](t) is independent
of t if and only if r[k](t) is so, a matter that will later play a quite significant role.

If the DAE (1) is interpreted as in [14, 16] as a Volterra integral equation

E(t)x(t)+
∫ t

a
(F(s)−E ′(s))x(s))ds = c+

∫ t

a
q(s)ds, (62)

then the inflated system created on this basis reads

D[k]x[k] =
[
−
∫ t

a(F(s)−E ′(s))x(s))ds+ c+
∫ t

a q(s)ds
q[k−1]

]
,

with the array function

D[k] =

[
E 0

F[k−1] E[k−1]

]
: I → R(m+mk)×(m+mk). (63)

To get an idea about the rank of D[k](t) we take a closer look at the time-varying subspace kerD[k](t).
We have for k ≥ 1 that

kerD[k] =

{[
z
w

]
∈ Rm ×Rmk : Ez = 0,F[k−1]z+E[k−1]w = 0

}
=

{[
z
w

]
∈ Rm ×Rmk : z ∈ kerE,W[k−1]F[k−1]z = 0,E +

[k−1]E[k−1]w =−E +
[k−1]F[k−1]z

}
=

{[
z
w

]
∈ Rm ×Rmk : z ∈ kerE ∩S[k−1],E

+
[k−1]E[k−1]w =−E +

[k−1]F[k−1]z
}
, (64)

and consequently,

rankD[k] = m−dim(kerE ∩S[k−1])+ r[k−1]. (65)

If E[k] has constant rank, then the projector functions W[k] and the Moore-Penrose inverse E +
[k] inherit the

smoothness of E[k].

The following proposition makes clear that, in any case, both r[k](t) = rankE[k](t) and rankD[k](t) as well
as dimS[k](t) and dim(kerE(t)∩S[k](t)), t ∈ I , are invariant under equivalence transformations.
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Proposition 6.3. Given are two equivalent coefficient pairs {E,F} and {Ẽ, F̃}, Ẽ = LEK, F̃ = LFK +
LEK′, E,F,L,K : I → Rm×m sufficiently smooth, L and K pointwise nonsingular.

Then, the inflated matrix function pair Ẽ[k] : I → R(mk+m)×(mk+m), F̃[k] : I → R(mk+m)×m and the sub-
space S̃[k] related to {Ẽ, F̃} satisfy the following:

Ẽ[k] = L[k]E[k]K[k], F̃[k] = L[k]F[k]K +L[k]E[k]H[k], H[k] =

 K′

...
K(k+1)

 ,

S̃[k] = K−1S[k], S̃[k]∩ker Ẽ = K−1(S[k]∩kerE),

in which the matrix functions L[k],K[k] : I → R(m+mk)×(m+mk are uniquely determined by L and K, and
their derivatives, respectively. They are pointwise nonsingular and have lower triangular block structure,

L[k] =


L 0 · · · 0
∗ L · · · 0
...

. . . 0
∗ · · · L

 , K[k] =


K 0 · · · 0
∗ K · · · 0
...

. . . 0
∗ · · · K

=:
[

K 0
K[k]21 K[k] 22

]
.

Proof. The representation of Ẽ[k] and F̃[k] is given by a slight adaption of [37, Theorem 3.29]. We turn
to S̃[k].

z̃ ∈ S̃[k] means F̃[k]z̃ ∈ im Ẽ[k], thus F[k]z̃+E[k]H[k]z̃ ∈ im E[k], then also F[k]z̃ ∈ im E[k], that is, Kz̃ ∈ S[k].
Regarding also that z̃ ∈ ker Ẽ means Kz̃ ∈ kerE we are done.

The following lemma gives a certain first idea about the size of the rank functions.

Lemma 6.4. The rank functions r[k] = rankE[k] and rD
[k] = rankD[k], k ≥ 1, rD

[0] = r[0] = rankE, satisfy the
inequalities

r[k](t)+ r(t)≤ r[k+1](t)≤ r[k](t)+m, t ∈ I , k ≥ 0,

rD
[k](t)+ r(t)≤ rD

[k+1](t)≤ rD
[k](t)+m, t ∈ I , k ≥ 0.

Proof. The special structure of both matrix functions satisfies the requirement of Lemma 11.2 ensuring
the inequalities.

The question of whether the ranks r[i] of the matrix functions E[i] are constant will play an important
role below. We are also interested in the relationships to the rank conditions associated with the Defini-
tion 4.4. We see points where these rank conditions are violated as critical points which require closer
examination. In Section 7 below a few examples are discussed in detail to illustrate the matter.

Lemma 6.5. Let the matrix functions E,F : I → Rm×m be such that, for all t ∈ I , rankE(t) = r,
rank[E(t)F(t)] = m. Denote θ0(t) = dim(kerE(t)∩ S[0](t)) = dim(kerE(t)∩ kerZ(t)∗F(t)) in which
Z : I → Rm×(m−r) is a basis of (im E)⊥.

Then it results that

r[1] = rankE[1](t) = rankD[1](t) = m+ r−θ0(t), t ∈ I ,

and both E[1] and D[1] have constant rank precisely if the pair is pre-regular.
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Proof. We consider the nullspaces of D[1] and E[1], that is

kerD[1] = ker
[

E 0
F E

]
= {z ∈ R2m : Ez1 = 0,Fz1 +Ez2 = 0}

= {z ∈ R2m : Ez1 = 0,Fz1 ∈ im E,E+Ez2 =−E+Fz1}
= {z ∈ R2m : z1 ∈ kerE ∩kerZ∗F,E+Ez2 =−E+Fz1},

kerE[1] = ker
[

E 0
E ′+F E

]
= {z ∈ R2m : Ez1 = 0,(E ′+F)z1 +Ez2 = 0}

= {z ∈ R2m : Ez1 = 0,(E ′+F)z1 ∈ im E,E+Ez2 =−E+(E ′+F)z1}
= {z ∈ R2m : z1 ∈ kerE ∩kerZ∗(E ′+F),E+Ez2 =−E+(E ′+F)z1}.

Since Z∗E ′(I−E+E) =−Z∗E(I−E+E)′ = 0 we know that kerE∩kerZ∗F = kerE∩kerZ∗(E ′+F) and
hence dimkerE[1] = dimkerE[1] = dim(kerE∩kerZ∗F)+m−r = θ0+m−r, thus rankE[1] = 2m−(θ0+
m− r) = m+ r−θ0.

6.2 Array functions for DAEs being transformable into SCF and for regular DAEs

In this Section, we consider important properties of the array function E[k] and D[k] from (49) and (63).
First of all we observe that both are special cases of the matrix function

H[k] :=


E 0 · · · 0

α2,1E(1)+F E
...

α3,1E(2)+β3,1F(1) α3,2E(1)+F E
...

. . . . . . . . . 0
αk+1,1E(k)+βk+1,kF(k−1) · · · αk+1,k−1E(2)+βk+1,k−1F(1) αk+1,kE(1)+F E

 ,

(66)

each with different coefficients αi, j and βi, j. We do not specify them, as they do not play any role later
on.

Let for a moment the given DAE be in SCF, see (4), that is,

E =

[
Id 0
0 N

]
, F =

[
Ω 0
0 Im−d

]
,

with a strictly upper triangular matrix function N. We evaluate the nullspace of the corresponding matrix
H[k](t) ∈ R(m+km)×(m+km for each fixed t, but drop the argument t again.

Denote

z =

z0
...

zk

 ∈ R(k+1)m, z j =

[
x j

y j

]
∈ Rm, x j ∈ Rd , y j ∈ Rm−d ,

y0
...

yk

=: y ∈ R(k+1)(m−d)

and evaluate the linear system H[k]z = 0. The first block line gives

x0 = 0, Ny0 = 0,
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and the entire system decomposes in parts for x and y. All components x j are fully determined and zero,
and it results that N[k]y = 0, with

N[k] :=



N 0 · · · 0

I +α2,1N(1) N
...

α3,1N(2) I +α3,2N(1) N
...

. . . . . . . . .
...

. . . . . . . . . 0
αk+1,1N(k) · · · αk+1,k−2N(2) I +αk+1,kN(1) N


. (67)

This leads to the relations

rankH[k] = (k+1)d + rankN[k],

dimkerH[k] = dimkerN[k],

such that the question how rankH[k] behaves can be traced back to N[k]. We have prepared relevant
properties of rankN[k] in some detail in Appendix 11.3, which enables us to formulate the following
basic general results. Obviously, if the pair {E,F} is transferable into SCF and N changes its rank on
the given interval, then E and E[0] = E do so, too. It may also happen that N and in turn E[0] = E show
constant rank but further E[i] suffer from rank changes, as Example 7.6 confirms for i = 1. Nevertheless,
the subsequent matrix functions at the end have a constant rank as the next assertion shows.

Theorem 6.6. If the pair {E,F} is transferable into SCF with characteristics d and a = m−d then

(1) the derivative array functions E[k] and D[k] become constant ranks for k ≥ a−1, namely

r[k] = rankE[k] = rankD[k] = km+d, k ≥ a−1.

(2) Moreover,

dim(kerE ∩S[k]) = 0, k ≥ a.

Proof. Owing to Proposition 6.3 we may turn to the SCF, which leads to

rankD[k] = rankE[k] = rankH[k] = (k+1)d + rankN[k],

and regarding Proposition 11.8 we obtain

rankH[k] = (k+1)d + rankN[k] = (k+1)d + ka+ rankNÑ2 · · · Ñk+1,

in which NÑ2 · · · Ñk+1 is a product of k+1 strictly upper triangular matrix functions of size a×a. Clearly,
if k ≥ a−1 then NÑ2 · · · Ñk+1 = 0 and in turn

rankH[k] = (k+1)d + ka = km+d.

Now formula (65) implies for k ≥ a,

dim(kerE ∩S[k]) = m+ r[k]− rankD[k+1]

= m+ r[k]− r[k+1] = m+(km+d)− ((k+1)m+d) = 0.

It is an advantage of regular pairs that all associated matrix functions arrays have constant rank as we
know from the following assertion.
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Theorem 6.7. Let the pair {E,F} be regular on I with index µ and characteristic values r and θ0 ≥
·· · ≥ θµ−2 > θµ−1 = 0. Set θk = 0 for k ≥ µ . Then the following assertions are valid:

(1) The derivative array functions E[k] and D[k] have constant ranks, namely

r[k] = rankE[k] = rankD[k] = km+ r−
k−1

∑
i=0

θi, k ≥ 1.

(2) In particular, r[k] = rankE[k] = km+d, dimkerE[k] = m−d = a, if k ≥ µ −1.

(3) For k ≥ µ , there is a continuous function Hk : I → Rkm×km such that the nullspace of E[k] has the
special form

kerE[k] = {
[

z
w

]
∈ Rm+km : z = 0,Hkw = 0}.

(4) dimS[k] = r−∑
k−1
i=0 θi, k ≥ 1, and dimS[µ−1] = dimS[µ] = d.

(5) S[µ−1] = S[µ] = Scan.
(6) dim(kerE ∩S[k]) = θk, k ≥ 0.

Proof. (1): We note that this assertion is a straightforward consequence of [37, Theorem 3.30]. Never-
theless, we formulate here a more transparent direct proof based on the preceding arguments, which at
the same time serves as an auxiliary means for the further proofs. For µ = 1 we are done by Lemma 6.5,
so we assume µ ≥ 2.

Each regular pair {E,F} with index µ ≥ 2 and characteristic values r,θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0,
features also the regular tractability index µ and can be equivalently transformed into the structured SCF
[41, Theorem 2.65]

E =

[
Id 0
0 N

]
, F =

[
Ω 0
0 Ia

]
, (68)

in which the matrix function N is strictly block upper triangular with exclusively full column-rank blocks
on the secondary diagonal and Nµ = 0, in more detail, see Proposition 4.9 (1),

N =


0 N12 · · · N1,µ

0 N23 N2,µ
. . . . . .

...
Nµ−1,µ

0

 ,

with blocks Ni j of sizes li × l j, rankNi,i+1 = li+1,

and l1 = m− d − r, l2 = θ0, . . . , lµ = θµ−2. Since rankE[k] and rankD[k] are invariant with respect to
equivalence transformations, we can turn to the array function H[k] applied to the structured SCF, and
further to N[k]. Regarding the relation

rankH[k] = (k+1)d + rankN[k],

dimkerH[k] = dimkerN[k],

we obtain by Proposition 11.8, formula (139),

rankH[k] = (k+1)d + rankN[k] = (k+1)d + k(m−d)+ rankNk+1

= km+d + rankNk+1.
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Lemma 11.5 (with l = m−d) implies rankNk+1 = m−d− (l1+ · · · lk+1), thus rankNk+1 = m−d− (m−
r+θ0 + · · ·+θk−1) = r−d − (θ0 + · · ·+θk−1), and therefore

rankH[k] = km+ r−
k−1

∑
j=0

θ j.

(2): This is a direct consequence of (1).

(3): This follows from Corollary 11.9.

(4): This is a consequence of relation (61) and the solvability properties provided by Theorem 4.8.

(5): This results from the inclusions S[µ] ⊆ S[µ−1] and S[µ] ⊆ Scan since all these subspaces have the same
dimension, namely d.

(6): Next we investigate the intersection S[k]∩kerE.

Applying (1) formula (65) (which concerns the nullspace of D[k]) immediately yields

dim(kerE ∩S[k−1]) = m+ r[k−1]− rankD[k] = m+ r[k−1]− r[k] = θk−1.

6.3 Differentiation index

The most popular idea behind the index of a DAE is to filter an explicit ordinary differential equation
(ODE) with respect to x out of the inflated system (48), a so-called completion ODE, also underlying
ODE, of the form

x(1)+Ax = f , (69)

with a continuous matrix function A : I → Rm×m. The index of the DAE is the minimum number of
differentiations needed to determine such an explicit ODE, e.g., [7, Definition 2.4.2]. At this point it
should be emphasized that in early work the index type was not yet specified. It was simply spoken of
the index. Only later epithets were used for distinction of various approaches. In particular in [28] the
term differentiation index is used which is now widely practiced, e.g., [37, Section 3.3], [55, Section 3.7].
The following definition after [8]19 is the specification common today.

Definition 6.8. The smallest number ν ∈ N, if it exists, for which the matrix function E[ν ] has constant
rank and is smoothly 1-full is called the differentiation index of the pair {E,F} and the DAE (1), respec-
tively.20 We then indicate the differentiation index by µdi f f = ν .

If E[ν ] is smoothly 1-full, then there is a nonsingular, continuous matrix function T such that

T E[ν ] =

[
Im 0
0 HE

]
, (70)

and the first block-line of the inflated system (48) scaled by T is actually an explicit ODE with respect
to x, i.e.,

x(1)+(T F[ν ])1x = (T q[ν ])1,

with a continuous matrix coefficient (T F[ν ])1 : I → Rm×m. Supposing a consistent initial value for x,
that is, x(t0) = x0 ∈ C[ν ](t0)21, the solution of the IVP for this ODE is a solution of the DAE [7, Theorem
2.48].
19In [7], this is the statement of [7, Proposition 2.4.2].
20For 1-fullness we refer to the Appendix 11.1
21See representation (60).
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Proposition 6.9. The differentiation index remains invariant under sufficiently smooth equivalence trans-
formations.

Proof. Let E[k] have constant rank and be smoothly 1-full such that (70) is given. The transformed Ẽ[k]
has the same constant rank as E[k]. Following [37, Theorem 3.38], with the notation of Proposition 6.3,
we derive [

K−1 0
−HE K[k] 21K−1 I

]
T L −1

[k]︸ ︷︷ ︸
=:T̃

Ẽ[k] =

[
I 0
0 HE K[k] 22

]
.

T̃ is pointwise nonsingular and continuous. The matrix function E[k] and Ẽ[k] are smoothly 1-full simul-
taneously, which completes the proof.

Proposition 6.10. The DAE (1) and the pair {E,F} have differentiation index one, if and only if they are
regular with index µ = 1 in the sense of Definition 4.4. The index-one case goes along with S[0] = S[1] =
Scan and d = dimScan = rankE = r.

Proof. Let E[1] be smoothly 1− full,

E[1] =

[
E 0

E ′+F E

]
.

Owing to Lemma 11.1 there is a continuous matrix function H : I →Rm×m with constant rank such that

kerE[1] = {z ∈ R2m : z1 = 0,Hz2 = 0}. (71)

On the other hand we derive

kerE[1] = {z ∈ R2m : Ez1 = 0,(E ′+F)z1 +Ez2 = 0}
= {z ∈ R2m : Ez1 = 0,(E ′+F)z1 ∈ im E,Ez2 =−(E ′+F)z1}.

Introduce the subspace S̃ := {w ∈ Rm : (E ′+F)w ∈ im E}. It comes out that

kerE[1] = {z ∈ R2m : z1 ∈ kerE ∩ S̃,Ez2 =−(E ′+F)z1}.

Comparing with (71) we obtain that the condition kerE ∩ S̃ = {0} must be valid, and hence

kerE[1] = {z ∈ R2m : z1 = 0,Ez2 = 0}, dimkerE[1] = dimkerE.

Then, in particular, rankE is constant and the projector functions Q := I −E+E,W := I −EE+ are as
smooth as E. This leads to WE ′Q = −WEQ′ = 0, thus kerE ∩ kerWF = kerE ∩ S̃ = {0}. Then the
matrix function E +WF remains nonsingular and im [E F ] = im [E WF ] =Rm. Now it is evident that the
pair {E,F} is pre-regular with θ = 0 and furthermore regular with index µ = 1.

In the opposite direction we assume the pair {E,F} to be regular with index µ = 1. Then it is also
regular with tractability index one and the matrix function G1 = E +(F −EP′)Q : I → Rm×m remains
nonsingular, P := I −Q. With

T :=
[

(I +QG−1
1 E ′P)−1 0

−PG−1
1 E ′(I +QG−1

1 E ′P)−1 I

][
P Q

Q−PG−1
1 F P

][
G−1

1 0
0 G−1

1

]
we obtain that

T E[1] =

[
I 0
0 P

]
,

and we are done.
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Proposition 6.11. If the differentiation index µdi f f is well-defined for the pair {E,F}, then it follows
that

(1) E[µdi f f ] has constant rank r[µdi f f ].

(2) The DAE has a solution to each arbitrary q ∈ C (m)(I ,Rm) and the necessary solvability condition
in Remark 6.1 is satisfied, that is,

rank[E[k]F[k]] = (k+1)m, k = 0, . . . ,µdi f f .

(3) E[µdi f f−1] has constant rank r[µdi f f−1] = r[µdi f f ]−m.
(4) S[µdi f f−1] = S[µdi f f ] = Scan.
(5) kerE ∩Scan = {0}.

Proof. The issue(1) is already part of the definition.

(2): The solvability assertion is evident and the necessary solvability condition is validated in Remark
6.1.

(3): Owing to [39, Lemma 3.6] one has corankE[µdi f f ] = corankE[µdi f f−1] yielding (µdi f f +1)m−r[µdi f f ] =

µdi f f m− r[µdi f f−1], and hence r[µdi f f−1] = r[µdi f f ]−m.

(4): Remark 6.2 provides the subspace dimensions dimS[µdi f f−1] = r[µdi f f−1] − (µdi f f − 1)m and
dimS[µdi f f ] = r[µdi f f ] − µdi f f m. Regarding (3) this gives dimS[µdi f f−1] = dimS[µdi f f ]. Due to the inclu-
sion (56) we arrive at S[µdi f f−1] = S[µdi f f ]. It only remains to state that S[µdi f f ] = Scan by [7, Theorem
2.4.8].

(5): This is a straightforward consequence of Assertion (4) and Lemma 11.1.

Theorem 6.12. Let the pair {E,F} and the DAE (1) be regular on I with index µ and characteristic
values r and θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0. Then the differentiation index is well-defined, µdi f f = µ ,
and, additionally, the matrix functions E[k] have constant ranks and the subspaces S[k] have constant
dimensions.

Proof. This is an immediate consequence of Proposition 6.7.

In contrast to our basic index notion in Section 4.1, the differentiation index allows for certain rank
changes which is often particularly emphasized22,e.g., [7, 37]. In the special Examples 7.7, 7.8, 7.9 in
Section 7 below the rank of the leading matrix function E(t) changes, nevertheless the differentiation
index is well-defined. In Example 7.6 E(t) has constant rank, but r[1] varies, but the DAE has differen-
tiation index three on the entire given interval. However, it may well happen that a DAE having on I a
well-defined differentiation index features a different differentiation index on a subinterval. We consider
the points where the rank changes to be critical points for good reason.

Remark 6.13. The formation of the differentiation index approach is closely related to the search of a
general form for solvable linear DAEs (in the sence of Definition 2.1) with time-varying coefficients from
the very beginning [12, 8]. We quote [7, Theorems 2.4.4 and 2.4.5] and a result from [3] for coefficients
E,F : I → Rm.

• Suppose that E,F are real analytic. Then (1) is solvable if and only if it is equivalent to a system
in standard canonical (SCF) form (4) using real analytic coordinate changes[7, Theorems 2.4.4].

22There have been repeated scientific disputes about this.
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• Suppose that the DAE (1) is solvable on the compact interval I . Then it is equivalent to the DAE
in Campbell canonical form23 [

Id G
0 N

]
z′+

[
0 0
0 Im−d

]
z =

[
g
h

]
,

where Nz′2+z2 = h has only one solution for each function h. Furthermore, there exists a countable
family24 of disjoint open intervals I ℓ such that ∪I ℓ is dense in I and on each I ℓ, the system
Nz′2 + z2 = h is equivalent to one in standard canonical form of the form Mw′ +w = f with M
structurally nilpotent25 [7, Theorems 2.4.5].

• Suppose an open interval I . Then every system transferable into SCF with C m-coefficients is
solvable.

Reviewing our examples in Section 7 we observe the following: If the pair {E,F} has on the interval
I the differentiation index µdi f f , then on each subinterval Isub ∈ I the differentiation index µ

di f f
sub is

also well-defined, which can, however, be smaller than µdi f f , which has an impact on the input-output
behavior of the system. Our next theorem captures the previous observations and generalizes them.

Recall that we know from Proposition 6.10 that a DAE having differentiation index one is regular with
index one in the sense of Definition 4.4 and vice versa. We are interested in what happens in the higher-
index cases. The following assertion says that, for any DAE with well-defined differentiation index µdi f f

on a compact interval I , the subset of regular points Ireg is dense in I with uniform degree of freedom,
but there might be subintervals on which the DAE features a strictly smaller differentiation index than
µdi f f .

Theorem 6.14. Let the pair {E,F} and the DAE (1) be given on the compact interval I and have there
the differentiation index ν = µdi f f ≥ 2.

Then there is a partition of the interval I by a collection S of open, non-overlapping subintervals26

such that ⋃
ℓ∈S

I ℓ = I , I ℓ open , I ℓi ∩I ℓ j = /0 for ℓi ̸= ℓ j, ℓi, ℓ j ∈S,

and the pair {E,F} and the DAE (1) restricted to any subinterval I ℓ are regular in the sense of Definition
4.4 with individual characteristics,

µ
ℓ ≤ µ

di f f , rℓ, θ
ℓ
0 ≥ ·· · ≥ θ

ℓ
µℓ−2 > θ

ℓ
µℓ−1 = 0, ℓ ∈S,

but necessarily with uniform degree of freedom d, which means

d = dℓ = rℓ−
µℓ−2

∑
i=0

θ
ℓ
i , ℓ ∈S.

Furthermore, it holds that µdi f f = max{µℓ : ℓ ∈S}.

Proof. Owing to [37, Corollary 3.26] which is based on Theorem 11.3 there is a decomposition of the
compact interval I by open non-overlapping subintervals I ℓ, ℓ ∈ S, such that the interval I is the
closure of ∪ℓ∈SI ℓ, and the DAE has a well-defined regular strangeness index on each subinterval I ℓ.

23This appreciatory name is introduced in [38].
24As we understand it, this set is not necessarily countable, see Theorem 11.3.
25A square matrix A is structurally nilpotent if and only if there is a permutation matrix P such that PAP−1 is strictly triangular,

see [7, Theorem 2.3.6].
26We apply Theorem 11.3 according to which the set of rank discontinuity points can also be over-countable. This is why we

use the name collection in contrast to a countable family.
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In turn, by Theorem 5.9, the DAE is regular on each subinterval I ℓ in the sense of Definition 4.4 with
individual index µℓ and characteristics

rℓ, θ
ℓ
0 ≥ θ

ℓ
1 ≥ ·· · ≥ θ

ℓ
µℓ−2 > θ

ℓ
µℓ−1 = 0, dℓ = rℓ−

µℓ−2

∑
l=0

θ
ℓ
l .

As in Proposition 6.7 we set θ ℓ
j = 0 for j > µℓ− 1. Since the matrix functions E[ν ] is pointwise 1-full

and has constant rank r[ν ] on the overall I , owing to Proposition 6.7 we have µℓ ≤ ν on each subinterval
I ℓ and

r[ν−1] = (ν −1)m+ rℓ−θ
ℓ
0 −θ

ℓ
1 −·· ·−θ

ℓ
ν−2 −θ

ℓ
ν−1 = (ν −1)m+dℓ,

r[ j] = jm+dℓ, j ≥ ν −1.

Therefore, the values dℓ are equal on all subintervals, dℓ = d. Denote κ = max{µℓ : ℓ ∈S}, κ ≤ ν , and
observe that r[κ] = κm+d on each subinterval I ℓ , thus r[κ] ≤ κm+d on all I .

Owing to Proposition 6.11, on all I it holds that S[ν ] = Scan, dimS[can] = dimSν = r[ν ]−νm = d. The
inclusion S[κ](t) ⊇ Scan(t) which is given for all t ∈ I , implies r[κ]−κm ≥ d on all I . This leads to
r[κ] = κm+ d on all I and S[κ] = Scan as well. Finally, E[κ] has constant rank on the whole intervall,
and additionally, regarding again Proposition 6.11, it results that kerE ∩S[κ] = kerE ∩Scan = {0}. This
implies κ = ν , since ν is the smallest such integer.

Remark 6.15. To a large extend similar results are developed in the monographs [14, Chapter 3] and
[16, Chapter 2] using operator theory. To the given DAE that is represented as operator equation of order
one, Λ1x = Ex′+Fx = q a left regularization operator Λν = Aν

dν

dtν + · · ·+A1
d1

dt1 +A0 is constructed, if
possible, by evaluating derivative arrays Dk as introduced in Subsection 6.1 above and using generalized
inverses, such that Λν ◦Λ1x = x′ + Bx. The minimal possible number ν is called ([14, p. 85]) non-
resolvedness index, and this is the same as the differentiation index. In [14, 16] the SCF is renamed
to central canonical form. Instead of solvable systems in the sense of Definition 2.1, DAEs that have a
general Cauchy-type solution now form the background, see [14, p. 110].

6.4 Regular differentiation index by geometric approaches

In concepts that assume certain continuous projector-valued functions, especially where geometric ideas
play a role, one finds a somewhat restricted or qualified by additional rank conditions index understand-
ing. In [27], based on the rank theorem, a modified version of the differentiation index is given, which is
closely related to the differential-geometric concepts in [51, 50]. Indeed, the presentation and index def-
inition in [27] is a more analytical notation of the differential-geometric concept in [51], and this version
fits well with the rest of our presentation. As before, we are dealing with linear DAEs.

Basically, the derivative array functions E[k] introduced in Section 6.1 are assumed to feature constant
ranks r[k] for all k. Due to the rank theorem there are smooth pointwise nonsingular matrix functions
U[k],V[k] : I → R(km+m)×(km+m) providing the factorization

E[k] =U[k]P̄[k]V[k], P̄[k] := diag(Ir[k] ,0, . . . ,0) ∈ R(km+m)×(km+m).

Then, letting Q̄[k] = I − P̄[k] we form the projector functions

R[k] =U[k]P̄[k]U
−1
[k] onto im E[k],

W[k] =U[k]Q̄[k]U
−1
[k] along im E[k],

Q[k] =V−1
[k] Q̄[k]V[k] onto kerE[k],

P[k] =V−1
[k] P̄[k]V[k] along kerE[k],
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and turn to the equation

E[k]x
′
[k]+F[k]x = q[k], (72)

which is divided into the two parts,

E[k]x
′
[k]+R[k]F[k]x = R[k]q[k], (73)

W[k]F[k]x =W[k]q[k]. (74)

Applying the factorization one obtains the reformulation of (73) to

V−1
[k] P̄[k]V[k]x

′
[k]+V−1

[k] P̄[k]U
−1
[k] (F[k]x−q[k]) = 0. (75)

Regarding (74) one has F[k]x − q[k] = U[k]P̄[k]U
−1
[k] (F[k]x − q[k]), thus V−1

[k] U−1
[k] (F[k]x − q[k]) =

V−1
[k] P̄[k]U

−1
[k] (F[k]x−q[k]), and (75) becomes

V−1
[k] P̄[k]V[k]x

′
[k] =−V−1

[k] U−1
[k] (F[k]x−q[k]),

x′[k] =V−1
[k] Q̄[k]V[k]x

′
[k]−V−1

[k] U−1
[k] (F[k]x−q[k]). (76)

Coming from (72) we deal now with the equation

E[k](t)y+F[k](t)x = q[k](t), t ∈ I , (77)

where y ∈ R(k+1)m and x ∈ Rm are placeholders for x′[k](t) and x(t).

Denote by C̃[k] the so-called constraint manifold of order k, which contains exactly all pairs (t,x) for
which equation (77) is solvable with respect to y, that is

C̃[k] = {(x, t) ∈ Rm ×I : W[k](t)(F[k](t)x−q[k](t)) = 0}
= {(x, t) ∈ Rm ×I : W[k](t)F[k](t)x =W[k](t)q[k](t))}
= {(x, t) ∈ Rm ×I : x ∈C[k](t)},

with C[k](t) from (51) which represent the fibres at t of the constraint manifold C̃[k]. The inclusion chain

C̃[0] ⊇ C̃[1] ⊇ ·· · ⊇ C̃[k]

is obviously valid. For each (x, t) ∈ C̃[k] we form the manifold M[k](x, t) ⊆ R(k+1)m of all y ∈ Rm+km

solving the equation (77). Regarding the representation (76) we know that M[k](x, t) is an affine subspace
parallel to kerE[k](t) and it depends linearly on x:

M[k](x, t) = {y ∈ Rm+km : y = z− (U[k]V[k])
−1(t)(F[k](t)x−q[k](t)),z ∈ kerE[k](t)}

= kerE[k](t)+{−(U[k]V[k])
−1(t)(F[k](t)x−q[k](t))}. (78)

Using the truncation matrices

T̂[k] = [Ikm 0] ∈ Rkm×(m+km),

T[k] = T̂[1] · · · T̂[k] = [Im 0] ∈ Rm×(m+km),

the inclusions

M[0](x, t)⊇ T[1]M[1](x, t)⊇ ·· · ⊇ T[k]M[k](x, t),

kerE(t) = kerE[0](t)⊇ T[1] kerE[1](t)⊇ ·· · ⊇ T[k] kerE[k](t),

are provided in [27]. Each DAE solution proceeds within the constraint manifolds of order k ≥ 0, and we
have

x(t) ∈C[k](t), x′[k](t) ∈ M[k](x(t), t), t ∈ I , k ≥ 0.

The corresponding index definition from [27, Section 3] reads:
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Definition 6.16. The equation (1) is called a DAE with regular differentiation index ν if all E[ j] feature
constant ranks, T[ν ]M[ν ](x, t) is a singleton for all (x, t) ∈ C̃[ν ], and ν is the smallest integer with these
properties. We then indicate the regular differentiation index by ν =: µrdi f f .

From representation (78) it follows that T[ν ]M[ν ](x, t) is a singleton exactly if T[ν ] kerE[ν ] = {0}, thus
T[ν ]Q[ν ] = 0.

With the resulting vector field v(x, t) := −T[ν ](U[ν ]V[ν ])
−1(t)(F[ν ](t)x− q[ν ](t), the DAE (1) having the

regular differentiation index ν may be seen as vector field on a manifold, that is,

x′(t) = v(x(t), t), (x(t), t) ∈ C̃[ν ].

It must be added here that in early works like [27, 51] no special epithet was given to the index term.
It was a matter of specifying the idea formulated in [24] that the index of a DAE is determined as the
smallest number of differentiations necessary to filter out from the inflated system a well-defined explicit
ODE. In particular, in [27] there is only talk about an index-ν DAE, without the epithet regular, but in
[51] regularity is central and the characterization of the DAE as regular is particularly emphasized, and
so we added here the label regular differentiation to differ from other notions, specifically also from the
differentiation index in Subsection 6.3. Based on closely related index concepts, some variants of index
transformation27 are discussed in [27, 51], i.e., for a given DAE, a new DAE with an index lower by one
is constructed. We pick out the respective basic idea from [51, 27] which is in turn closely related to the
geometric reduction in [50].

Given is the DAE (1) with a pair {E,F} featuring the regular differentiation index µrdi f f = ν . Then
{E,F} is pre-regular with r = r[0] and θ = m+ r − r[1], see Lemma 6.5. Let W and PS be the ortho-
projector functions with kerW = im E and im PS = kerWF = S. We represent PS = I − (WF)+WF .

Differentiating the derivative-free part WFx−Wq = 0 leads to (WF)′x− (Wq)′ = −WFx′, and in turn
to x′ = PSx′+(WF)+WFx′ = PSx′− (WF)+((WF)′x− (Wq)′). Inserting this into the DAE (1) yields

EPSx′+(F −E(WF)+(WF)′x = q−E(WF)+(Wq)′.

Regarding that P′
S =−(WF)+

′WF − (WF)+(WF)′ and WFx =Wq we arrive at

EPSx′+(F +EP′
S)x = q−E((WF)+Wq)′. (79)

We quote [27, Theorem 12]: The transfer from the DAE (1) to the DAE (79) reduces the (regular differ-
entiation) index by 1.

Next we show the close connection to the basic reduction step described in Section 4.1. By means of a
smooth basis C of the subspace S we represent the above projector function PS by PS =CC+,
C+ = (CC∗)−1C∗, and rewrite (79) as

EC(C+x)′+(F +EC′C+)x = q−E((WF)+Wq)′. (80)

Letting y =C+x, so that x = PSx =CC+x =Cy, we obtain

ECy′+(FC+EC′)y = q−E((WF)+Wq)′,

and finally, using a basis Y of im E as in Section 4.1,

Y ∗ECy′+Y ∗(FC+EC′)y = Y ∗(q−E((WF)+Wq)′), (81)

which illuminates the consistency of (79) with the basic reduction step in [50] and Section 4.1.

27Also called index reduction.
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Theorem 6.17. The following assertions are valid:

(1) If the DAE (1) is regular with index µ ≥ 1 in the sense of Definition 4.4 then it has also the regular
differentiation index µrdi f f = µ , and vice versa, and the characteristic values are related by

r[0] = r,

r[1] = m+ r−θ0,

r[2] = 2m+ r−θ0 −θ1,

· · ·
r[ν−2] = (ν −2)m+ r−θ0 −θ1 − . . .−θν−3,

r[ν−1] = (ν −1)m+ r−θ0 −θ1 − . . .−θν−2,

r[ j] = jm+d, j ≥ µ −1.

(2) If the DAE has regular differentiation index µrdi f f then it has also the differentiation index µdi f f =
µrdi f f .

(3) If the DAE has regular differentiation index µrdi f f on the interval I then, on each subinterval
Isub ⊂ I , it shows the same regular differentiation index µrdi f f .

Proof. (1): Owing to Proposition 6.10 there is nothing to do in the index-1 case. If the DAE is regular
with index µ ≥ 2 in the sense of Definition 4.4 then it has regular differentiation index µrdi f f = µ as an
immediate consequence of Proposition 6.7 and Lemma 11.1.

Contrariwise, let the DAE (1) have regular differentiation index µrdi f f = ν ≥ 2. Then the pair {E,F} is
pre-regular, and by [27, Theorem 12] the DAE

EPSx′+(F +EP′
S)x = p, p := q−E((WF)+Wq)′, (82)

has regular differentiation index ν −1. Using smooth bases Y,Z,C, and D of im E,(im E)⊥,kerZ∗F , and
(kerZ∗F)⊥, respectively, we form the pointwise nonsingular matrix functions

K =
[
C D

]
, L =

[
Y ∗

(Z∗FD)−1Z∗

]
,

scale the DAE (82) by L and transform x = Kx̃ =: Cx̃C +Dx̃D, which leads to an equivalent DAE of the
form Ẽx̃′+ F̃ x̃ = Lp with coefficients

Ẽ = LEPSK =

[
Y ∗EC 0

0 0

]
,

F̃ = L(F +EP′
S)K +LEPSK′ = LFK +LE(PSK)′ =

[
Y ∗FC+Y ∗EC′ Y ∗FD

0 I

]
.

The resulting DAE reads in detail

Y ∗ECx̃′C +(Y ∗FC+Y ∗EC′)x̃C +Y ∗FDx̃D = Y ∗p, (83)

x̃D = (Z∗FD)−1Z∗q. (84)

As a DAE featuring regular differentiation index ν −1, the DAE (83), (84) is pre-regular. Observe that

ker Ẽ ∩kerW̃ F̃ =

{[
u
v

]
∈ Rm : u ∈ kerY ∗EC,(Y ∗FC+Y ∗EC′)u ∈ im Y ∗EC,v = 0

}
,

which allows to restrict the further investigation to the inherent part

Y ∗EC︸ ︷︷ ︸
=E1

x̃′C +(Y ∗FC+Y ∗EC′)︸ ︷︷ ︸
=F1

x̃C = Y ∗p−Y ∗FD(Z∗FD)−1Z∗q, (85)

46
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which has also regular differentiation index ν − 1, and dimkerE1 ∩ kerZ∗
1F1 = dimker Ẽ ∩ kerW̃ F̃ . If

ν = 2 we are done. If ν > 2 then we repeat the whole procedure and provide this way a basic sequence
of pairs {Ek,Fk}.

(2): Lemma 11.1 makes this evident.

(3): This is given by the construction.

We observe that the regular differentiation index is well-defined, if and only if the (standard) differentia-
tion index is well-defined, and, additionally, all preceding E[ j] have constant ranks.

Remark 6.18. If {E,F} has differentiation index µdi f f =: ν the matrix function E[ν ] has constant rank,
and, due to Lemma 11.1, it holds that T[ν ]Q[ν ] = 0 such that the above formula (76) immediately provides
an underlying ODE in the form

x′ = T[ν ]x
′
[ν ] =−T[ν ]V

−1
[ν ] U−1

[ν ] (F[ν ]x−q[ν ]),

without the predecessors E[ j] having to have constant rank and without the background of geometric
reduction.

6.5 Projector based differentiation index for initialization

The index concept developed in [20, 19, 21] has its origin in the computation of consistent initial values
and was initially intended as a reinterpretation of the differentiation index. Although it has therefore not
yet had an own name, in this article we will denote this index concept the projector based differentiation
index. Roughly speaking the projector based differentiation index is reached, as soon as by differentiation
we have found sufficient (hidden) constraints. For an appropriate description, orthogonal projectors are
used to decouple different components of x.

Let P = E+E, Q = I −P, and W0 = I −EE+ be the orthoprojector functions onto (kerE)⊥, kerE, and
(im E)⊥. Given that E(t) has constant rank on I , these projector functions are as smooth as E is itself.
Then we decompose the unknown x = Px+Qx and rewrite the DAE as proposed in [29],

E(Px)′+(F −EP′)x = q. (86)

All solutions of the homogeneous DAE with q = 0 reside within the timevarying subspace of Rm

S0 = {z ∈ Rm : Fz ∈ im E}= kerW0F = S[0]. (87)

The DAE (86) splits into the following two equations:

P(Px)′+E+(F −EP′)(Px+Qx) = E+q, (88)

W0FQx =−W0FPx+W0q. (89)

Obviously, if the second equation (89) uniquely determines Qx in terms of Px and q, then replacing
Qx in (88) by the expression resulting from (89) yields an explicit ODE for Px. This actually happens
on condition that S0 ∩ kerE = {0} is given, which indicates regular index-1 DAEs as it is well-known
[29, 41]. For higher-index DAEs this condition is no longer met. In the context of the projector based
differentiation index one aims for extracting the needed information concerning Qx from the inflated
system.

Thereby, the further matrix functions B[k] : I → R(mk+m)×(mk+m),

B[k] =

[
P 0

F[k−1] E[k−1]

]
(90)
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plays its role. For k ≥ 1 we evaluate the inflated system

E[k−1]x
′
[k−1]+F[k−1]x = q[k−1].

Introducing the variable ω = Qx and decomposing x = Qx+Px = ω +Px yields the system

Pω = 0,

E[k−1]x
′
[k−1]+F[k−1]ω = q[k−1]−F[k−1]Px,

that is,

B[k]

[
ω

x′[k−1]

]
=

[
0

q[k−1]−F[k−1]Px

]
. (91)

If B[k] is smoothly 1-full, then there is a pointwise nonsingular, continuous matrix function TB such that

TBB[k] =

[
I
0 HB

]
,

and the first block-row of system (91) multiplied by TB reads

ω =

(
TB

[
0

q[k−1]−F[k−1]Px

])
1
,

which is actually a representation of Qx = ω in terms of Px and q[k−1] we are looking for. Inserting this
expression into equation (88) leads to the explicit ODE for the component Px,

(Px)′−P′Px+E+(F −EP′)(Px+ω) = E+q,

and, supposing a consistent initial value for Px, eventually to a solution x = Px+Qx of the DAE.

Remark 6.19. Recall that the regular differentiation index focuses on the 1-fullness condition of E[k]
for its first m rows corresponding to x′. In contrast, we want to emphasize that the projector based
differentiation index focuses on the 1-fullness condition of B[k] for its first m rows, that correspond to x.

To get an idea about the rank of B[k](t) we point out its connection to the matrix D[k](t) defined in (63):

kerB[k](t) = kerD[k]

=

{[
z
w

]
∈ Rm ×Rmk : z ∈ kerE ∩S[k−1],E

+
[k−1]E[k−1]w =−E +

[k−1]F[k−1]z
}
, (92)

for the subspace S[k−1] defined in (55), and consequently,

rankB[k] = m−dim(kerE ∩S[k−1])+ r[k−1]. (93)

In addition, regarding the inclusions (56), we recognize immediately the inclusions

S0 ∩kerE = S[0]∩kerE ⊇ S[1]∩kerE ⊇ ·· · ⊇ S[k−1]∩kerE ⊇ S[k]∩kerE,

that for the projector W[k] from (54) and

ρk := rank
[

P
W[k]F[k]

]
= rank

[
E

W[k]F[k]

]
= m−dim(kerE ∩S[k])

obviously yield the inequalities

ρ0 ≤ ρ1 ≤ ·· · ≤ ρk−1 ≤ ρk ≤ m.
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Definition 6.20 ([20]). If there is a number ν ∈ N such that the matrix functions E[0], . . . ,E[ν−1] have
constant ranks, the rank functions ρ0, . . . ,ρν−1 are constant, too, and

ρν−2 < ρν−1 = m,

then ν is called the projector based differentiation index of the pair {E,F} and the DAE (1), respectively.
We indicate it by ν =: µ pbdi f f .

Having in mind the known index-1 criterion S[0]∩ kerE = {0} we recognize the condition S[µ pbdi f f−1]∩
kerE = {0} to characterize the projector based differentiation index in general.

If the index µ pbdi f f is well-defined, then owing to Lemma 11.1, the matrix function B[µ pbdi f f ] is smoothly
1-full and has constant rank rB

[µ pbdi f f ]
= m+ r[µ pbdi f f−1]. Additionally, then E and B[i], i = 1, . . . ,µ pbdi f f ,

have constant ranks, too. Conversely, if there is a ν ∈ N such that E and B[i], i = 1, . . . ,ν , have constant
ranks, and B[ν ] is 1−full, and ν is the smallest such integer, then the rank functions ρi = rankB[i+1]−r[i],
i = 0, . . . ,ν −1, are constant, and ρν−2 < ρν−1 = m.

This makes it obvious that the following alternative definition, that is equivalent to Definition 6.20, may
also be considered:

Definition 6.21. If there is a ν ∈ N such that the matrix functions E, B[1], . . . ,B[ν ] have constant ranks
rB
[0] := r,rB

[1], . . . ,r
B
[ν ], respectively, and ν is the smallest number for which the matrix function B[ν ] is

smoothly 1-full, then ν is called the projector based differentiation index of the pair {E,F} and the DAE
(1), respectively. Again, we use the notation ν =: µ pbdi f f .

With Lemmas 11.1 and 11.2, this means precisely that

rB
[i] < r[i−1]+m, i = 1, . . . ,ν −1, rB

[ν ] = r[ν−1]+m.

Remark 6.22. With regard to the computation of consistent initial values, if the index is µ pbdi f f , then
for k = µ pbdi f f according to [19] a uniquely determined consistent initial value x0 ∈ S[k−1](t0) can be
computed as solution of

minimize ∥P(t0)(x0 −α)∥2

subject to W[k−1]F[k−1](t0)x0 = W[k−1]q[k−1](t0),

for a given guess α . This solution can also be computed as solution x0 of the optimization problem

minimize ∥P(t0)(x0 −α)∥2

subject to F[k−1](t0)x0 +E[k−1](t0)w = q[k−1](t0)

for a vector w ∈Rkm that is not uniquely determined, cf. (92) and the results for the solvability from [19].
There, the convenience of considering the orthogonal projector P instead of the matrix E for the objective
function is discussed, that led to the consideration of B[k] instead of D[k]. Moreover, for k > µ pbdi f f , the
last optimization problem permits the additional computation of consistent Taylor coefficients as parts of
w.

Proposition 6.23. The projector based differentiation index remains invariant under sufficiently smooth
equivalence transformations.

Proof. Owing to Proposition 6.3 and (93), the rank functions rankB[k] and ρk are invariant under suffi-
ciently smooth equivalence transformations, which makes the assertion evident.
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We emphasize again that the projector based differentiation index focuses on a 1-full condition for a
different matrix than the regular differentiation index. However, if the pair {E,F} is regular on the
interval I , we can show that they turn out to be equivalent.

Theorem 6.24. Let the pair {E,F} be regular on I with index µ and characteristic values r and
θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0. Then the projector based differentiation index is well-defined and coincides
with the regular differentiation index i.e. µrdi f f = µ = µ pbdi f f . Moreover,

rankB[k] = rankD[k] = rankE[k] = km+ r−
k−1

∑
i=0

θi, k ≥ 1,

ρk = m−dim(kerE ∩S[k]) = m−θk, k = 0, . . . ,µ −1,

and in particular

ρµ−1 = m, θµ−1 = 0, dim(kerE ∩S[µ−1]) = {0} .

Proof. This follows directly from kerB[k] = kerD[k], the definition of ρk and Proposition 6.7.

A closer look onto the matrix [
F[k−1] E[k−1]

]
(94)

and the orthogonal projectors Q and P permits an orthogonal decoupling of the different components of
x with further orthogonal projectors28. We briefly summarize these results from [20] and [21].

• To decouple the Q-component for k = 1, . . . ,µ , the projector Tk is defined as the orthogonal pro-
jector onto

kerE ∩S[k−1] = ker
[

P
W[k−1]F[k−1]

]
=: im Tk.

Consequently, Tkx corresponds to the part of the Q-component that, after k-1 differentiations, can-
not yet be represented as a function of (Px, t).

• To characterize the different parts of the P-component, the matrix F[k−1] is further splitted into
F[k−1]P and F[k−1]Q, such that [

F[k−1]P F[k−1]Q E[k−1]
]

is considered instead of (94). With this decoupling, the orthogonal projector V[k] with

kerV[k−1] = im
[
F[k−1]Q E[k−1]

]
is defined, permitting finally to define the orthogonal projector Vk onto

ker
[

Q
V[k−1]F[k−1]

]
=: im Vk.

By definition, Vkx represents the part of P-component that is not determined by the constraints
resulting after k-1 differentiations, such that d = rankVµ = rankVµ−1 holds.

To determine the rank of Tk and Vk we will use the fact that rankW[k−1]F[k−1] is the number of explicit
and hidden constraints resulting after k− 1 differentiations, and that with (59), (61) and Theorem 6.7 it
holds

rankW[k−1]F[k−1] = rankW[k−1] = m−dimS[k−1] = m− r+
k−2

∑
i=0

θi. (95)

28That is why in this paper we have chosen the label projector based differentiation index for this DAE approach.
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Proposition 6.25. For every regular pair {E,F} on I with index µ it holds

rankTk = θk−1, rankVk = r−
k−1

∑
i=0

θi.

Proof. For Tk, the assertions follows directly from the definition. For rankVk, we use (95) to obtain

r−
k−2

∑
i=0

θi = dimkerW[k−1]F[k−1] = dimker
[

Im 0
0 W[k−1]F[k−1]

][
Q P
P Q

]
= dimker

[
Q P

W[k−1]F[k−1]P W[k−1]F[k−1]Q

]
and have a closer look to the nullspace of the last matrix{[

z1
z2

]
∈ R2m : Qz1 = 0, Pz2 = 0, W[k−1]F[k−1]Pz1 +W[k−1]F[k−1]Qz2 = 0

}
=

{[
z1
z2

]
∈ R2m :

z1 ∈ kerQ∩kerV[k−1]F[k−1],

Pz2 = 0, W[k−1]F[k−1]z2 =−W[k−1]F[k−1]Pz1

}
.

Consequently, it holds

dimkerW[k−1]F[k−1] = dim
{[

z1
z2

]
∈ R2m :

z1 ∈ kerQ∩kerV[k−1]F[k−1] = im Vk,

z2 ∈ kerP∩kerW[k−1]F[k−1] = im Tk

}
,

leading to

r−
k−2

∑
i=0

θi = rankVk + rankTk,

i.e.

rankVk = r−
k−2

∑
i=0

θi − rankTk = r−
k−1

∑
i=0

θi.

This means that the m− r+∑
k−2
i=0 θi linearly independent constraints from

W[k−1](t)F[k−1](t)x = W[k−1](t)q[k−1](t)

uniquely determine (I −Tk −Vk)x as a function of (Vkx, t).

For the orthogonal projector Π := Vµ = Vµ−1 with rankΠ = d = r−∑
µ−2
i=0 θi, Πx represents the part of

P-components that is not determined by the constraints and can be used to formulate an orthogonally
projected explicit ODE

(Πx)′−Π
′(Πx)+ΠC(t)(Πx) = Πc(t) (96)

for suitable C(t) and c(t), cf. [21]. The remaining components (I −Π)x can then be computed accord-
ingly with the constraints. Note that im Π is not orthogonal to S[µ−1] in general, since V[µ−1] does not
coincide with W[µ−1] in general.

Note further that, by definition, Tk = QTk = TkQ as well as

Tk+1Tk = TkTk+1 = Tk+1, Vk+1Vk =VkVk+1 =Vk+1, Tk1Vk2 = 0

holds, cf. [21]. Therefore (Vk −Vk+1) is an orthogonal projector as well, fulfilling rank(Vk −Vk+1) = θk
and (Vk −Vk+1) = P(Vk −Vk+1) = (Vk −Vk+1)P.

51
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Remark 6.26. It is opportune to mention that rankB[k] serves as proven monitor for indicating singular
points by means of the algorithms from [22]. In [23] several simple examples are discussed and in [40]
the well-known nonlinear benchmark robotic arm is analyzed in detail.
Indeed, for many applications, the projector Tk is constant. If this is not the case, the changes in Tk
may provide an indication of which entries of E or F lead to a change of θk−1. Comparing the obtained
projectors at a regular and a singular point, critical parameter combinations or model errors may be
identified, cf. Example 7.6, Example 9.21 and [23].

6.6 Strangeness index via derivative array

DAEs with differentiation index zero are (possibly implicit) regular ODEs, they are well-understood and
of no interest in our context here. Further, a DAE showing differentiation index one is a priori29 a regular
DAE with index µ = 1 in the sense of Definition 4.4, and it is rather unreasonable30 here to change to an
underlying ODE. So the question arises as to whether one should even look for an index-1 DAE instead
of a regular ODE in general.

The aim is now to filter out a regular index-one DAE, more precisely, a strangeness-free DAE from an
inflated system instead of the underlying ODE in the context of the differentiation-index. Again we
consider the DAE

Ex′+Fx = q

and try to find an associated new DAE with the same unknown function x in the partitioned form

Ê1x′+ F̂1x = q̂1, (97)

F̂2x = q̂2, (98)

which is strangeness-free resp. regular with index zero or index one in the sense of Definition 4.4. We
assume the given DAE to have a well-defined differentiation index, say ν := µdi f f . By means of Propo-
sition 6.11 we obtain the constant numbers d = r[ν ]−νm = dimScan and a = m−d such that

r[ν−1] = rankE[ν−1] = (ν −1)m+d = νm−a,

dimkerE[ν−1] = a,

im [E[ν−1]F[ν−1]] = Rνm.

Then we form a smooth full-column-rank function Z : I → Rνm×a such that Z∗E[ν−1] = 0 and thus
kerZ∗F[ν−1] = S[ν−1] has constant dimension m−a = d. Recall that S[ν−1] = Scan. Let C : I → Rm×a

define a smooth basis of the subspace S[ν−1], so that Z∗F[ν−1]C = 0. The matrix function EC has full
column-rank d due to Proposition 6.11. Therefore, with any matrix function Y : I → Rm×a forming a
basis of im EC we obtain a nonsingular product Y ∗EC.

Letting in (97), (98)

Ê1 = Y ∗E, F̂1 = Y ∗F, q̂1 = Y ∗q,

F̂2 = Z∗F[ν−1], q̂2 = Z∗q[ν−1],

we receive θ̂0 = dim(ker Ê1 ∩ker F̂2) = 0 since

ker Ê1 ∩ker F̂2 = {z ∈ Rm : Y ∗Ez = 0,z ∈ S[ν−1]}
= {z ∈ Rm : z =Cw,Y ∗ECw = 0}= {0},

and hence we are done.

This matter was developed as part of the index concept and formally tied into a so-called hypothesis. We
quote [37, Hypothesis 3.48] in a form adapted to our notation.
29See Proposition 6.10
30In view of different properties such as stability behavior and numerical handleability.
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Hypothesis 6.27 (Strangeness-Free-Hypothesis (SF-Hypothesis)). Given are sufficiently smooth ma-
trix functions E,F : I → Rm×m.

There exist integers µ̂, â, and d̂ = m− â such that the inflated pair {E[µ̂],F[µ̂]} associated with the given
pair {E,F} has the following properties:

(1) rankE[µ̂](t) = (µ̂ +1)m− â, t ∈ I , such that there is a smooth matrix function Z : I → R(µ̂m+m)×â

with full column-rank â on I and Z∗E[µ̂] = 0.

(2) For F̂2 := Z∗F[µ̂] one has rank F̂2(t) = â, t ∈ I , such that there is a smooth matrix function

C : I → Rm×d̂ with constant rank d̂ on I and F̂2C = 0.
(3) rankE(t)C(t) = d̂, t ∈ I , such that there is a smooth matrix function Y : I → Rm×d̂ with constant

rank d̂ on I , and, for Ê1 := Y ∗E, one has rank Ê1(t) = d̂, t ∈ I .

The next definition simplifies [37, Definition 4.4] for linear DAEs.

Definition 6.28. Given are matrix functions E,F : I → Rm×m. The smallest value of µ̄ such that the
SF-Hypothesis 6.27 is satisfied is called the strangeness index of the pair {E,F} and of the DAE (1). If
µ̄ = 0 then the DAE is called strangeness-free.

Obviously, since the SF-Hypothesis is satisfied for DAEs having a well-defined differentiation index, it is
even more satisfied for regular DAEs in the sense of Definition 4.4 which also cover all DAEs featuring
the regular strangeness index from Section 5.3.

Remark 6.29. Also the notion regular strangeness index is sometimes used in the context of the SF-
Hypothesis, e.g., [2, p. 1261], [37, p. 154] with the reasoning that a differential-algebraic operator
somehow (see [37, Section 3.4]) associated to the strangeness-free reduced system (97), (98) is a contin-
uous bijection. Unfortunately, this is not a viable argument, because it says far too little about the nature
of the original DAE and its associated operator31 T x = Ex′+Fx. All differentiations are analytically
assumed in advance and available from the derivative array.

In addition, the term regular strangeness index is already used for the regular case of the original
strangeness index (see Definition 5.3 and footnote).

The SF-Hypothesis is associated with the fact that a DAE with differentiation index one always contains
a regular index-1 DAE, cf. Proposition 6.10.

It is claimed in [37, Theorem 3.50] that, if the pair {E,F} has differentiation index µdi f f ≥ 1 on a
compact interval then the SF-Hypothesis is satisfied with µ̂ = µdi f f −1, â = a, and d̂ = d.

Conversely, according to [37, Corollary 3.53], if the pair {E,F} satisfies the SF-Hypothesis then it
features a well-defined differentiation index, and µdi f f = µ̂ +1 applies if µ̂ is minimal.

6.7 Equivalence issues

Let us summarize the most relevant results of the present section concerning the equivalence. We start
with a well-known fact.

Theorem 6.30. Let E,F : I → Rm×m be sufficiently smooth on the compact interval I . The following
two assertion are equivalent:

(1) The differentiation index µdi f f of the pair {E,F} on the interval I is well-defined according to
Definition 6.8.

31We refer to [32] and the references therein for basics on differential-algebraic operators.
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(2) The pair {E,F} satisfies the Strangeness Hypothesis 6.27 on the interval I with strangeness index
µ̂ according to Definition 6.28.

If these statements are valid, then µdi f f = µ̂ +1 and d̂ = d = dimScan and dimkerE[µ̂] = â = a = m−d.

Proof. The direction (1) ⇒ (2) immediately results from Section 6.6 for an arbitrary interval. For the
more complicated proof of (1) ⇐ (2) we refer to [37, Corollary 3.53], cf. Section 6.6.

The other index concepts considered in the present section require additional rank conditions. It turns out
that they are equivalent among each other and comprise just the regular DAEs in the sense of the basic
Definition 4.4.

Theorem 6.31. Let E,F : I → Rm×m be sufficiently smooth, µ ∈ N.

The following assertions are equivalent in the sense that the individual characteristic values of each two
of the variants are mutually uniquely determined.

(1) The pair {E,F} is regular on I with index µ ∈ N, according to Definition 4.4.
(2) The DAE (1) has regular differentiation index µrdi f f = µ .
(3) The DAE (1) has projector-based differentiation index µ pbdi f f = µ .
(4) The DAE has differentiation index µdi f f = µ and, additionally, the rank functions r[k], k < µdi f f , are

constant.
(5) The DAE fulfills the Hypothesis 6.27 with µ̂ = µ −1 and, additionally, the rank functions r[k], k < µ̂ ,

are constant.

Proof. The equivalence of (1) and (2) has been shown in Theorem 6.17 (1).

The equivalence of (2) and (4) follows from the equivalence of (1) and (4) in Lemma 11.1, since in both
cases all ranks are assumed to be constant.

The equivalence of (4) and (5) is a consequence of Theorem 6.30.

(1) implies (3) by Theorem 6.24.

For the last step of the proof of equivalences we verify that (3) implies (5). Let (3) be given, so that
r[i] = rankE[i] is constant, i = 0, . . . ,µ − 1, kerE ∩ S[µ−1] = {0}, and the necessary solvability condition
(57) is satisfied. We set µ̂ := µ −1, â := µm− r[µ−1], d̂ := m− â and show that the Hypothesis 6.27 with
these values is satisfied.

First, it results that dim(im E[µ−1])
⊥ = â and there is a smooth basis Z : I → Rµm×â of (im E[µ−1])

⊥

such that Z∗E[µ−1] = 0.

Next, regarding the condition (57) we evaluate

rankZ∗F[µ−1] = m−dimkerZ∗F[µ−1] = m−dimS[µ−1] = µm− r[µ−1] = â.

Finally, since dimS[µ−1] = d̂, with a smooth matrix function C : I →Rm×d̂ forming a basis of dimS[µ−1],
we obtain a product EC that feature full column-rank d̂. Namely, it holds

kerEC = {z ∈ Rd̂ : Cz ∈ kerE}= {z ∈ Rd̂ : Cz ∈ kerE ∩S[µ−1]}= {0},

and the Hypothesis (6.27) is satisfied, and thus statement (5).

We now indicate how the individual characteristic values depend on those of the base concept. Because
of the equivalence, this allows to determine the relationships between the values of any two concepts
providing regular DAEs.
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Theorem 6.32. Let the pair {E,F} be regular on I with index µ ∈N and characteristics r < m, θ0 = 0
if µ = 1, and, for µ > 1,

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, d = r−
µ−2

∑
j=0

θ j.

Then the three array functions E[k],D[k], and B[k] feature shared constant ranks,

r[k] = rankE[k] = rankD[k] = rankB[k],

and the following relations concerning the characteristic values arise:

r[k] = km+ r−
k−1

∑
j=0

θ j, k = 1, . . . ,

in particular,

r[µ−1] = (µ −1)m+ r−
µ−2

∑
j=0

θ j = (µ −1)m+d, r[µ] = µm+ r−
µ−1

∑
j=0

θ j = µm+d,

and, moreover,

ρk = m−dim(kerE ∩S[k]) = m−θk, k = 0,1, . . . ,

rankTk = θk−1, rankVk = r−
k−1

∑
j=0

θ j, k = 0,1, . . . .

and, conversely,

r = r[0],

θ0 = m+ r[0]− r[1],

· · ·
θµ−2 = m+ r[µ−2]− r[µ−1],

θµ−1 = m+ r[µ−1]− r[µ],

d = r[µ−1]− (µ −1)m = r[µ]−µm.

Proof. The relations for the characteristic values follow from Theorems 6.17 and 6.24.

Corollary 6.33. Regular and critical points in the sense of the Definition 5.13 are independent of the
specific approach.

We emphasize that, for the approaches gathered in Theorems 6.31 and 6.32 that capture regular DAEs,
constant r and θi are mandatory. In contrast, the two concepts recorded in Theorem 6.30 allow changes
of r as well as the θi, as long as µ and d remain constant. This motivates the following two definitions.

Definition 6.34. Given are E,F : I → Rm×m. The critical32 point t∗ ∈ I is said to be a harmless
critical point33 of the pair the pair {E,F} and the associated DAE (1), if there is an open neighborhood
U ∋ t∗ such that the DAE restricted to I ∩U is solvable in the sense of Definition 2.1.

32See Definition 5.13.
33Note that this definition is consistent with that in [17, 41, 55] which is formulated in more specific terms of the projector-based

analysis.
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Harmless critical points only become apparent with less smooth problems and in the input/output be-
havior of the systems. For smooth problems, we quote from [55, p. 180]: the local behavior around a
harmless critical point is entirely analogous to the one near a regular point. That is precisely why they
are called that. The Examples 7.8, 7.6 and 7.9 in the next section are to confirm this, see also [41, Section
2.9].

By Theorem 6.14, for a DAE featuring a well-defined differentiation index on a compact interval, the set
of regular points is dense and all critical points are harmless.

Definition 6.35. Given are E,F : I → Rm×m. The pair {E,F}, and the associated DAE (1) are almost
regular if all points of I are regular points in the sense of Definition 5.13 or harmless critical points in
the sense of Definition 6.34 and the regular points are dense in I .

7 A selection of simple examples to illustrate possible critical points

We use a few simple examples to illustrate several critical points that can arise with DAEs. For a deeper
insight we refer to [55].

7.1 Serious singularities

Example 7.1 (r constant, θ0 changes). Recall Example 4.10 from Section 4.2

E(t) =
[

1 −t
1 −t

]
, F(t) =

[
2 0
0 2

]
, t ∈ R.

We know already that the homogeneous DAE has the nontrivial solution

x(t) = γ(1− t)2
[

1
1

]
, t ∈ R, with γ ∈ R,

and t⋆ = 1 is obviously a singular point of the flow, because of

kerE(t)∩S0(t) = {z ∈ R2 : z1 − tz2 = 0,z1 = z2}, i.e., θ0(t) =

{
0 t ̸= 1
1 t = 1

.

• The framework of the tractability index with

A := E,D =

[
1 −t
0 0

]
,G0 = AD = E,Q0 =

[
0 t
0 1

]
,B0 = F −AD′ =

[
2 −1
0 1

]
leads to

G1 = G0 +B0Q0 =

[
1 t −1
1 −t +1

]
,detG1 = 2(1− t),r1(t) =

{
2 t ̸= 1
1 t = 1

.

This indicates t⋆ = 1 as critical point.
• By Lemma 6.5 we obtain r[1](t) = m+ r−θ0(t) = 3−θ0(t) .

Example 7.2 (r changes, θ0 constant). This example is a special case of [41, Example 2.69]. We consider
the pair

E =

[
0 α

0 0

]
, F =

[
β γ

1 1

]
, m = 2,

and α,β ,γ : I → R are smooth functions. α2 + (β − γ)2 > 0 ensures that rank[E(t),F(t)] ≡ 2 and
α(t) = 0 requires β (t) ̸= γ(t).
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Figure 1. Solution of (99) for M > 0 and M < 0

We have r(t) =

{
1 α(t) ̸= 0
0 α(t) = 0

, kerE(t) =

im

[
1
0

]
α(t) ̸= 0

R2 α(t) = 0

and

S0(t) = {z ∈ Rm : F(t)z ∈ im E(t)}=

im

[
1
−1

]
α(t) ̸= 0,

{0} α(t) = 0.
Surprisingly we obtain for θ0(t) = dim(kerE(t)∩S0(t)) = 0 for all t.
A simple reformulation of Ex′+Fx = q shows the equations

αx′2 +(γ −β )x2 = q1 −βq2,

x1 =−x2 +q2.

We consider the particular case that γ(t)−β (t) ≡ M ̸= 0 constant, q ≡ 0 and α(t) = t, which leads to
the singular scalar homogeneous ODE for x2

tx′2(t)+Mx2(t) = 0. (99)

The solution is x2(t) = ctM with an arbitrary real constant c, see Figure 1.

Example 7.3 (r constant, θ0 constant, θ1 changes). Given a smooth function β : I → R, we investigate
the pair {E,F},

E(t) =

1 0 0
0 1 0
0 0 0

 , F(t) =

0 0 β (t)
1 1 0
1 0 0

 .

A look at the associated DAE brightens the type of singularity. The DAE reads

x′1 +βx3 = q1,

x′2 + x1 + x2 = q2,

x1 = q3,

which can be rearranged to

x1 = q3,

x′2 + x2 = q2 −q3,

βx3 = q1 −q′3.

It is now evident that, if β has zeros, then the DAE is no longer solvable for all sufficiently smooth
rigt-hand sides q.
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From a more general point of view, the pair {E,F} is pre-regular with m = 3. r = 2 and θ0 = 1 and the
singularity can be detected by different approaches.

We start with the basic approach, letting

Y0(t) =

1 0
0 1
0 0

 , C0(t) =

0 0
1 0
0 1

 ,

the first step in the basic reduction procedure leads to the new pair

E1(t) =
[

0 0
1 0

]
, F1(t) =

[
0 β (t)
1 0

]
.

The new pair {E1,F1} is pre-regular if and only if the function β has no zeros, and then one has θ1 = 0,
and hence the pair {E,F} is regular with index two.

In contrast, if β (t∗) = 0 at a point t∗ ∈ I , we are confronted with θ1(t∗) = 1 and rank[E1(t∗)F1(t∗)] =
1 < m, and the pair {E1,F1} fails to be pre-regular. In turn, the original pair {E,F} is no longer regular.

The tractability framework (35) leads to

G0 = E,B0 = F,Q0 =

0
0

1

 ,G1 =

1 0 β

0 1 0
0 0 0

 ,

which immediately indicates zeros of β as critical point, too, because of

N1 ∩N0 = {z ∈ R3 : z1 = 0,z2 = 0,β z3 = 0},

i.e., uT
1 (t) =

{
0 β ̸= 0
1 β = 0

, which is called ”B-singularity“ in [41, Definition 2.75] and [55, p. 144].

Next we consider the first array functions

E[1](t) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 β (t) 1 0 0
1 1 0 0 1 0
1 0 0 0 0 0

 , F[1](t) =



0 0 β (t)
1 1 0
1 0 0
0 0 β ′(t)
0 0 0
0 0 0

 .

and compute rankE[1](t) = 4 = m+ r− θ0 independently of how the function β behaves. However, the
necessary solvability requirement rank[E[1](t),F[1](t)] = 6 is satisfied only if β (t) ̸= 0, but otherwise one
has rank[E[1](t∗),F[1](t∗)] = 5.

Example 7.4 (r constant, θ0 constant, θ1 changes). Given is the pair {E,F} with m = 2,

E(t) =
[

1 −1
1 −1

]
, F(t) =

[
2 0
0 t +2

]
, t ∈ I = [−1,1],

such that E(t) has constant rank r = 1 and rank[E(t),F(t)] =m. Following the basic reduction procedure
in Section 4.1 we choose and find

Z0(t) =
[

1
−1

]
, Y0(t) =

[
1
1

]
, C0(t) =

[ t+2
2
1

]
,

kerE(t)∩ker(Z∗
0F)(t) = {z ∈ R2 : z1 = z2, tz2 = 0},
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and

E1(t) = (Y ∗EC0)(t) = t, F1(t) = (Y ∗FC0)(t)+(Y ∗EC′
0)(t) = 2t +5.

The pair {E,F} fails to be pre-regular on I because of

θ0(t) =

{
0 if t ̸= 0
1 if t = 0 ,

however, it is pre-regular and regular with index one on the subintervals [−1,0) and (0,1]. The corre-
sponding DAE,

x′1 − x′2 +2x1 = q1,

x′1 − x′2 +(t +2)x2 = q2,

reads in slightly rearranged form as

−tx2 +2(x1 − x2) = q1 −q2,

(x1 − x2)
′+

2
t
(t +2)(x1 − x2) = q2 −

1
t
(t +2)(q1 −q2).

Having a solution of the ODE for the difference x1 − x2 we find the original solution components by
x1 =

1
2(q1 − (x1 − x2)

′) and x2 = x1 − (x1 − x2). No doubt, t∗ = 0 is a critical point causing a singular
inherent ODE of the DAE. We refer to [35], where this example also comes from, for the specification of
bounded solutions.

Inspecting the array functions

E[1] =


1 −1 0 0
1 −1 0 0
2 0 1 −1
0 t +2 1 −1

 , E[2] =



1 −1 0 0 0 0
1 −1 0 0 0 0
2 0 1 −1 0 0
0 t +2 1 −1 0 0
0 0 2 0 1 −1
0 2 0 t +2 1 −1

 ,

we see that

rankE[1](t) =

{
2m−1 = 3 if t ̸= 0
2m−2 = 2 if t = 0,

rankE[2](t) =

{
3m−1 = 5 if t ̸= 0
3m−2 = 4 if t = 0,

and the rank of the array functions also indicates this point t∗ = 0 as critical.

Example 7.5 (r and θ0 change). Given a smooth function α : I → R, we investigate the pair {E,F},

E(t) =

0 α(t) 0
0 0 1
0 0 0

 , F(t) =

−6 0 0
0 1 0
1 0 1

 , t ∈ I ,

and the associated DAE living in Rm, m = 3,

αx′2 −6x1 = q1,

x′3 + x2 = q2,

x1 + x3 = q3.
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Rearranging the DAE as

αx′2 +6x3 = q1 +6q3,

x′3 + x2 = q2,

x1 + x3 = q3,

we immediately know that the fact whether the function α has zeros or even disappears on subintervals
is essential. Note that rank [E(t)F(t)] = m = 3 for all t ∈ I , but rankE(t) = 2 if α(t) ̸= 0 and otherwise
rankE(t) = 1. Obviously, on subintervals where α(t) does not vanish, we see a regular index-one DAE
with characteristics r = 2,θ0 = 0 and d = 2. In contrast, if the function α vanishes on a subinterval
then there a regular index-two DAE results with r = 1,θ0 = 1,θ1 = 0 and d = 0. There is no doubt that
points with zero crossings of α are critical and may cause singularities of the solution flow, see Figure 2.
It should be emphasized that the rank conditions associated with regularity Definition 4.4 exclude such
critical points on regularity intervals and the corresponding reduction procedure reliably recognizes
them.

Investigating the corresponding low level array functions, E[0] = E, F[0] = F,

E[1] =



0 α 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−6 α ′ 0 0 α 0
0 1 0 0 0 1
1 0 1 0 0 0

 , F[1] =



−6 0 0
0 1 0
1 0 1
0 0 0
0 0 0
0 0 0

 ,

E[2] =



0 α 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−6 α ′ 0 0 α 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0
0 α ′′ 0 −6 2α ′ 0 0 α 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0


, F[2] =



−6 0 0
0 1 0
1 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


,

we find that the ranks of the derivative arrays also indicate those critical points, namely

rankE[0](t) =

{
m−1 = 2 if α(t) ̸= 0
m−2 = 1 if α(t) = 0,

rankE[1](t) =


2m−1 = 5 if α(t) ̸= 0
2m−2 = 4 if α(t) = 0,α ′(t) ̸= 0
2m−3 = 3 if α(t) = 0,α ′(t) = 0,α ′′(t) ̸= 0,

rankE[2](t) =



3m−1 = 8 if α(t) ̸= 0
3m−2 = 7 if α(t) = 0,α ′(t) ̸= 0
3m−3 = 6 if α(t) = 0,α ′(t) = 0,α ′′(t) ̸= 0,α ′′(t) ̸= 6
3m−3 = 6 if α(t) = 0,α ′(t) = 0,α ′′(t) = 0
3m−4 = 5 if α(t) = 0,α ′(t) = 0,α ′′(t) = 6 .
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Figure 2. Solutions for x2 and x3 computed with MATHEMATICA, Version 13 for

α(t) =

{
0 for t ∈ (−∞,0]
t4 for t ∈ (0,∞)

, q1 = q2 = q3 = 0 in Example 7.5. The difficulty to plot the

solution around 0 is due to the singularity.

7.2 Harmless critical points

The first example of the present section, that shows an almost regular DAE, is of particular interest be-
cause r and d are constant, while θ0 and θ1 change. To our knowledge such an circumstance was not
discussed in literature before, since harmless critical points were usually tight to rank changes of E.
Therefore, for this example we illustrate in detail how four different approaches identify critical points.
The three other examples of the section are classical cases discussed in the literature showing rank
changes of E.

Example 7.6 (r constant, θ0 and θ1 change). Given is the pair {E,F} with m = 4, and smooth functions
α,β : I → R,

E(t) =


0 1 α(t) 0
0 0 0 β (t)
0 0 0 1
0 0 0 0

 , F(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , t ∈ I ,

such that E(t) has constant rank r = 2 and rank [E(t)F(t)] = m.

The associated DAE reads

x′2 +αx′3 + x1 = q1,

βx′4 + x2 = q2,

x′4 + x3 = q3,

x4 = q4.

For each sufficiently smooth right-hand side this DAE possesses the unique solution,

x1 = q1 −q′2 −αq′3 +β
′q′4 +(α +β )q′′4,

x2 = q2 −βq′4,

x3 = q3 −q′4,

x4 = q4,

that is, the DAE is a solvable system in the sense of Definition 2.1 with zero dynamical degree of freedom.
It can be checked immediately that in the sense of Definition 4.4 the DAE is regular with index µ = 3 and
d = 0 on all subintervals where α +β has no zeros, and it is regular with index µ = 2 and d = 0 on all
subintervals where α +β vanishes identically.
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We analyse this example with four different approaches. All of them lead to the same values for the
characteristics θ :

θ0 θ1 θ2
α +β ̸= 0 1 1 0
α +β = 0 2 0

. (100)

Basic reduction procedure, cf. (7). We have E0 = E and F0 = I. We obtain for a basis of kerE⋆
0 Z0 =

0 0
1 0
−β 0
0 1

 and a basis of im E0 Y0 =


1 0
0 β

0 1
0 0

. S0 = kerZ⋆
0F0 = {z∈R4 : z2 = β z3,z4 = 0}. C0 =


1 0
0 β

0 1
0 0


forms a basis of S0.

The next reduction step serves E1 = Y ⋆
0 E0C0 =

[
0 α +β

0 0

]
and F1 = Y ⋆

0 F0C0 +Y ⋆
0 E0C′

0 =

[
1 β ′

0 1+β 2

]
.

To determine θ0 we investigate kerE0 ∩kerZ⋆
0F0 = {z ∈ R4 : (α +β )z3 = 0,z4 = 0,z2 = αz3}.

We have now to continue with two different cases.

• α + β ̸= 0: It results that kerE0 ∩ kerZ⋆
0F0 = {z ∈ R4 : z3 = 0,z4 = 0,z2 = 0} = im


1
0
0
0

 and

therefore θ0 = 1.

The new pair [E1,F1] is pre-regular. Z1 =

[
0
1

]
, Y1 =

[
1
0

]
, and C1 =

[
1
0

]
, i.e., E2 =Y ⋆

1 E1C1 = 0 and

F2 = Y ⋆
1 F1C1 = 1.

kerE1 ∩kerZ⋆
1F1 = {z ∈ R2 : z2 = 0}, which means that θ1 = 1.

The last reduction step delivers the pre-regular pair E2 = 0 and F2 = 1, which leads to θ2 = 0 and
therefore µ = 3.

• α +β = 0: In this case we obtain for kerE0∩kerZ⋆
0F0 = {z ∈R4 : z4 = 0,z2 = αz3}= im


1 0
0 α

0 1
0 0


and therefore θ0 = 2.

The next matrix pair is E1 = 0 and the nonsingular F1 =

[
1 β ′

0 1+β 2

]
. [E1,F1] is pre-regular and

we obtain θ1 = 0 and therefore µ = 2.

Projector based analysis (tractability index) with the related matrix chain, cf. (35).

G0 = E, B0 = F −ED′, Q0 =


1 0 0 0
0 0 −α 0
0 0 1 0
0 0 0 0

 , D = P0 = I −Q0.

G1 = G0 +B0Q0 =


1 1 α −α ′ 0
0 0 −α β

0 0 1 1
0 0 0 0

 .

To determine an admissible nullspace projector Q1 we analyse kerG1.

kerG1 = {z ∈ R4 : z1 + z2 +(α −α
′)z3 = 0,−αz3 +β z4 = 0,z3 + z4 = 0}

= {z ∈ R4 : z1 + z2 +(α −α
′)z3 = 0,(α +β )z4 = 0,z3 + z4 = 0}.

Also here we have to continue with two different cases.
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• α +β ̸= 0:

We obtain that kerG1 = {z ∈ R4 : z4 = 0,z3 = 0,z1 + z2 = 0} = im


−1
1
0
0

 and rankG1 = 3.

An admissible nullspace projector is Q1 =


0 −1 −α 0
0 1 α 0
0 0 0 0
0 0 0 0

 and Π1 = P0P1 = P0(I −Q1) =


0

0
0

1

.

The next matrix chain level starts with B1 = B0P0 − G1D−(DΠ1D−)′DΠ0 = B0P0 −
G1D−Π′

1DΠ0 = B0P0 and we obtain

G2 = G1 +B1Q1 =


1 1 α −α ′ 0
0 1 0 β

0 0 1 1
0 0 0 0

 ,

kerG2 = {z ∈ R4 : z1 + z2 +(α −α
′)z3 = 0,z2 +β z4 = 0,z3 + z4 = 0}

= im


α −α ′+β

−β

−1
1

 and rankG2 = 3.

As an admissible nullspace projector we choose Q2 =


0 0 0 α −α ′+β

0 0 0 −β

0 0 0 −1
0 0 0 1

 and

Π2 = Π1(I −Q2) = 0. The nonsingular matrix

G3 = G2 +B2Q2 =


1 1 α −α ′ 0
0 1 0 β

0 0 1 1
0 0 0 1

 ,

which indicates that the index is 3.
• α +β = 0: For this case we obtain the nullspace

kerG1 = {z ∈R4 : z1+ z2+(α +α ′)z3 = 0,z3+ z4 = 0}= im


α +α ′ −1

0 1
−1 0
1 0

 and rankG1 = 2. As

an admissible nullspace projector we can choose

Q1 =


0 −1 −α α ′

0 1 α α

0 0 0 −1
0 0 0 1


and obtain because of Π1 = 0 as the next matrix chain element the nonsingular matrix

G2 =


1 1 α −α ′ 0
0 1 0 β

0 0 1 1
0 0 0 1

 ,
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which indicates an index 2 DAE.

For the characteristics we have, cf. (43), θi−1 = m− rankGi, leading to (100).

Differentiation index concept. Inspecting the array functions

E[1] =



0 1 α 0 0 0 0 0
0 0 0 β 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 α ′ 0 0 1 α 0
0 1 0 β ′ 0 0 0 β

0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0


,

E[2] =



0 1 α 0 0 0 0 0 0 0 0 0
0 0 0 β 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 α ′ 0 0 1 α 0 0 0 0 0
0 1 0 β ′ 0 0 0 β 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 α ′′ 0 1 0 2α ′ 0 0 1 α 0
0 0 0 β ′′ 0 1 0 2β ′ 0 0 0 β

0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0



,

we find

r[1] = rankE[1](t) =

{
5 if α(t)+β (t) ̸= 0
4 if α(t)+β (t) = 0,

but, in contrast, E[2](t) does not undergo any rank changes,

dimkerE[2](t) = 4, rankE[2](t) = 3m−4 = 8.

Using for θi = m+ r[i]− r[i+1], (cf. Theorem 6.32), the characteristic values θ are the same as in (100).
Nevertheless, this DAE has a well-defined differentiation index being equal three. We add that the DAE
according to [41, Chapter 9] is quasi-regular with an index less than or equal to three.

Projector based differentiation concept. Starting from

kerE(t) = im


1 0
0 −α

0 1
0 0

 , Q =


1 0 0 0
0 α2

1+α2
−α

1+α2 0
0 −α

1+α2
1

1+α2 0
0 0 0 0

 , P =


0 0 0 0
0 1

1+α2
α

1+α2 0
0 α

1+α2
α2

1+α2 0
0 0 0 1


we recognize

kerQ = ker
[

1 0 0 0
0 −α 1 0

]
, kerP = ker

[
0 0 0 1
0 1 α 0

]
.
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On the one hand, we have

im
[
F[0]Q E[0]

]
= im

[
Q E

]
= im


1 0 0
0 −α β

0 1 1
0 0 0

 ,

such that V[0] and its rank depend on whether α = −β is given or not. On the other hand the explicit
constraints are

x2 −β (t)x3 = q2 −β (t)q3,

x4 = q4,

such that

kerE ∩S[0] = ker
[

P
W[0]F[0]

]
= ker


0 0 0 1
0 1 α 0
0 1 −β 0
0 0 0 1

 .

Again, the dimension of this space depends on α +β . Therefore, we consider two cases:

• α +β ̸= 0: Then

kerE ∩S[0] = ker
[

P
W[0]F[0]

]
= im


1
0
0
0

 , T1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and

ker
[

Q
V[0]F[0]

]
= ker

1 0 0 0
0 −α 1 0
0 0 0 1

 , V1 =


0 0 0 0
0 1

1+α2
α

1+α2 0
0 α

1+α2
α2

1+α2 0
0 0 0 0

 .

The next steps lead to V2 = 0, T2 = T1, V3 = 0, T3 = 0, such that

r = 2, θ0 = 1, θ1 = 1, θ2 = 0, µ = 3, d = 0.

• α +β = 0: Then

kerE ∩S[0] = ker
[

P
W[0]F[0]

]
= im


1 0
0 −α

0 1
0 0

 , T1 = Q,

and

ker
[

Q
V[0]F[0]

]
= ker


1 0 0 0
0 −α 1 0
0 1 α 0
0 0 0 1

 , V1 = 0.

The next step leads to V2 = 0, T2 = 0, such that

r = 2, θ0 = 2, θ1 = 0, µ = 2, d = 0.

In summary, all approaches lead to the same characteristic values (100) and reveal the same critical
points at the zeros of α +β .
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We realize that we have a solvable DAE here, although all the procedures show critical points and in
particular not all derivative-array functions have constant rank. By Definition 6.34, these crical points
are harmless. From the solution representation we recognize the precise dependence of the solution on
the derivatives of the right-hand side q. Accordingly, a sharp perturbation index three is only valid on
the subintervals where α + β has no zeros, and perturbation index two on subintervals where α + β

is identically zero. This is very important when it comes to minimal smoothness and the input-output
behavior from a functional analysis perspective.

Example 7.7 ([7], d = 1, r and θ0 change, in SCF). Given the function α(t) =

{
0 for t ∈ [−1,0)
t3 for t ∈ [0,1]

we consider the pair {E,F},

E(t) =

1 0 0
0 0 α(t)
0 0 0

 , F(t) =

1 0 0
0 1 0
0 0 1

 , t ∈ I = [−1,1],

and the associated DAE (1),

x′1 + x1 = q1,

αx′3 + x2 = q2,

x3 = q3.

By straightforward evaluations we know that the DAE has differentiation index two on the entire interval
[−1,1], but differentiation index one on the subinterval [−1,0].

Obviously the DAE forms a solvable system in the sense of Definition 2.1 with dynamical degree of
freedom d = 1 on the entire interval [−1,1].

The DAE is regular with index two in the sense of Definition 4.4 on the subinterval (0,1], and regular
with index one on [−1,0]. Similarly, the perturbation index equals one on [−1,0], but two on each closed
subinterval of (0,1].

Observe that E[0](t) = E(t) changes the rank at t = 0, but rankE[1](t) = 4, E[2](t) = 7, t ∈ [−1,1], and
r(t)−θ(t) = d = 1 is constant.

Example 7.8 ([7] Example 2.4.3, d constant, r and θ0 change, not transferable into SCF). For the
functions

α(t) =

{
0 for t ∈ [−1,0)
t3 for t ∈ [0,1],

and β (t) =

{
t3 for t ∈ [−1,0)
0 for t ∈ [0,1]

we consider the DAE (1) with the coefficients

E(t) =
[

0 α(t)
β (t) 0

]
, F(t) =

[
1 0
0 1

]
, t ∈ I = [−1,1].

To each arbitrary smooth right-hand side q, the DAE has the unique solution

x1 = q1 −αq′2,

x2 = q2 −βq′1,

so that it is solvable with zero dynamical degree of freedom. The DAE has obviously perturbation index
two.

Observe that E[0](t) = E(t) has a rank drop at t = 0, but rankE[1](t) = 2, rankE[2](t) = 4, t ∈ [−1,1]. The
DAE has differentiation index two on the entire interval [−1,1] and also on each subinterval.

In contrast, the basic reduction procedure from Section 4.1 indicates the point t = 0 as critical. The DAE
is regular with index two and r = 1,θ0 = 1,θ1 = 0,d = 0 on both subintervals [−1,0) and (0,1].
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Example 7.9 (d = 0, r changes, index 1 or 3, in SCF). With this example in SCF we illustrate that a
change of r leads to an in- or decrease of the local index on subintervals that differ more than one. Given
the function

α(t) =

{
0 for t ∈ [−1,0)
t3 for t ∈ [0,1]

we consider the pair {E,F},

E(t) =

0 α(t) 0
0 0 α(t)
0 0 0

 , F(t) =

1 0 0
0 1 0
0 0 1

 , t ∈ I = [−1,1],

and the associated DAE (1),

αx′2 + x1 = q1,

αx′3 + x2 = q2,

x3 = q3.

By straightforward evaluations we know that the DAE has differentiation index three on the entire interval
[−1,1], but differentiation index one on the subinterval [−1,0].

The DAE forms a solvable system in the sense of Definition 2.1 with zero dynamical degree of freedom
d = 0 on the entire interval [−1,1].

The DAE is regular with index three, r = 2,θ0 = 1,θ1 = 1,θ2 = 0, and d = 0 in the sense of Definition 4.4
on the subinterval (0,1], and it is regular with index one, r = 0,θ0 = 0, and d = 0 on [−1,0]. Similarly,
the perturbation index equals one on [−1,0], but three on each closed subinterval of (0,1].

The rank of E[0](t) and E[1](t) changes at t = 0 but E[2](t), E[3](t) have constant rank each. More precisely,
we have

dimkerE[0](t) =

{
1 if α(t) ̸= 0
3 if α(t) = 0,

dimkerE[1](t) =

{
2 if α(t) ̸= 0
3 if α(t) = 0,

dimkerE[2](t) = dimkerE[3](t) = 3, t ∈ I = [−1,1].

7.3 A case study

With the following case study we emphasize that monitoring the index of DAEs is not sufficiently
informative. For a deeper understanding of their properties, all characteristic values r and θi should be
considered.

For identity matrices Ii ∈ Rmi×mi , i = 1,2,3 and constant strictly upper triangular matrices N2 ∈ Rm2×m2 ,
N3 ∈ Rm3×m3 of the special form

Ni =


0 1 · · · 0

0 0
. . .

...
. . . 1

0 0 · · · 0

 , i = 2,3,

let us consider DAEs of the formα1(t)Id 0 0
0 α2(t)N1 0
0 0 α3(t)N2

x′1
x′2
x′3

+

β1(t)I1 0 0
0 β2(t)I2 0
0 0 β3(t)I3

x1
x2
x3

=

q1
q2
q3

 ,

with m = m1 +m2 +m3 and smooth functions αi,βi : I → R.
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• We focus first on the functions βi:

– Zeros of β1(t) are not critical at all.

– If β2(t∗) or β3(t∗) are zero for t∗ ∈ I , then [E(t∗) F(t∗)] has a trivial row. Then {E,F} is not
qualified on I , cf. Definition 4.1 and the necessary solvability condition (57) is violated as
in Example 7.3.

• Let us suppose now that β2 and β3 have no zeros and focus on α1:

– Zeros of α1(t) obviously cause a singular ODE α1(t)x′1 +β1(t)x1 = q1.

– If α1 has no zeros, then the degree of freedom is constant d = m1 regardless of whether the
αi, i = 2,3, have zeros or not.

• Let us suppose now that α1, β2 and β3 have no zeros and focus on α2, α3:

– For α2(t) ̸= 0, α3(t) ̸= 0 for all t ∈ I , the DAE is regular with index µ = max{m2,m3}.

– For m2 ≥ m3 and α2(t) ̸= 0 for all t ∈ I , the DAE has differentiation index µ = m2 and all
points t∗ such that α3(t∗) = 0, but α3 does not identically vanish in a neighborhood of t∗, are
harmless critical points.

– For m2 > m3, all points t∗ such that α2(t∗) = 0, but α2 does not identically vanish in a neigh-
borhood of t∗, are harmless critical points.

– For m2 > m3, if α2 vanishes identically on a subinterval I∗ ⊂ I , then the DAE restricted to
this subinterval has differentiation index µ ≤ m3 < m2.

– In general it may happen, if both α2 and α3 vanish on a subinterval, that there the index
reduces to one.

In general, for αi(t) ̸= 0, β j(t) ̸= 0 for i = 1,2,3 and j = 2,3, by construction it holds

r = m1 +(m2 −1)+(m3 −1),

µ = max{m2,m3},

θi =


2 for i ≤ min{m2 −2,m3 −2},
1 for min{m2 −2,m3 −2}< i ≤ µ −2,
0 else,

d = m1.

For instance, for m1 = 4,m2 = 2,m3 = 3 this means

r = 7, µ = 3, θ0 = 2,

θ1 = 1, θ2 = 0, d = 4.

In general, zeros of αi or β j imply a change of these characteristic values.

For general linear DAEs, the components are intertwined in a complex manner, such that it is not possible
to guess directly whether zeros of some coefficients in {E,F} are critical or not. However, monitoring
these characteristic values may provide crucial indications.
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8 Main equivalence theorem concerning regular DAEs and further
comments on regularity and index notions

8.1 Main equivalence theorem concerning regular DAEs

We finally summarize the main equivalence results of the preceding sections in statements for regular
pairs {E,F} and associated DAEs (5) on the interval I . Each of the involved equivalent DAE frame-
works is based on a number of specific characteristics. The characteristic values correspond to require-
ments for constant dimensions of subspaces or ranks of matrix functions. Recall that we always assume
for regularity that the matrix functions E,F : I →Rm×m are sufficiently smooth and E has constant rank
r.

In the previous chapters, we precisely described the relationships between the individual characteristics
of each concept and the θ -values (8),

θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0,

introduced in our basic regularity Definition 4.4. The following main theorem emphasizes the univer-
sality of the θ -characteristic, which is why we take the liberty of calling them and r canonical charac-
teristics, which for regular DAEs in particular indicate the dynamical degree of freedom d = dimScan

and the inner structure of the canonical subspace Ncan, cf. Remark 4.5. We claim and highlight that the
characteristics θi can be found regardless of which DAE concept we start from.

Let us briefly consider the easier cases µ = 0,1:

• For constant r = m the regular DAE is a regular implicit ODE, and the index is µ = 0. We can
interpret this as θi = 0 for all i and d = m.

• For constant r < m the condition θ0 = 0 is equivalent to µ = 1. We interpret this as θi = 0 for all i
and d = r < m. Then we have a regular index-one DAE and a strangeness-free DAE, respectively.

Owing to Proposition 6.10 we know that the DAE associated to the pair {E,F} has differentiation in-
dex one if and only if the pair is regular with index one in the sense of Definition 4.4. Moreover, all
further index-1 concepts are consistent with each other, too, which is well-known. To enable simpler
formulations, we now turn to the case that the index is higher than or equal to two.

For regular DAEs with index µ ≥ 2 we have seen that θ0 > 0 follows by definition, as will be specified
in the following. For the sake of uniformity, in general for i > µ −2 we set θi = 0, cf. Remark 5.11.

Theorem 8.1 (Main Equivalence Theorem). Let E,F : I → Rm×m be sufficiently smooth, and µ ∈ N,
µ ≥ 2.

Part A (Equivalence): The following 13 assertions are equivalent in the sense that the characteristic
values (constants) of each of the statements can be uniquely reproduced by those of any other statement:

(0) The pair {E,F} is regular on I with index µ ∈ N according to Definition 4.4, with the associated
characteristics

r = rankE, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, θi := dim(kerEi ∩Si).

(1) The pair {E,F} is regular on I with index µ ∈ N according to Definition 4.3, with the associated
characteristics

r = r0 > r1 > .. . > rµ−1 = rµ , ri := rankEi.

(2) The pair {E,F} is regular on I with elimination index µE = µ according to Definition 5.1, with the
associated characteristics

r = rE
0 > rE

1 > .. . > rE
µ−1 = rE

µ , rE
i := rankEE

i .
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(3) The pair {E,F} is regular on I with dissection index µD = µ according to Definition 5.2, with the
associated characteristics

r = rD
0 ≤ rD

1 ≤ ·· · ≤ rD
µ−1 < rD

µ = m, rD
i := rankED

i = rD
i−1 +aD

i−1.

(4) The pair {E,F} is regular on I with strangeness index µS = µ −1 according to Definition 5.3, with
associated characteristic tripels

(rS
i ,a

S
i ,s

S
i ), i = 0, . . . ,µ −1, rS

0 = r, sS
µ−1 = 0.

(5) The pair {E,F} is regular on I with tractability index µT = µ according to Definition 5.5, with
associated characteristics

r = rT
0 ≤ rT

1 ≤ ·· · ≤ rT
µ−1 < rT

µ = m, rT
i = rankGi.

(6) The pair {E,F} can be equivalently transformed to block-structured Standard Canonical Form (14),
in which the nilpotent matrix function N(t) = (Ñi j(t))

µ

i, j=1, Ñi, j : I → Rl̃i×l̃ j , is block-upper-
triangular, has nilpotency index µ on I , and has full row-rank blocks on the secondary block
diagonal, with characteristics

1 ≤ l̃1 ≤ ·· · ≤ l̃µ , l̃i = rank Ñi,i+1, i = 1, . . . ,µ −1, l̃µ = m− r,r := rankE.

(7) The pair {E,F} can be equivalently transformed to block-structured Standard Canonical Form
(14), in which the nilpotent matrix function N(t) = (Ni j(t))

µ

i, j=1, Ni, j : I → Rli×l j , is block-upper-
triangular, has nilpotency index µ on I , and has full column-rank blocks on the secondary block
diagonal, with characteristics

l1 ≥ ·· · ≥ lµ , l1 = m− r, li+1 = rankNi,i+1, i = 1, . . . ,µ −1,r := rankE.

(8) For the pair {E,F} the DAE (1) has regular differentiation index µrdi f f = µ on I according to
Definition 6.16, with associated characteristics

r[0] = r, r[i] < r[i−1]+m, i = 1, . . . ,µ −2, r[µ−1] = r[µ]+m, r[i] := rankE[i].

(9) For the pair {E,F} the DAE (1) has projector-based differentiation index µ pbdi f f = µ on I accord-
ing to Definition 6.20, with associated characteristics

r[0] = r, r[i] < r[i−1]+m, i = 1, . . . ,µ −2, r[i] := rankE[i],

ρ0 ≤ ·· · ≤ ρµ−2 < ρµ−1 = m, ρi := m−dimkerE ∩S[i].

(10) For the pair {E,F} the DAE (1) has projector-based differentiation index µ pbdi f f = µ on I ac-
cording to Definition 6.21, with associated characteristics

rB
[0] = r, rB

[i] < rB
[i−1]+m, i = 1, . . . ,µ −2, rB

[µ−1] = rB
[µ]+m, rB

[i] := rankB[i].

(11) For the pair {E,F} the DAE (1) has differentiation index µdi f f = µ on I according to Defini-
tion 6.8 and, addionally, also the matrix functions E[i], i < µ , feature constant on I , so that the
characteristics are

r[0] = r, r[i] < r[i−1]+m, i = 1, . . . ,µ −2, r[µ−1] = r[µ]+m, r[i] := rankE[i].

(12) For the pair {E,F} the DAE (1) satisfies the Strangeness-Free-Hypothesis (6.27) on I with µ̂ =
µ −1 with associated characteristics â and d̂ = m− â, and, addionally, also the matrix functions
E[i], i < µ̂ , feature constant on I , so that the characteristics are

r[0] = r, r[i] < r[i−1]+m, i = 1, . . . ,µ −2, r[µ−1] = µm+ â, r[i] := rankE[i].
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Part B (Relations between characteristics):

Let the DAE (1) be regular with index µ in the sense of Definition 4.4 or one of the equivalent statements
of Part A. Then the following relations concerning the diverse characteristic values are valid:

r0 = rE
0 = rS

0 = rD
0 = rT

0 = r,

l1 = m− r, l̃µ = m− r,

and for i = 1, . . . ,µ −1

ri = rE
i = rS

i = r−
i−1

∑
j=0

θ j,

rD
i = rT

i = ρi−1 = m−θi−1,

sS
i = θi, aS

i = m− r+
i−1

∑
j=0

θ j −θi,

li+1 = θi−1, l̃i = θµ−i−1,

r[i] = rankB[i] = rankD[i] = rankE[i] = km+ r−
i−1

∑
j=0

θ j.

Conversely, for i = 0, . . . ,µ −1, we obtain

θi = ri − ri+1 = sS
i = rS

i − rS
i+1 = rE

i − rE
i+1 = m− rT

i+1 = m− rD
i+1

= m−ρi = r[i]− r[i+1]+m,

which leads to θµ−1 = 0, and

θi = li+2 = l̃µ−i−1, for i = 0, . . . ,µ −2.

Part C (Description of resulting main features):

Let the DAE (1) be regular with index µ in the sense of Definition 4.4 or one of the equivalent statements
of Part A. Then the following descriptions concerning the dynamical degree of freedom d of the DAE and
the number of constraints a are given:

d = r−
µ−2

∑
i=0

θi,

a = m−d = m− r+
µ−2

∑
i=0

θi,

a = â = µm− r[µ−1] =
µ

∑
i=1

li =
µ

∑
i=1

l̃i,

d = d̂ = m− â = r[µ−1]− (µ −1)m = r[µ]−µm.

Proof. Part A:

• The equivalence of two of the five statements (0), (2), (3), (4), and (5), is given by Theorem 5.9.
As main means of achieving this serve [32, Theorem 4.3] and Proposition 4.9.

• The equivalence of two of the statements (0), (8), (9), (11), (12) has been provided by Theorem
6.31. An important step for this proof is the equivalence of (0) and (8) that has been verified by
Theorem 6.17 (1).

• The equivalence of (0) and (1) has been verified in Section 4.1 right after Definition 4.3.
• The equivalence of (0) and (6) as well as that of (0) and (7) are implications of Theorem 5.15 and

Proposition 4.9.
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• The equivalence of (9) and (10) has been shown in Section 6.5 right after Definition 6.20.

Part B and Part C: These are straightforward summaries of the related findings of Theorem 5.10,
Corollary 5.16, Theorem 6.32, and Corollary 5.12.

Obviously, each one of the equivalent statement (0)-(12) from Theorem 8.1 implies both statements (1)
and (2) from Theorem 6.30, but the reverse direction does not apply, cf. discussion in Section 6.7 and
examples in Section 7.

Indeed, (1)-(2) from Theorem 6.30 only require constant r[µ] and d.

In case of regularity the dynamical degree of freedom d = r−∑
µ−2
i=0 θi is precisely the dimension of the

flow-subspace of the DAE Scan. This basic canonical subspace is characterized in different manners in
literature, whereas we emphasized

• Scan = im C (see Section 4.1),
• Scan = im Πcan (see Section 5.4),
• Scan = S[µ−1] (see Section 6.2).

The second canonical subspace Ncan is defined to be the so-called canonical complement to the flow-
subspace,

Scan(t)⊕Ncan(t) = R, t ∈ I .

Actually Ncan accommodates important information about the structure of the DAE and the necessary
differentiations. This is closely related to the perturbation index. Only an in a way uniform inner structure
of that part of the DAE which resides in the subspace Ncan ensures a uniform perturbation index over the
given interval. We know the representations:

• Ncan = kerC∗
ad jE (see Proposition 5.8),

• Ncan = kerΠcan = kerΠµ−1 = N0 +N1 + · · ·+Nµ−1 (see Section 5.4).

If the DAE is in standard canonical form[
Id 0
0 N(t)

]
x′(t)+

[
Ω(t) 0

0 Ia

]
x(t) = q(t), t ∈ I , (101)

where N is strictly upper triangular, then the canonical subspaces are simply

Scan = im
[

Id
0

]
, Ncan = im

[
0
Ia

]
,

and the behaviour of the particular solution components proceeding in Ncan is governed by the properties
of the matrix function N. Clearly, if N is constant, which means that the DAE is in strong standard
canoncal form, then the DAE is regular with index µ and characteristics θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, µ

is the nilpotency index of the matrix N and the Jordan normal form of the matrix N shows34

θ0 Jordan blocks of order ≥ 2,

θ1 Jordan blocks of order ≥ 3,

...

θµ−3 Jordan blocks of order ≥ µ −1,

θµ−2 Jordan blocks of order µ.

34Compare also Remark 4.5 and Section 5.6.
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Eventually, each DAE being transformable into strong standard canonical form is regular, and its char-
acteistics are determined by the structure of the nilpotent matrix N. This gives the characteristic values

r and θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0

a rather phenomenological background apart from special approaches and the further justification to call
them canonical. The latter is all the more important if our following conjecture proves correct.

Conjecture 8.2. Let E,F : I → Rm×m be sufficiently smooth. If the pair {E,F} is regular with index
µ ≥ 2 then it is transformable into strong standard canonical form and the Jordan normal form of the
matrix N is exactly made of

m− r−θ0 Jordan blocks of order 1,

θ0 −θ1 Jordan blocks of order 2,

θ1 −θ2 Jordan blocks of order 3,

...

θµ−3 −θµ−2 Jordan blocks of order µ −1,

θµ−2 Jordan blocks of order µ.

8.2 What is regularity supposed to mean?

As we have seen, our formal basic definition of regularity in Section 4.1 agrees with the view of many
other authors. We keep in mind that the characteristic values in all corresponding concepts are derived
from specific rank functions and represent constant rank requirements. The equivalence result then allows
the simultaneous application of all the corresponding different concepts.

We associate regularity of a linear DAE Ex′+Fx = q, E,F : I → Rm, with the following five criteria
ensuring a regular flow combined with a homogenous dependency on the input function q on the given
interval :

(1) The homogenous DAE Ex′ +Fx = 0 has a finite-dimensional solution space Scan(t), t ∈ I , with
constant dimension d = dimScan(t), t ∈ I , which serves as dynamical degree of freedom of the
system.

(2) The DAE possesses a solution at least for each q ∈ C m(I ,Rm).
(3) Regularity, the index µ , and the canonical characteristic values

r < m, θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0, d = r−
µ−2

∑
k=0

θk, (102)

persist under equivalence transformations.
(4) Regularity generalizes the Kronecker structure of regular matrix pencils.
(5) If the DAE is regular with canonical characteristic values (102) on the given interval I , then its

restriction to any subinterval of I is regular with the same characteristics.

In other words, a regular linear DAE is characterized by its two canonical subspaces Scan and Ncan, both
featuring a homogenous structure on the given interval.

A point t∗ ∈I is called a regular point of the DAE, if there is an open interval I∗ containing t∗ such that
the DAE is regular on I∗∩I . Otherwise the point t∗ is called a critical point. If the DAE is regular on
the interval I , then all points of I are regular points. It should not go unmentioned that there are also
other names for this, including singular point in [55, Chapter 4] and exceptional point in [37, Page 80].
We prefer the term critical because in our opinion it leaves it open whether there are strong singularities
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in the flow or harmless critical points in solvable systems that only become apparent at rigorously low
smoothness properties as pointed out, e.g., in [41, Section 2.9], see also Definition 6.34. We refer to [55,
Chapter 4] for a careful investigation and classification of points failing to be regular.

The class of regular linear DAEs comprises exactly all those DAEs that can be transformed equivalently
into a structured SCF from Theorem 5.15, that is, the inner algebraic structure of the subspace Ncan(t), t ∈
I , which represents the pointwise canonical complement to the flow-subspace Scan(t), does not vary with
time. Correspondingly, there is a homogenous structure on the whole interval I of how the solutions
depend on derivatives of the right-hand side q. In particular, the perturbation index does not change if
one turns to subintervals.

The class of almost regular linear DAEs established in Definition 6.35 coincides with the class of solv-
able DAEs by Definition 2.1, see also Remark 6.13, and it is actually more capacious than the class of
regular linear DAEs, which are all solvable, of course. Almost regular systems possess a well-defined
differentiation index µdi f f and they satisfy the SF-Hypothesis with µ̂ = µdi f f −1. They feature a dense
set of regular points. More precisely, they satisfy the above regularity issues (1), (2), and (4). Issue
(5) is not valid. Almost regular systems allow for so-called harmless critical points which do not affect
the flow in sufficiently smooth problems. Instead of issue (3) one has merely a flow-subspace Scan(t) of
constant dimension d and a pointwise canonical complement Ncan(t) of constant dimension a = m− d,
but the inner algebraic structure of the latter is no longer constant. The perturbation index may vary on
subintervals.

8.3 Regularity, accurately stated initial condition, well-posedness, and ill-posedness

Let {E,F}, E,F : I = [a,b]→ Rm, be a regular pair with index µ and canonical characteristics r and
θ0 ≥ ·· · ≥ θµ−2 > θµ−1 = 0. The DAE has the dynamical degree of freedom d. Obviously, for fixing
a special solution from the flow one needs precisely d scalar requirements but also a right way to frame
them. We consider the initial value problem (IVP)

Ex′+Fx = q, (103)

Gx(a) = γ, γ ∈ im G, (104)

with sufficiently smooth data and the matrix G ∈ Rs×m, s ≥ d, rankG = d.

The initial condition (104) for the DAE (103) is said to be accurately stated, e.g. [32, Section 5], [42,
Definition 2.3], if there is a solution x∗, each IVP with slightly perturbed initial condition,

Ex′+Fx = q, (105)

Gx(a) = γ +∆γ, ∆γ ∈ im G, (106)

has a unique solution x, and the inequality

max
t∈[a,b]

|x(t)− x∗(t)| ≤ K|∆γ|

is valid with a constant K. As pointed out in [32], the two canonical time-varying subspaces, the flow-
subspace Scan and its canonical complement Ncan, which are for a long time established in the context of
the projector based analysis, e.g., [41], are well-defined for regular DAEs and the initial condition (104)
is accurately stated, exactly if

kerG = Ncan(a). (107)

This assertion is evident, if one deals with a DAE in SCF, that is,

u′+Ωu = f ,

Nv′+ v = g, (108)
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and

E =

[
Id 0
0 N

]
, F =

[
Ω 0
0 Ia

]
, Scan = im

[
Id
0

]
, Ncan = im

[
0
Ia

]
, G =

[
Id 0

]
.

To achieve easier insight we suppose a constant N in (108). Denoting by PNi a projector matrix along the
nullspace of the power Ni, such that Ni = NiPNi , the unique solution v∗ corresponding to g is given by
formula

v∗ = g+
µ−1

∑
i=1

(−N)i(PNig)(i), (109)

which precisely indicates all involved derivatives of the right-hand side g. It becomes evident that each
initial requirement for v∗(a) would immediately passed to consistency condition for the righthand side g
and its derivatives. Condition (107) has to prevent this.

If the initial conditions are stated accurately, small changes only have a low effect on the solution. Un-
fortunately, this can look completely different if the right side of the DAE itself is changed. The smallest
changes in g can cause huge amounts in the solution. We take a closer look to the initial value problem
with perturbed DAE,

Ex′+Fx = q+∆q, (110)

Gx(a) = γ, γ ∈ im G,

and suppose kerG = Ncan. Again we turn to the SCF, which decomposes the original problem into an
IVP for a regular ODE living in Rd and an index-µ-DAE with zero-dynamical degree of freedom,

u′+Ωu = f +∆ f , u(a) = γ,

Nv′+ v = g+∆g. (111)

Again, to easier understand what is going on, we suppose a constant N. Then the unique solution of (111)
reads

v = g+∆g+
µ−1

∑
i=1

(−N)i(PNi(g+∆g))(i). (112)

According to the traditional definition of Hadamard, an operator equation Ty = z with a linear bounded
operator T between Banach spaces Y and Z is called well-posed if T is a bijection, and ill-posed other-
wise. In the well-posed case, there is a unique solution y ∈Y to each arbitrary z ∈ Z, and the inverse T−1

is bounded, too, such that, if z tends to z∗ in Z, then y := T−1z tends in Y necessarily to y∗ := T−1z∗, and

∥y− y∗∥Y ≤ ∥T−1∥Z→Y ∥z− z∗∥Z.

Whether a problem is well-posed or ill-posed depends essentially on the choice of the function spaces Y
and Z, which, however, should be practicable with respect to applications. It is of no use if errors to be
investigated are simply ignored by artificial topologies, see [44, Chapter 2] for a discussion in the DAE
context.

What about the operator L : Y → Z representing the IVP (103), (104) with accurately stated homogeneous
initial condition, that is γ = 0. It makes sense to set

Lx = (Ex)′−E ′x+Fx, x ∈ Y

Y = {y ∈ C ([a,b],Rm) : Ey ∈ C 1([a,b],Rm),Gy(a) = 0}, Z = C ([a,b],Rm).

If the DAE has index µ = 1, then Ncan = kerG = kerE, in turn

Y = {y ∈ C ([a,b],Rm) : Ey ∈ C 1([a,b],Rm),Ey(a) = 0},
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and L is actually a bijection, e.g., [29, 41, 44]. A particular result is then the inequality

max
t∈[a,b]

|x(t)− x∗(t)| ≤ M max
t∈[a,b]

|∆q(t)|, (113)

for x∗ and x corresponding to q and q+∆q, respectively. For higher-index cases, that is µ ≥ 2 and N ̸= 0
in the SCF, the situation is more complex. Then the operator L is by no means surjective anymore. Its
range im L ⊂ Z is a proper, nonclosed subset so that L is not a Fredholm operator either. This can be
recognized by the simplified case E = N,F = I, d = 0, x = v. Regarding that

rankPN = rankN =
µ−1

∑
j=0

θ j, rankPNi = rankNi =
µ−1

∑
j=i−1

θ j, i = 2, . . . ,µ,

formula (109) leads to the representation

im L = {g ∈ C ([a,b],Rm) : PNig ∈ C i([a,b],Rm), i = 1, . . . ,µ −1},

which rigorously describes in detail all involved derivatives. This representation also reveals that the
DAE index is only one important aspect, but that the exact structure can only be described by all the
canonical characteristic values together. Moreover, from (109), (112) it results that

v− v∗ = ∆g+
µ−1

∑
i=1

(−N)i(PNi(∆g))(i),

which makes an inequality like (113) impossible.

We emphasize that an IVP (103), (104) with accurate initial conditions is a well-posed problem in this
setting only in the index-one case. In the case of a DAE (103) with a higher index µ ≥ 2, an ill-posed
problem generally arises. Thus, a higher-index regular DAE always has a twofold character, it is on the
one hand a well-behaved dynamic system and on the other hand an ill-posed input-output problem.

To give an impression of this ill-posedness, we will mention a very simple example elaborated in [44,
Example 2.3], in which E and F are constant 5×5 matrices, the matrix pencil is regular with index four,
the input is q = 0, the corresponding output is x∗ = 0, the perturbation ∆q has size εn−1 and tends in Z
to zero for n tending to ∞, but the corresponding difference x− x∗ shows size εn2, growths unboundedly
for increasing n, and tends in Y by no means to zero.

For more profound mathematical analyses, for instance in [33] to provide instability thresholds, individ-
ual topologies specially adapted to im L can be useful. Then one enforce a bounded bijection L : Y → Z̃
by setting Z̃ = im L and equipping Z̃ with an appropriate norm to become a Banach space, however,
you need a precise description of im L for that. Of course, in this decidedly peculiar setting the problem
becomes well-posed in this solely theoretical sense [44].

At this point it must also be mentioned that in some areas of mathematics the question of continuous
dependencies is completely ignored and yet the term formally well-posed is used, e.g. [56, p. 298].
Unfortunately, this can lead to considerable misunderstandings, as the above mentioned simple example
[44, Example 2.3] shows already.

The aim of [56] is to make results from the algebraic theory of linear systems usable for DAEs, in par-
ticular methods of symbolic computation together with the theory of Gröbner bases to provide formally
well-posed problems. Among others it is figured out with a size-three Hessenberg DAE that the first
Gröbner index γ1 recovers the strangeness index µS and the differentiation index by γ1 = µdi f f − 1.
Moreover, [56, Proposition 5.3] provides the relation µp ≤ γ1 + 1 as upper bound of the perturbation
index for DAEs being not under-determined. Clearly, it is well-known that µp = µ = µT = µS + 1 for
regular linear DAEs, and µp = µdi f f for DAEs being solvable in the sense of Definition 2.1. However, for
DAEs being over-determined the differentiation index is not defined, but strangeness index and tractabil-
ity index are quite different, [31, 41]. It seems to be open whether any of them is recovered by an Gröbner
index.
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8.4 Other views on regularity that we do not adopt

In early work, when less was known about DAEs, regularity was associated with special technical re-
quirements. But there are also different views on the matter in current research. We pick out just a few
of the different versions.

At the beginning it was assumed that the so-called local pencils λE(t) + F(t), for fixed t, and their
Kronecker index were relevant for the characterization not only of DAEs with constant coefficients. The
associated term is the so-called local index. In contrast, then the further index terms were given the suffix
global. Today it goes without saying that our index terms in this sense are of a global nature, i.e. related
to an interval, and we avoid the global suffix.

• In the famous monograph [7, Page 23] regularity of the DAE Ex′+Fx = q is considered as regularity
of the associated local matrix pencils λE(t)+F(t), t ∈ I . The intention behind this is to obtain feasible
numerical integration methods. However, it is ibidem pointed out that this regularity does not imply
solvability in the sense of Definition 2.1. For instance, the DAE with coefficients

E(t) =
[
−t t2

−1 t

]
, F(t) =

[
1 0
0 1

]
, t ∈ I = [−1,1],

features solely regular local pencils, det(λE(t)+F(t)) = 1, t ∈ I . However, it can be checked that,
given an arbitrary smooth function γ : I → R,

x∗(t) = γ(t)
[

t
1

]
, t ∈ I

solves the homogenous DAE. This specific pair {E,F} is pre-regular (r = 1,θ = 1) but not regular in our
context, since the next pair {E1,F1} is no longer pre-regular, im [E1 F1] = {0} ̸= Rr.

Apart from the inappropriate definition of regularity, the focus at the time on numerical methods bore
many fruit and, with the exclamation ”Differential/Algebraic Equations are not ODEs”, [47], generated
a great deal of interest in DAEs.

• With a completely different intention, namely to obtain theoretical solvability statements, in the
monographs [6, 59] it is assumed for regularity, among other things, that there is a number c such that
cE(t)+F(t) is non-singular for all t ∈ I . Even for the pair

E(t) =
[

1 t
0 0

]
, F(t) =

[
0 0
1 t

]
,

that we recognize today as regular with index two and characteristic r = 1,θ0 = 1,θ1 = 0, this requirement
is obviously not met. Nonetheless, in [6, Chapter 5], [59, Chapter 2] devoted to this kind of regular system
some statements about solvability are provided. However, these results are very restricted by the then
current working tools such as the Drazin inverse and the like.

• In [3] regularity is understood to mean equivalent transformability to SCF. The class of DAEs that
can be transformed into SCF is more comprehensive than the regular DAEs defined by Definition 4.4,
and also includes DAEs with harmless critical points, which we have excluded for good reason. On the
other hand, the class of DAEs being transformable into an SCF is only a subclass of almost regular DAEs
according to the Definition 6.35, which contains DAEs featuring further harmless critical points.

• We quote from [37, p. 154], in which Hypothesis 3.48 is the local name for the SF-Hypothesis 6.27:

“...Hypothesis 3.48 is the correct way to define a regular differential-algebraic equation. Regularity here
is to be understood as follows. A linear problem satisfying Hypothesis 3.48 fixes a strangeness-free
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differential-algebraic equation.... The underlying differential-algebraic operator ... with appropriately
chosen spaces, is invertible and the inverse is continuous.”

This definition de facto declares the solvable DAEs to be regular, against what we already argued in the
Subsection 8.2. What is more, the attempt to justify this is somewhat confusing. Surely, strangeness-free
DAEs, i.e. index-zero or index-one problems, are well-posed operator equations in natural spaces, which
is well known at least through [29, 41, 44], see also Subsection 8.3 above. In detail, the original DAE
Ex′+Fx = q which satisfies the SF-Hypothesis35 is remodelled to

Y ∗Ex′+Y ∗Fx = Y ∗q,

Z∗F[ν−1]x = Z∗q[ν−1] =: p.

But to analyze the original equation, perturbations of the right-hand side q+∆q are appropriate, which
leads to p+ Z∗∆q[ν−1] within the transformed DAE. This fact is not recognized and only continuous
functions ∆ p are applied, which actually hides the DAE structure. In the context of local statements on
nonlinear DAEs, e.g. [37, p. 164] this seems to be even more critically.

• Recently, in the textbook [38], that is the second edition of [37], the following regularity definition
(that we adapted to our notation) is emphasized as central notion.

[38, Definition 3.3.1]: The pair {E,F} and the corresponding DAE Ex′+Fx = q are called regular if

(i) the DAE is solvable for every sufficiently smooth q ,
(ii) the solution is unique for every t0 in a compact interval I and every consistent initial condition

x0 ∈ Rm36 given at t0 ∈ I ,
(iii) the solution depends smoothly on q , t0, and x0 .

The items (i) and (ii) capture the solvable systems, see Definition 2.1, and almost regular DAEs, see
Definition 6.35, since harmless critical points are allowed. However, item (iii) is inappropriate:

• On the one hand, for DAEs continuous dependency or even smooth dependency on consistent
values x0 cannot be assumed in general, not even for index-one DAEs. For arbitrary perturbations
∆0 ∈ Rm, the vector x0 +∆0 is not necessarily consistent. Indeed, the perturbation ∆0 has to be
restricted accordingly such that ∆0 ∈ Scan(t0).

• On the other hand, as sketched in Section 8.3, starting from corresponding spaces of continuous
and differentiable functions, continuous dependence of the DAE solutions on the inhomogeneity
q is exclusively given for index-one problems (e.g. [29], [41], [44]). For higher-index DAEs,
surjectivity needs sophisticated, strongly problem-specific function spaces, see. [44].

• In the monograph devoted to algebro-differential operators having finite-dimensional nullspaces [14]
DAEs are organized in the framework of a ring MA of linear differential and integral operators acting
in C ∞. In this context, the first order operator Λ1x = Ex′+Fx is called regular if E(t) = I on the given
interval. If it exists, the minimal order ν of a differential operator Λν belonging to the ring MA, which
serves as left regularization operator for Λ1 such that Λν ◦Λ1 is regular, is called non-resolvedness index
of the operator Λ1, see also Remark 6.15. This is nothing else than the differentiation index.

35See Subsection 6.6
36In [38] x0 ∈ Cm is considered.
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9 About nonlinear DAEs

There are numerous important studies of nonlinear DAEs that are based on special structural require-
ments, in particular, such as for simulating multibody system dynamics and circuit modeling, which are
not to be reflected here in detail. We refer to [1, 54] for overviews. Here we look solely at general
unstructured non-autonomous DAEs

f (t,x(t),x′(t)) = 0, t ∈ I , (114)

given by a sufficiently smooth function f : I f ×D f ×Rm → Rm, I f ×D f ⊆ R×Rm open, and ask
about their general properties. The only exception to the restriction of the structure, which is allowed in
some cases below, is the assumption that the subspace kerDy f (t,x,y) is independent of the variables y or
(x,y). If circumstances require, a change to the augmented form

f (t,x(t),y(t)) = 0, y(t)− x′(t) = 0 t ∈ I .

can be made37.

As we have already seen with linear DAEs, certain subspaces play a crucial role, which will also be the
case here. However, while in the linear case the subspaces only depend on one parameter, namely t ∈ R,
there are now the parameters (t,x) ∈ Rm+1 and more. These subspaces are handled by means of both
projector functions and base functions. If such a subspace depends only on t varying on a given interval
I and has there constant dimension, then both smooth basic functions and smooth projector functions
defined on the entire interval are available. In contrast, if a subspace depends on a variable z ∈Rn, n ≥ 2,
and has constant dimension, then there are globally defined smooth projector functions, but smooth base
functions only exist locally, e.g., [41, Sections A3, A4]. This must be taken into account. It facilitates
the use of projector functions, which are usually more difficult to determine in practice, and it makes the
practically often easier way of dealing with bases in theory more complicated.

It should be recalled that, in the case of nonlinear ODEs, the uniqueness of the solutions is no longer
guaranteed with merely continuous vector fields. A vector field of class C 1 is locally Lipschitz and
hence ensures uniqueness. The same applies to vector fields on smooth manifolds. This must be taken
into account when it comes to a regularity notion, which should include uniqueness of solutions to the
corresponding initial value problems.

We can only give a rough sketch of the approaches for nonlinear DAE and confine ourselves to the rank
conditions used in each case.

In the present section, in order to achieve better clarity in all of the very different following approaches,
we use the descriptions g′(t) but also d

dt g(t) for the derivatives of a function g(t) of the independent
variable t ∈ R. For the partial derivatives of a function g(u,v, t) depending on several independent vari-
ables u ∈ Rn,v ∈ Rk, t ∈ R we apply the description gu(u,v, t), gv(u,v, t), gt(u,v, t), but also Dug(u,v, t),
Dvg(u,v, t), Dtg(u,v, t).

9.1 Approaches by means of derivative arrays

The approaches via derivative arrays and geometric reduction procedures have been developed for non-
linear DAEs almost from the beginning [24, 7, 27, 51, 50, 37, 16, 20]. To treat the DAE

f (t,x(t),x′(t)) = 0, t ∈ I , (115)

37However, this is accompanied by an increase in the index!
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on I ×D ×Rm ⊆ I f ×D f ×Rm , one forms the derivative array functions [24, 7, 27, 37, 16]

F[k](t,x,x
1, · · · ,xk+1︸ ︷︷ ︸

y[k]

) =


f[0](t,x,x1)

f[1](t,x,x1,x2)
...

f[k](t,x,x1, · · · ,xk+1)

 ∈ R(k+1)m, (116)

for (t,x) ∈ I ×D ,

 x1

...
xk+1

=: y[k] ∈ Rkm+m, k ≥ 0,

in which

f[0](t,x,x
1) = f (t,x,x1),

f[ j](t,x,x
1, · · · ,x j+1︸ ︷︷ ︸

y[ j]

) = f[ j−1]
′
t(t,x,x

1, · · · ,x j︸ ︷︷ ︸
y[ j−1]

)+ f[ j−1]
′
x(t,x,y[ j−1])x

1 +
j

∑
i=1

f[ j−1]
′
xi(t,x,y[ j−1])x

i+1,

such that, for each arbitrary smooth reference function x∗ : I →Rm whose graph runs in I ×D it results
that

F[k](t,x∗(t),x
(1)
∗ (t), · · · ,x(k+1)

∗ (t)︸ ︷︷ ︸
x′∗[k]

) =


f (t,x∗(t),x′∗(t))

d
dt f (t,x∗(t),x′∗(t))

...
dk

dtk f (t,x∗(t),x′∗(t))

 .

By construction the sets L[k],

L[k] = {(t,x,y[k]) ∈ I ×D ×R(k+1)m : F[k](t,x,y[k]) = 0}, k ≥ 0, (117)

house the extended graphs of all smooth solutions x∗ : I → D of the DAE (115). The partial Jacobians
of the matrix function F[k] with respect to y[k] and to x show the structure,

E[k] = Dy[k]F[k] =


fx1

∗ fx1

. . .
∗ · · · ∗ fx1

 , F[k] = DxF[k] =


fx

∗
...
∗

 .

Using again the arbitrary reference function x∗ being not necessarily a solution and denoting

E∗(t) = fx1(t,x∗(t),x′∗(t)), F∗(t) = fx(t,x∗(t),x′∗(t)), t ∈ I ,

one arrives at matrix functions as introduced by (49) in Section 6.1, namely

E∗[k](t) = E[k](t,x∗(t),x
′
∗[k](t)) =


E∗(t)
∗ E∗(t)

. . .
∗ · · · ∗ E∗(t)

 ,

F∗[k](t) = F[k](t,x∗(t),x
′
∗[k](t)) =


F∗(t)
∗
...
∗

 .

This opens up the option of using linearization for handling and tracing back questions to the linear case.
Here too, as in the linear case, there are different views on rank conditions for the Jacobians. As we will

80
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see below, again, in the concepts of the (standard) differentiation index and of the strangeness index there
is no need for the Jacobians E[k] with lower k to have constant rank. In contrast, for the regular differ-
entiation index and projector based differentiation index, each of these Jacobians is explicitly supposed
to have constant rank which allows to use parts of the geometric operation equipment such as manifolds,
tangent bundles etc.

9.1.1 Differentiation index

What we now call the differentiation index was originally simply called the index and was introduced
into the discussion in [24, p. 39] as follows: Consider (116) as a system of equations in the separate
dependent variables x1, . . . ,xk+1, and solve for these variables as functions of x and t considered as
independent variables. If it is possible to solve for x1 for some finite k, then the index, µ , is defined as
smallest k for which (116) can be solved for x1(x, t). We quote the corresponding definition [7, Definition
2.5.1] that incorporates this idea:

Definition 9.1. The index ν of the DAE (115) is the smallest integer ν such that F[ν ] uniquely determines
the variable x1 as a continuous function of (x, t).

Unfortunately, this definition is rather vague, which triggered a lively discussion at the time. There were
subsequently a series of attempts at a more precise definition partly with a variety of new terms, see e.g.
[9]. We will come back to this below when dealing with the perturbation index, see also Example 9.19.
It should also not go unmentioned that what we call regular differentiation index below was also simply
called index in [27], and it was explicitly intended as an adjustment of the index notion in [24].

We underline that in [7] the above definition [7, Definition 2.5.1] is immediately followed by a propo-
sition [7, Proposition 2.5.1] from which we learn that the matter of the standard differentiation index of
nonlinear DAEs can be traced back to properties of the partial Jacobians as follows:

Proposition 9.2. [7] Sufficient conditions for

F[k](t,x,y[k]) = 0 (118)

to uniquely determine x1 as a continuous function of (x, t) are that the Jacobian matrix of F[k] with respect
to y[k] is 1−full with constant rank and (118) is consistent.

In the meantime, this has become established as one of the possible definitions being at the same time
the straightforward generalization of Definition 6.8:

Definition 9.3. The index ν of the DAE (115) is the smallest integer ν such that E[ν ] is 1−full with
constant rank and (118) is consistent.

9.1.2 Strangeness index

There is also a straightforward generalization of the SF-Hypothesis 6.27 with the strangeness index. We
adapt [37, Hypothesis 4.2] and [37, Definition 4.4] to our notation.

Hypothesis 9.4 (Strangeness-Free-Hypothesis for nonlinear DAEs). There exist integers µ̂, â, and
d̂ = m− â such that the set

L[µ̂] = {(t,x,y[µ̂]) ∈ I ×D ×R(µ̂+1)m : F[µ̂](t,x,y[µ̂]) = 0}

associated with f is nonempty and such that for every (t,x,y[µ̂]) ∈ L[µ̂] there exist a (sufficiently small)
neighborhood in I f ×D f ×R(µ̂+1)m in which the following properties hold:
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(1) We have rankE[µ̂](t,x,y[µ̂]) = (µ̂ +1)m− â on L[µ̂] such that there is a smooth matrix function Z of
size ((µ̂ +1)m)× â and pointwise maximal rank, satisfying Z∗E[µ̂] = 0 on L[µ̂].

(2) We have rankZ∗(t,x,y[µ̂])F[µ̂](t,x,y[µ̂]) = â such that there exists a smooth matrix function C of size
m× d̂, and pointwise maximal rank, satisfying Z∗E[µ̂]C = 0.

(3) We have rank f ′x1(t,x,x1)C(t,x,y[µ̂]) = d̂ such that there exists a smooth matrix function Y of size
m× d̂ and pointwise maximal rank, satisfying rankY ∗ f ′x1C = d̂.

Definition 9.5. Given a DAE as in (115), the smallest value of µ̄ such that f satisfies the SF-Hypothesis
9.4 is satisfied is called the strangeness index of (115). If µ̄ = 0 then the DAE is called strangeness-free.

9.1.3 Regular differentiation index

Next we follow the ideas of [27] to a nonlinear version of the regular differentiation index described for
linear DAEs in Subsection 6.4, which will turn out to be closely related to the geometric reduction and
thus to the geometric index. Suppose that the partial Jacobians E[k] have constant rank for all k ≥ 0. The
set

C̃[k] = {(t,x) ∈ I ×D : ∃y[k] ∈ Rkm+m,F[k](t,x,y[k]) = 0}

is called constraint manifold of order k, and to each (t,x) ∈ C̃[k] one obtains the manifold M[k](t,x) and
its tangent space given by

M[k](t,x) = {y[k] ∈ Rkm+m : F[k](t,x,y[k]) = 0}, T M[k](t,x;y[k]) = kerE[k](t,x,y[k]).

The following generalizes Definition 6.16 via linearization.

Definition 9.6. The DAE (115) has regular differentiation index ν if the partial Jacobians E[k] have
constant rank for k ≥ 0, C̃[ν ] is non-empty, T[ν ]M[ν ](t,x)38 is a singleton for each (t,x) ∈ C̃[ν ], and ν is the
smallest such integer.

We note that, analogously to Subsection 6.4, T[ν ]M[ν ](t,x) is a singleton, if and only if
T[ν ] kerE[ν ](t,x,y[ν ]) = 0 for all y[ν ] ∈ M[ν ].

The main intention in [27] is giving index reduction procedures a rigorous background. In particular,
owing to [27, Theorem 16], the transfer from the DAE (115) to

(I−W (t,x(t),x′(t))) f (t,x(t),x′(t))

+W (t,x(t),x′(t))Dx f (t,x(t),x′(t))x′(t)+Dt f (t,x(t),x′(t)) = 0, t ∈ I , (119)

subject to the initial restriction f (t0,x(t0),x′(t0)) = 0, reduces the (regular differentiation) index by one.
Thereby, W (t,x,y) denotes the orthoprojector function along im Dy f (t,x,y).

Finally, in this segment it should be mentioned that in [13] for autonomous quasi-linear DAEs (with C ∞

functions) the version of the (regular) differentiation index from [27] was recast in a rigorous geometric
language and shown to be consistent with the geometric index, cf. Remark 9.11 below.

38As in Section 6.4 T[ν ] = [Im0 · · ·0] ∈ Rm×(m+mν) is a truncation matrix.
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9.1.4 Projector-based differentiation index

Next we turn to the concept associated with the projector based differentiation index. Supposing that the
nullspace ker fx1(t,x,x1) is actually independent of the variables (x,x1) and does not change its dimen-
sion, with the orthoprojector P(t) along ker fx1(t,x,x1) it results that

f (t,x,x1) = f (t,x,P(t)x1), (t,x,x1) ∈ I ×D ×Rm,

and the DAE (115) rewrites to

f (t,x(t),(Px)′(t)−P(t)x(t)) = 0, t ∈ I .

This makes clear that the given DAE accommodates an equation (Px)′(t) = φ(x(t), t). The idea now is
to extract only the remaining component (I −P(t))x in terms of (P(t)x, t) from the derivative array. As
in the linear case, the further matrix functions B[k] : I → R(mk+m)×(mk+m),

B[k] =

[
P 0

F[k−1] E[k−1]

]
play their role here.

Definition 9.7. The DAE (115) has projector-based differentiation index ν if the matrix functions B[k]
have constant rank for k ≥ 0, ν is the smallest integer such that B[ν ] is 1-full.

In contrast to Definition 9.3, we do not assume the consistency of (118) in the above definition. Never-
theless, to compute consistent initial values, of course

F[ν−1](t,x,y[ν−1]) = 0

has to be consistent.

9.2 Geometric reduction

The geometric reduction procedures are intended right from the start for nonlinear DAEs [53, 51, 27, 55].
While [27], see Definition 9.6 above, still uses a rather analytical representation with the rank theorem as
background, [51] and [53, 50] use the means of geometry more consistently. The explicit rank conditions
from [27] become inherent components of the corresponding terms, the rank theorem is replaced by the
subimmersion theorem etc.39 A clear presentation of the issue for autonomous DAEs is given in [50].
Here we follow the lines of [51] whose depiction of nonautonomous DAEs fits best with the rest of the
material in our treatise.

The stated intention of [51] is to elaborate a concept of regularity for general non-autonomous DAEs
(115) considered on the open connected set I ×D ×Rm.

Recall some standard terminology for this aim. For a ρ-dimensional differentiable manifold M we con-
sider the tangent bundle T M of M and the tangent space TzM of M at z ∈ M. We deal with manifolds M
being embedded in R×Rm, that is, sub-manifolds of R×Rm, and we can accordingly assume that TzM
has been identified with a ρ-dimensional linear subspace of R×Rm.

Denote by π1 : R×Rm → R the projection onto the first factor in R×Rm, and let J be the open set
of R with π1(M) = J . Introduce further the restriction π : M → J of π1 to M, that is π = π1|M.
Then the tripel (M,π,J ) is a sub-bundle of R×Rm, if π(T(t,x)M) = R for all (t,x) ∈ M. The manifolds
M(t)⊂ Rm defined by {t}×M(t) = (M∩{t}×Rm) are called the fibres of M at t ∈ J .

39We recommend [55, Section 3.3] for a nice roundup.
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The origin of the following regularity notion is [51, Definition 2]. We have included the explicit require-
ment for C 1 classes to ensure the uniqueness of solutions to initial value problems. According to the
context, we believe that this was originally intended.

Definition 9.8. The DAE (115) is called regular if there is a unique sub-bundle (C ,π,I ) of R×Rm and a
unique vectorfield v : C →Rm on C , both of class C 1, such that a differentiable mapping x : I ⊂I →Rm

is a solution of the vectorfield v if and only if x is a solution of the given DAE.

The manifold C is called configuration space and v the corresponding vector field.

A technique is stated in [51] by means of which the configuration space and the corresponding vector
field for a given DAE can be obtained. In more detail, one starts from the set

L = {(t,x, p) ∈ I ×D ×Rm : f (t,x, p) = 0}.

A differentiable map x : I ⊆ I → Rm is a solution of the DAE if and only if

(t,x(t),x′(t)) ∈ L for all t ∈ I.

We form the new set

C1 = π1,2(L)⊆ R×Rm,

where π1,2 : R×Rm ×Rm → R×Rm is the projection onto the first two factors in R×Rm ×Rm. This
set reflects algebraic constraints on the solution of the DAE. If the triple (C1,π,I ) is a differentiable
sub-bundle of R×Rm, then the differentiable map x : I → Rm is a solution of the DAE if and only if

(t,x(t),x′(t)) ∈ L∩SC1 ⊆ L for all t ∈ I.

Thereby, SC1 =
⋃

(t,x)∈C1
{(t,x)}× S(t,x)C1 and S(t,x)C1 = {π ∈ Rm : (1, p) ∈ T(t,x)C1} denote the so-

called40 restricted tangent bundle of C1 and restricted tangent space of C1 at (t,x), respectively. Then
we form the next set

C2 = π1,2(L∩SC1). (120)

This procedure leads to a sequence of sub-manifolds Ck of R×Rm associated with the DAE. We quote
[51, Definition 8] and mention the modification for linear DAEs in Section 4.2 to compare with.

Definition 9.9. Let L be the corresponding set of the given DAE (115). We define a family {Ck}k=0,...,s of
submanifolds Ck of R×Rm by the recursion

C0 = I ×D ,

Ck = π1,2(L∩SCk−1), k = 0, . . . ,s,

where s is the largest non-negative integer such that the triples (Ck, p,I ) are differentiable sub-bundles
and Cs−1 ̸= Cs. In case of C1 = I ×D we define s = 0. We call the family {Ck}k=0,...,s the family of
constraint manifolds and the integer s the degree of the given DAE.

It is shown that the degree, if it is well-defined, satisfies s ≤ m. Furthermore, by [51, Theorem 9], the
DAE (115) is regular, if it has degree s and, additionally, for each fixed (t,x) ∈ Cs, the set

L∩{(t,x)}×S(t,x)Cs

40This notion is motivated by the fact that the variable t in (115) satisfies the differential equation t ′ = 1. In autonomous DAEs,
the variable t is absent in (115) and the set C1 such that one operates by the usual tangent bundle TC1 and tangent space
TxC1 at x.
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contains exactly one element, L ∩ SCs is of class C 1, and, for all (t,x, p) ∈ L ∩ SCs, dimCs =
rankπ1,2T(t,x,p)(L∩ SCs). Then, C = Cs is the configuration space and the vectorfield is uniquely de-
fined by

(t,x,v(t,x)) ∈ L∩SC .

Owing to ([51, Theorem 12]) regularity of the DAE is ensured by properties of the reduced derivative
arrays given by

G[k](t,x, p) =


g[0](t,x, p)
g[1](t,x, p)

...
g[k](t,x, p)

 , (t,x, p) ∈ I ×D ×Rm, (121)

for k ≥ 0, with

g[0](t,x, p) = f (t,x, p),

g[ j](t,x, p) =W[ j−1](t,x, p)(Dtg[ j−1](t,x, p)+Dxg[ j−1](t,x, p)p),

in which W[ j−1](t,x, p) denotes a projector along im Dpg[ j−1](t,x, p). Aiming for smooth projector func-
tions the Jacobian Dpg[ j−1](t,x, p) is supposed to have constant rank. In contrast to the array functions
introduced in Section 6.1, not all equations are differentiated, but only those that are actually needed,
namely the so-called derivative-free equations on each level. This leads to overdetermined systems of
equations with regard to the variables (x, p) which then have to be consistent. This tool is often used in
structured DAEs, e.g., in multibody dynamics. A comparison with the index transformation from (115)
to (119) shows that this makes sense in general.

Using the sets

Lk = {(t,x, p) ∈ I ×D ×Rm : G[k](t,x, p) = 0}, k ≥ 0,

the above constrained manifolds Ck can be represented by

Ck = π1,2(Lk) = {(t,x) ∈ I ×D : ∃p ∈ Rm,G[k−1](t,x, p) = 0},

which is verified in [51].

Owing to [51, Theorem 12] the DAE (115) is regular if there is a non-negative integer ν such that the
matrix functions DpG[k] and [DxG[k] DpG[k]] have constant ranks for 0 ≤ k < ν , and the row echelon form

of DpG[ν ] is
[

Im

0

]
independent of (t,x, p)∈J ×D×Rm. Then the DAE (115) has regular differentiation

index ν if this is the smallest such non-negative integer.

Remark 9.10. Let us briefly turn to the linear DAE

Ex′+Fx = 0. (122)

We have here

L = {(t,x, p) ∈ I ×Rm ×Rm : E(t)p+F(t)x = 0},
C1 = {(t,x) ∈ I ×Rm : F(t)x ∈ im E(t)},

C1(t) = {x ∈ Rm : F(t)x ∈ im E(t)}=: S(t),

S(t,x)C1 = {p ∈ Rm : p = PS(t)p+DtPS(t)x},
SC1 = {(t,x, p) ∈ I ×Rm ×Rm : E(t)p+F(t)x = 0, p ∈ S(t,x)C1},
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in which PS(t) := I − (WF)+WF denotes the same projector function onto S(t) = C1(t) as used in Sub-
section 6.4 since the set S(t) = kerW (t)F(t) from Subsection 6.4 obviously coincides with C1(t).

If x : I → Rm is a solution of the DAE, then it holds that

x(t) = PS(t)x(t),

x′(t) = DtPS(t)x(t)+PS(t)x′(t),

(t,x(t),x′(t)) = (t,x(t),DtPS(t)x(t)+PS(t)x′(t)) ∈ L∩C1, t ∈ I .

This leads to the new DAE

EPSx′+(F +EP′
S)x = 0,

and this procedure is shown in [51] to reduce the degree by one. We underline that the same procedure
is applied in Subsection 6.4 for obtaining (79). Furthermore, as pointed out in Subsection 6.4, there is
a close relationship with our basic reduction in Section 4.1, see formulas (80) and (81). Supposing the
DAE (122) to be pre-regular in the sense of Definition 4.2 we find that rankEPS = r − θ which sheds
further light on the connection to the basic reduction in Section 4.1.

Remark 9.11. In [50, Chapter IV] the geometric reduction of quasilinear autonomous DAEs (but class
C ∞),

E(x)x′+h(x) = 0, (123)

given by functions E ∈C ∞(D ,Rm×Rm), h∈C ∞(D ,Rm), D ⊆Rm open, is best revealingly developed in
the spirit of reduction of manifolds. Among other things, the corresponding dimensions are also specified,
which more clearly emphasizes the connection with our basic reduction procedure in Section 4.1 that has
its antetype in [50, Chapter II].

First, a general procedure to specify the associated configuration space is created. Starting from a
smooth r̄0-dimensional submanifold C0 of Rn, TC0 becomes a smooth 2r̄0- dimensional submanifold of
TRn = Rn ×Rn. For any given functions E0 ∈ C ∞(C0,Rm ×Rn), h0 ∈ C ∞(C0,Rm), set

f0(x, p) = E0(x)p+h0(x) ∈ Rm, (x, p) ∈ TC0,

and form

L0 = {(x, p) ∈ TC0 : f0(x, p) = 0},
C1 = π(L0) = π|L0(L0),

with the projection π : Rm ×Rm → Rm onto the first factor.

The following two assumptions play a crucial role in this approach:

A1: The set L0 is a smooth r̄0-dimensional submanifold of TC0 with tangent space T(x,p)L0 = kerT(x,p) f0
for every (x, p) ∈ L0.

A2: There exists a nonnegative integer r̄1 ≤ r̄0 such that rankE0(x)|TxC0 = r̄1 for all x ∈ C0.

In particular, these two assumption ensure that π|L0 : L0 → Rm is a subimmersion with rank r̄1 and an
open mapping into C1. In turn, C1 is a smooth r̄1-dimensional submanifold of both C0 and Rm.

This shows how manifolds Ci and Li, i ≥ 0, can be defined inductively. We introduce

f1(x, p) = E0(x)p+h0(x) ∈ Rm, (x, p) ∈ TC1

and form

L1 = {(x, p) ∈ TC1 : f1(x, p) = 0}= TC1 ∩L0,

C2 = π(L1) = π|L1(L1),
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and so on. If the requirements of the above two assumptions hold at each step, one obtains sequences
of manifolds L0 ⊃ L1 ⊃ ·· · ⊃ Li ⊃ . . . and C0 ⊃ C1 ⊃ ·· · ⊃ Ci ⊃ . . . , where Li+1 is an r̄i+1-dimensional
submanifold of Li and Ci+1 is an r̄i+1-dimensional submanifold of TCi, satisfying the relation

Ci+1 = π(Li), Li+1 = TCi+1 ∩Li.

The pair of manifolds (C0,L0) is said to be completely reducible if the sequence is well-defined up to
infinity, and hence r̄0 ≥ r̄1 ≥ ·· · ≥ r̄i ≥ ·· · . The nonincreasing sequence of integers must eventually
stabilize. Owing to [50, Theorem 23.1], if Lν ̸= /0 and r̄ν = r̄ν+1 for some integer ν ≥ 0, then L j = Lν ,
r̄ j = r̄ν , for j ≥ ν , and C j = Cν+1 for j ≥ ν +1.

The described reduction applies to the DAE (123) by letting

E0(x) = E(x), h0(x) = h(x), C0 = D , r̄0 = m, L0 = f−1
0 (0).

By [50, Definition 24.1] the quasilinear DAE (123) has (geometric)41 index ν , 0 ≤ ν ≤ m, if the pair
(C0,L0) is completely reducible and has index ν with Lν ̸= /0.

A DAE (123) with well defined geometric index features locally existing and unique solutions [50, Theo-
rem 24.1], and hence regularity.

At this point, it makes sense to compare once again with linear DAEs. In [50, Chapter II] the DAE Ex′+
Fx = q is called completely reducible in the given interval, if our basic reduction procedure described
in Section 4.1 and starting from E0 = E,F0 = F is well-defined up to infinity, with constants r−1 := m,
r j := rankE j, j ≥ 0. The smallest integer 0 ≤ ν ≤ m such that rν−1 = rν is the (geometric) index of the
DAE. Then Eν remains nonsingular, and rank[E j Fj] = r j−1, j ≥ 0. This means that complete reducibility
is the same as regularity in the sense of Definition 4.3. On the other hand, if E and F are constant
matrices, then this becomes a special case of the above autonomous geometric reduction with r j = r̄ j−1
for all j ≥ 0.

9.3 Direct approaches without using array functions

Direct concepts without recourse to derivative arrays should be possible starting from the fact that deriva-
tives of a function can not contain information, which is not already present in the function itself. Deriva-
tive arrays or their restricted versions are not longer used here. Instead, sequences of special matrix func-
tions including several projector functions are pointwise build on the given function and their domain.

In the context of the dissection and tractability index more general equations,

g(t,x(t),
d
dt

ϕ(t,x(t))) = 0, (124)

given by the two functions g : Ig ×Dg ×Rn → Rm and ϕ : Ig ×Dg → Rn, n ≤ m, are investigated.
This has advantages both in terms of an extended solution concept and corresponding strict solvability
statements with lower smoothness [41, 34]. Since we deal with smoothness more generously here and
assume C1 solutions, this equation can also be written in standard form

f (t,x(t),x′(t)) := g(t,x(t),ϕt(t,x(t))+ϕx(t,x(t))x′(t)) = 0. (125)

For each smooth reference function x∗ : I → Rm not necessarily being a solution, but residing in the
definition domain Ig ×Dg it results that

f (t,x∗(t),x′∗(t)) = f (t,x∗(t),ϕt(t,x∗(t))+ϕx(t,x∗(t))x′∗(t))

= g(t,x∗(t),
d
dt

ϕ(t,x∗(t))).

41In [50] the suffix geometric is still missing, it was added later in [55, Section 3.4.1] to distinguish it from other terms.
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Below, linear DAEs

A∗(t)(D∗x)′(t)+B∗(t)x(t) = q(t), t ∈ I , (126)

with coefficients

A∗(t) = gy(t,x∗(t),
d
dt

ϕ(t,x∗(t))), D∗(t) = ϕx(t,x∗(t)), B∗(t) = gx(t,x∗(t),
d
dt

ϕ(t,x∗(t))),

which arise from linearizations of the nonlinear DAE (124) along the given reference function, play
an important role. Roughly speaking, we will decompose the domain Ig ×Dg into certain so-called
regularity regions so that all linearizations along smooth reference functions residing in one and the
same region are regular with uniform index and characteristic values. Then the borders of a maximal
regularity region are critical points.

The DAE (124) has a so-called properly involved derivative, if the decomposition

kergy(t,x,y)⊕ im ϕx(t,x) = Rn, t ∈ Ig, x ∈ Dg, y ∈ Rn, (127)

is valid and both matrix function gy and ϕx feature constant rank r.

At this place it is worth mentioning that there are weaker versions, namely the quasi-properly involved
derivative in [41, Chapter 9 ] admitting certain rank drops of gy and the semi-properly involved derivative
in [34] requiring constant ranks but merely im gy = im gyϕx instead of (127).

The simplest version already applied in [29] starts from the standard form DAE

f (t,x(t),x′(t)) = 0

and supposes that the partial Jacobian fx1(t,x,x1) has constant rank r and ker fx1(t,x,x1) = N(t) is in-
dependent of the variables x and x1. Using a smooth projector function P : I → Rm×m such that
kerP(t) = N(t) we set n = m, ϕ(t,x) = P(t)x. and g(t,x,y) = f (t,x,y − P′(t)x). Then one has
ϕx(t,x) = P(t), gy(t,x,y) = fx1(t,x,y−P′(t)x), and kergy(t,x,y) = N(t), and hence we arrive at a DAE
with properly involved derivative.

We turn back to the general case (124) and suppose a properly involved derivative. Analogously to
Section 5.4 for linear DAEs we associate to the DAE (124) a sequence of matrix functions built pointwise
now for t ∈ Ig, x ∈ Dg, x1 ∈ Rm. It will provide relevant information about the DAE, quite comparable
to the array functions above. We start letting

D(t,x) := ϕx(t,x),

A(t,x,x1) := gy(t,x,ϕt(t,x)+D(t,x)x1),

G0(t,x,x1) := A(t,x,x1)D(t,x),

B0(t,x,x1) := gx(t,x,ϕt(t,x)+D(t,x)x1).

Let P0(t.x) ∈ Rm×m denote a smooth projector such that kerP0(t,x) = kerD(t,x) =: N0(t,x) and

Q0(t,x) = I −P0(t,x), Π0(t,x) = P0(t,x), (128)

and introduce the generalized inverse D(t,x,x1)− being uniquely determined by the four relations

D(t,x,x1)−D(t,x)D(t,x,x1)− = D(t,x,x1)−,

D(t,x)D(t,x,x1)−D(t,x) = D(t,x),

D(t,x,x1)−D(t,x) = P0(t,x),

kerD(t,x)D(t,x,x1)− = kerA(t,x,x1).
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Since the derivative is properly involved, it holds that kerG0(t,x,x1) = kerD(t,x) = N0(t,x). We form

G1(t,x,x1);= G0(t,x,x1)+B0(t,x,x1)Q0(t,x),

N1(t,x,x1) := kerG1(t,x,x1),

N̂1(t,x,x1) := N1(t,x,x1)∩N0(t,x),

and choose projector functions Q1,P1,Π1 : Ig ×Dg ×Rm×m such that pointwise

im Q1 = N1, kerQ1 ⊇ X1, with any complement X1 ⊆ N0, N0 = N̂1 ⊕X1,

P1 = I −Q1, Π1 = Π0P1.

We are interested in a smooth matrix function G1 and require constant rank. From the case of linear DAEs
we know of the necessity to incorporate the derivative of DΠ1D− into the next expressions. Instead of
the time derivative (DΠ1D−)′ in the linear case, we now use the total derivative in jet variables [DΠ1D−]′

given by

[DΠ1D−]′(t,x,x1,x2) := (DΠ1D−)t(t,x,x1)+(DΠ1D−)x(t,x,x1)x1

+(DΠ1D−)x1(t,x,x1)x2.

The subsequent matrix function B1 = B0P0 −G1D−[DΠ1D−]′DΠ0 depends now on the variables t,x,x1,
and x2. On each following level of the sequence a new variable comes in owing to the involved total
derivative.

Now we are ready to adapt [41, Definition 3.21] and [41, Definition 3.28] concerning admissible matrix
function sequences and regularity. Both are straightforward generalizations of the linear case discussed
in Section 5.4 above.

Definition 9.12. Let G⊆Ig×Dg be open and connected set. For given level κ ∈N, we call the sequence
G0, . . . ,Gκ an admissible matrix function sequence associated with the DAE (124) on the set G, if it is
built by the rule:

Gi = Gi−1 +Bi−1Qi−1 : G×Rim → Rm, rT
i = rankGi,

Bi = Bi−1Pi−1 −GiD−[DΠiD−]′DΠi−1 : G×R(i+1)m → Rm,

Ni = kerGi, N̂i = (N0 + · · ·+Ni−1)∩Ni, uT
i = dim N̂i,

fix a complement Xi such that N0 + · · ·+Ni−1 = N̂i ⊕Xi,

choose a smooth projector function Qi such that im Qi = Ni, kerQi ⊇ Xi,

set Pi = I −Qi, Πi = Πi−1Pi,

i = 1, . . . ,κ −1,

Gκ = Gκ−1 +Bκ−1Qκ−1 : G×Rκm → Rm, rT
κ = rankGκ ,

and, additionally, all the involved functions ri and ui are constant.

The total derivative used here reads in detail:

[DΠiD−]′(t,x,x1, . . . ,xi+1) = (DΠiD−)t(t,x,x1, . . . ,xi)+(DΠiD−)x(t,x,x1, . . . ,xi)x1

+
i

∑
j=1

(DΠiD−)x j(t,x,x1, . . . ,xi)x j+1.

At this point, the general agreement of this work on the smoothness of the given data ensures also the
existency of these derivatives. Then the required smooth projector functions actually exist due to the
demanded constancy of the ranks rT

i and the dimensions uT
i .
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The inclusions

im Gi ⊆ im Gi+1, ri ≤ ri+1,

are meant point by point and result immediately by the construction. We refer to [41, Section 3.2] for
further useful properties. In particular, it is possible to determine the projector functions Qi in such a way
that the Πi and Πi−1Qi are pointwise symmetric projector functions [41, p. 205].

Definition 9.13. Let G ⊆ Ig ×Dg be open and connected set. The DAE (124) is said to be regular on
G with tractability index µ ∈ N if there is an admissible matrix function sequence reaching a pointwise
nonsingular matrix function Gµ and rT

µ−1 < rT
µ = m. The rank values

r = rT
0 ≤ ·· · ≤ rT

µ−1 < rT
µ = m (129)

are said to be characteristic values of the DAE.

The set G is called regularity region of the DAE with associated index µ and characteristics (129).42

If G has the structure G= I ×G , I ,G open, then simply G is called regularity region, too.

Definition 9.14. The point (t̄, x̄) ∈ Ig ×Dg is called a regular point of the DAE, if there is an open
neighborhood G ∋ (t̄, x̄), G ⊆ Ig ×Dg being a regularity region.43 Otherwise, the point is called a
critical point of the DAE.

If this G has the structure G= I ×G , I ,G open, then simply x̄ is called regular point, too.

Regularity goes along with uT
i = 0 for all i ≥ 0. It is important to add that both the index and the

characteristic values do not depend on the particular choice of projector functions in the admissible
sequence of matrix functions. They are also invariant with respect to regular transformations, cf. [41].

The main result in the framework of the projector-based analysis of nonlinear DAEs is given by [41,
Theorem 3.33] that claims:

� The DAE (124) is regular on G if all linearizations (126) along smooth reference functions residing in
G are regular DAEs, and vice versa.

� If the nonlinear DAE is regular on G with index µ and the characteristics (129), all linearizations built
from reference functions residing in G inherit this.

� If all linearizations built from reference functions residing in G are regular, then they feature a uni-
form index µ and uniform characteristics (126). The nonlinear DAE has then the same index and
characteristics.

This allows to trace back questions concerning the DAE properties to the linearizations.

We underline that the concept of regularity regions does not assume the existence of solutions. However,
if a solutions resides in a regularity region, then for d > 0 it is part of a regular flow with the canonical
characteristics from the regularity region. In any case, also for d = 0, the solution has no critical points.

In the dissection index concept in [34] similar results are reproduced by using smooth basis functions
instead of the projector functions. For the linear parts the decomposition described in Section 5.2 above
is applied, and this is combined with rules of the tractability framework to construct a matrix function
sequence emulating that from the tractability concept. This is theoretically much more intricately but

42One can also understand G[µ] =G×Rµm as a regularity region. We refer to [41, Section 3.8] for a relevant refinement of the
definition.

43In case of a regularity region G[µ] =G×Rµm we speak of regular jets (t̄, x̄, x̄1, . . . , x̄µ ).
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maybe useful in practical realizations. However, when using basis functions instead of projector func-
tions, it must also be taken into account that there are not necessarily global bases in the multidimensional
case, e.g., [41, Remark A.16].

Regarding linear DAEs, the dissection concept in Section 5.2 and the regular strangeness concept in Sec-
tion 5.3 are closely related in turn. In contrast to the basic reduction for linear DAEs in Section 4.1, which
encompasses the elimination of variables and a reduction in dimension, the original dimension is retained
and all variables stay involved. This is one of the cornerstones for the adoption of the linearization con-
cept. We quote from [34, p. 65]: The index arises as we use the linearization concept of the Tractability
Index and the decoupling procedure of the Strangeness Index. This way, the regular strangeness index
also finds a variant for nonlinear DAEs by means of corresponding sequences of matrix functions and
linearization.

9.4 Regularity regions and perturbation index

The perturbation index of nonlinear DAEs is an immediate generalization of the version for linear DAEs.
We slightly extend [30, Definition 5.3] to be valid also for nonautonomous DAEs, cf. also Definition 2.2
above:

Definition 9.15. The equation (114) has perturbation index µp = ν ∈N along a solution x∗ : [a,b]→Rm,
if ν is the smallest integer such that, for all functions x : [a,b]→ Rm having a defect

δ (t) := f (t,x(t),x′(t)), t ∈ [a,b],

there exists an estimation

|x(t)− x∗(t)| ≤ c{|x(a)− x∗(a)|+ max
a≤τ≤t

|δ (τ)|+ · · ·+ max
a≤τ≤t

|δ (µp−1)(τ)|}, t ∈ I ,

whenever the expression on the right-hand side is sufficiently small.

Because of its significance, we adopt the authors’ comment in [30, p. 479] on this definition: We de-
liberately do not write “Let x(·) be the solution of f (t,x(t),x′(t)) = δ (t), t ∈ [a,b] ...” in this definition,
because the existence of such a solution for an arbitrarily given δ (·) is not assured.

Actually, we are confronted with a problem belonging to functional analysis, with mapping properties
and the question of how solutions and their components, respectively, depend on perturbations and their
derivatives. Some answers concerning linear DAEs are given by means of the projector-based analysis in
[41, 44, 31]. In the case of nonlinear DAEs, this most significant question has hardly played an adequate
role to date. Among other things, it is associated with the relationship of the differentiation index to
the perturbation index and the controversies surrounding it, e.g., [9, 57], see also Examples 9.18, 9.19
below. The attempts made in [9] to clarify the relation between these two different index notions did not
achieve the intended goal. A number of additional index terms is introduced in [9] (so-called uniform
and maximum indices), however, this is not helpful because quite special solvability properties of the
DAE are assumed in advance.

The geometric reduction approaches concentrate exclusively on the dynamic properties of unperturbed
systems. The approaches via derivative arrays are based on the assumption that all derivatives are or can
be calculated correctly. They are primarily intended to figure out and approximate particular solutions of
an unperturbed DAE.

For linear DAEs, the nature of the sensitivity of the solutions with respect to perturbations δ is deter-
mined by the structure of the canonical subspace Ncan, i.e., not only by the index, but just as much by
the characteristic values, see Subsection 8.3. The projector-based analysis and the decoupled system in
the tractability framework allow a precise and detailed insight into the dependencies. For regular linear
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index-µ DAEs, both the differentiation index and the perturbation index are equal to µ , and the homoge-
nous structure of Ncan ensures homogenous dependencies over the given interval. In contrast, for linear
almost-regular DAEs featuring differentiation index µ , on subintervals the perturbation index and the
differentiation index may both be lower than µ .

Of course, nonlinear DAEs are much more complicated. As shown in the previous section, the sequences
of admissible matrix functions for nonlinear DAEs allow the determination of regularity regions. All
points where the required rank conditions are not fulfilled are critical points.

Regarding the related method equivalencies obtained for linear regular DAEs by Theorem 8.1, the lin-
earization concept of the previous section can be utilized in all these cases. It seems that on each regular-
ity region, the perturbation index coincides with the differentiation index and the other ones as it is the
case in the examples below. We emphasize again that regularity regions characterize the DAE without
assuming the existence of solutions.

Naturally, the maximal possible regularity regions are bordered with critical points. Then the definition
domain of the DAE may be decomposed into maximal regularity regions. Each regularity region com-
prises solely regular points with the very same index and characteristics. But different regularity regions
may feature different index and characteristics. Since the matrix function sequence is built from the par-
tial Jacobians of the given data, the same sequence evidently arises for the unperturbed and the perturbed
DAE.

We emphasize once again, that regularity regions characterize the given DAE without supposing the
existence of solutions. If solutions exist, then they may reside in one of the regularity regions, but they
may also cross the borders or stay there. If they cross the border of regularity regions with different index
values, then the perturbation index of the related solution segments changes accordingly as in Example
9.18 below.

9.5 Some further comments

In [45] it is pointed out that the requirements of Hypothesis 9.4 and that of a well-defined differentiation
index are equivalent up to some (technical) smoothness requirements. Harmless critical points are not at
all indicated. It may happen that the differentiation index is much lower up to one on partial segments.
For details we refer to [37, Remark 4.29].

A comparison of the regular differentiation index, the projector-based differentiation index, and the geo-
metric index shows full consistency with regard to the rank conditions and a slight difference in regards
to smoothness. All kind of critical points are excluded for regularity, but they are being detected in the
course of the procedures.

9.6 Nonlinear examples

We give a brief outlook for nonlinear DAEs considering some small, representative, and easy-to-follow
examples and emphasize again the importance of taking account of all canonical characteristic values in
addition to the index.

The first two Examples 9.16 and 9.17 have a positive degree of freedom and show expected singularities
from a geometric point of view. The next Examples 9.18 and 9.19 are classics from literature and show
harmless critical points as well as changing characteristics. With the next Example 9.20 we emphasize the
fact that problems with harmless critical points do not allow the geometric reduction. Our last Example
9.21 shows the so-called robotic arm DAE, a problem with zero degree of freedom, which nevertheless
has serious singularities.
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Example 9.16 (Singular index-one DAE with bifurcation and impasse points). Consider the very simple
autonomous DAE

x′1 − γx1 = 0,
(x1)

2 +(x2)
2 −1 = 0,

}
(130)

their perturbed version

x′1 − γx1 = δ1,
(x1)

2 +(x2)
2 −1 = δ2,

}
(131)

and the associated functions

f (t,x,x1) =

[
x1

1 − γx1 −δ1(t)
(x1)

2 +(x2)
2 −1−δ2(t)

]
, t ∈ R,x,x1 ∈ R2,

fx1(t,x,x1) =

[
1 0
0 0

]
, fx(t,x,x1) =

[
−γ 0
2x1 2x2

]
, γ ∈ R is a given parameter.
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Figure 3. Behavior of solutions for the DAE (130) from Example 9.16 for γ > 0 (left) or γ < 0 (right),
critical points (red) and stationary solutions (blue).

Obviously, the points
[

0
1

]
and

[
0
−1

]
serve as stationary solutions of the autonomous DAE (130). Further,

for each initial point x0 ∈ R2 lying on the unit circle arc, except for the two points on the x1-axis, there
exists exactly one solution to the autonomous DAE (130) passing through at t0 = 0, namely:

• if γ < 0 and x0,2 > 0 then

x∗(t) =

 exp(γt)x0,1√
1− exp(2γt)x2

0,1

 , t ∈ [0,∞), x(t) t→∞−−→
[

0
1

]
,

• if γ < 0 and x0,2 < 0 then:

x∗(t) =

 exp(γt)x0,1

−
√

1− exp(2γt)x2
0,1

 , t ∈ [0,∞), x(t) t→∞−−→
[

0
−1

]
,

• if γ > 0 and x0,2 > 0 then

x∗(t) =

 exp(γt)x0,1√
1− exp(2γt)x2

0,1

 , t ∈ [0, t f ],
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• if γ > 0 and x0,2 < 0 then:

x∗(t) =

 exp(γt)x0,1

−
√

1− exp(2γt)x2
0,1

 , t ∈ [0, t f ],

whereby, the final time t f of the existence intervals is determined by the equation exp(γt f ) = 1/|x0,1| and

x(t f ) =

[
1
0

]
for x0,1 > 0, x(t f ) =

[
−1
0

]
for x0,1 < 0.

It is now evident that merely the two points
[

1
0

]
and

[
−1
0

]
are critical. For γ < 0, from each of these

points, two solutions start, but, for γ > 0, these points are so-called impasse points, cf. Figure 3. From the
geometric point of view the DAE has degree s = 1 and the unit circle arc can be seen as the configuration
space.

In case of nontrivial perturbations δ1,δ2, the situation is on the one hand quite similar but on the other
hand much more intricate. In particular, the configuration space becomes time-dependent, and we are
confronted with different configuration spaces for different perturbations δ2, see Figures 4 and 5. The
final time t f also depends on the perturbations and seemingly the place of the critical points varies. The
solution representations allow the realization on correspondingly small time intervals [a,b] that this is a
DAE with perturbation index one apart from the critical points.

Figure 4. Solution of the DAE (130) from Example 9.16 for γ = −1 and initial value x0,1 = 0.98 (left),
as well as solution of (131) for δ1(t) = 0, δ2(t) = t2 (right), both for t ∈ [0,1].

Figure 5. Solution of the DAE (130) from Example 9.16 for γ = −1 and initial value x0,1 = 0.98 (left),
as well as solution of (131) for δ1(t) = 0, δ2(t) = 0.7sin(t) (right), both for t ∈ [0,2π].

Note that the partial derivatives fx1 and fx are independent of the perturbations δ1,δ2. Applying the
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projector-based analysis we form the matrix function

G1(t,x,x1) = fx1(t,x,x1)+ fx(t,x,x1)Q0 =

[
1 0
0 2x2

]
, Q0 =

[
0 0
0 1

]
.

Obviously, G1(t,x,x1) is nonsingular if and only if x2 ̸= 0.

On the other hand, the inflated system F[1] = 0 yields the partial Jacobian

E[1](t,x,x
1,x2) =


1 0 0 0
0 0 0 0
−γ 0 1 0
2x1 2x2 0 0

 ,

that undergoes a rank drop from 3 for x2 ̸= 0 to 2 for x2 = 0. Now it becomes clear that x2 = 0 indicates
critical points, which splits R2 into the two regularity regions

G+ = {x ∈ R2 : x2 > 0} and G− = {x ∈ R2 : x2 < 0},

see Figure 7 (left). The border set consists of critical points,

Gcrit = {x ∈ R2 : x2 = 0}.

On each of these regularity regions, the DAE is said to be regular with index µ = µT = µ pbdi f f = µdi f f =
1 and canonical characteristics r = 1, θ0 = 0. This means that for all perturbed versions of our DAE, the
intersection of the corresponding configuration space with Gcrit contain the singular points of the flow.

Example 9.17 (Singular index-one DAE with critical-point-crossing solution). Given the value γ = 1 or
γ =−1, let us have a closer look at the simple autonomous DAE

x′1 − γx2 = 0, (132)

x2
1 + x2

2 −1 = 0,

This DAE possesses obvious solutions, namely

• if γ = 1:

x∗(t) =
[

sin t
cos t

]
, x∗∗(t) =

[
1
0

]
, and x∗∗∗(t) =

[
−1
0

]
, t ∈ [0,2π],

• if γ =−1:

x∗(t) =
[

cos t
sin t

]
, x∗∗(t) =

[
1
0

]
, and x∗∗∗(t) =

[
−1
0

]
, t ∈ [0,2π],

together with phase-shifted variants. It is evident that the first solution crosses the other ones at t = π

2

and at t = 3π

2 , thus the points
[

1
0

]
,

[
−1
0

]
appear to be singular, see Figure 6.

Similarly as in the previous example, applying the projector-based analysis we form the matrix function

G1(t,x,x1) = fx1(t,x,x1)+ fx(t,x,x1)Q0 =

[
1 −γ

0 2x2

]
, Q0 =

[
0 0
0 1

]
.
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Figure 6. Behavior of solutions for Example 9.17 and critical points (violet) that are also stationary
solutions.

Again, G1(x, p) is nonsingular if and only if x2 ̸= 0 and, on the other hand, the array function

E[1](x) =


1 0 0 0
0 0 0 0
0 −γ 1 0

2x1 2x2 0 0

 ,

undergoes a rank drop from 3 for x2 ̸= 0 to 2 for x2 = 0. It becomes clear that x2 = 0 indicates critical
points, which splits R2 into the two regularity regions

G+ = {x ∈ R2 : x2 > 0} and G− = {x ∈ R2 : x2 < 0},

see Figure 7 (left), and the border consisting of critical points

Gcrit = {x ∈ R2 : x2 = 0}.

From the geometric point of view the DAE has degree s = 1 and the unit circle arc can be seen as the
configuration space. On each of the regularity regions, the DAE is regular with index µ = µT = µ pbdi f f =
µdi f f = 1 and canonical characteristics r = 1, θ0 = 0. The intersection of the configuration space with
Gcrit contains the singular points of the flow.

Indeed, for instance, if we simulate the first solution x∗ from above, then we start in a regularity region.
However, at t = π

2 , this solution crosses the constant solution x∗∗, and at t = 3π

2 the other constant
solution x∗∗∗, which are flow singularities. In terms of the characteristic-monitoring, at these times the
canonical characteristic value θ0 changes, and this indicates that the solution crosses the border of a
regularity region.
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Examples 9.16 and 9.17
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Figure 7. Regularity regions of three examples with m = 2.
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Example 9.18 (Index change and harmless critical points). We revisit now [9, Example 12] that plays its
role in the early discussion concerning index notions.

For ε > 0, let γ : R→ R be an infinitely differentiable function which has the property

γ(z) = 0 for |z| ≤ ε,
γ(z) ̸= 0 else ,

and consider the DAE

γ(x2)x′2 + x1 = δ1,

x2 = δ2,

by means of the associated given functions

f (t,x,x1) =

[
γ(x2)x1

2 + x1
x2

]
−δ (t), t ∈ R, x,x1 ∈ R2,

fx1(t,x,x1) =

[
0 γ(x2)
0 0

]
, fx(t,x,x1) =

[
1 γ ′(x2)
0 1

]
.

The DAE is solvable for each arbitrary smooth perturbation δ . The solutions are given by

x1 = δ1 − γ(δ2)δ
′
2,

x2 = δ1,

which indicates that the perturbation index is not greater than one and the dynamic degree of freedom is
d = 0.

Not surprisingly, using the projector-based analysis, we observe three regularity regions showing differ-
ent characteristics,

G+ = {x ∈ R2 : x2 > ε} and G− = {x ∈ R2 : x2 <−ε},

and
Gε = {x ∈ R2 : |x2|< ε},

see Figure 7 (right), and in detail

on G+ : r = 1, θ0 = 1, θ1 = 0, µ = 2,

on Gε : r = 0, θ0 = 0, µ = 1,

on G− : r = 1, θ0 = 1, θ1 = 0, µ = 2.

The borders between these regularity regions consist of critical poitns. All these critical points are
obviously harmless. If a solution fully resides in G+ or G− then the DAE has perturbation index µp = 2
along this solution. In contrast, if a solution fully resides in Gε then the DAE has perturbation index µp =
1 along this solution. Of course, there might be solutions crossing the borders and then the perturbation
index changes accordingly along the solution.

Example 9.19 (Campbell’s counterexample). This is a special case of [9, Example 10] which was picked
out and discussed in the essay [57, p. 73]. It is about the relationship between the differentiation index
and the perturbation index. Consider the DAE

x3x′2 + x1 = δ1,

x3x′3 + x2 = δ2,

x3 = δ3,
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and the associated functions

f (t,x,x1) =

x3x1
2 + x1

x3x1
3 + x2
x3

−δ (t), t ∈ R, x,x1 ∈ R3,

fx1(t,x,x1) =

0 x3 0
0 0 x3
0 0 0

 , fx(t,x,x1) =

1 0 x1
2

0 1 x1
3

0 0 1

 .

The DAE has obviously a unique solution to each arbitrary smooth perturbation δ , namely

x3 = δ3,

x2 = δ2 −δ
′
3δ3,

x1 = δ1 −δ3(δ2 −δ
′
3δ3)

′ = δ1 −δ3δ
′
2 +δ3(δ

′
3)

2 +(δ3)
2
δ
′′
3 ,

which clearly indicates perturbation index µp = 3 and zero dynamic degree of freedom. In contrast, by
Definition 9.1 (that is controversal) the unperturbed DAE with δ = 0 has differentiation index µdi f f = 1,
with the underlying ODE x′ = 0 given on the single point x = 0. Note that the related array function E[1]
in Definition 9.3 undergoes a rank drop at x3 = 0,

E[1] =



0 x3 0 0 0 0
0 0 x3 0 0 0
0 0 0 0 0 0
1 x1

3 0 0 x3 0
0 1 x1

3 0 0 x3
0 0 1 0 0 0

 , r[1] = rankE[1] =

{
4 for x3 ̸= 0
3 for x3 = 0

.

In particular, the rank function r[1] fails to be constant on each neighborhood of the origin, which would
be necessary for an index-1 DAE in the sense of the precise Definition 9.3. According to our understand-
ing the DAE has the regularity regions

G+ = {z ∈ R3 : x3 > 0}, G− = {z ∈ R3 : x3 < 0},

and the critical point set

Gcrit = {z ∈ R3 : x3 = 0}.

At the points of the regularity regions we form the admissible matrix functions from the projector-based
framework,

A = fx1 , D = P =

0 0 0
0 1 0
0 0 1

 , G0 = AD =

0 x3 0
0 0 x3
0 0 0

 , rT
0 = 2, B0 =

1 0 x1
2

0 1 x1
3

0 0 1

 ,

and

Q0 =

1 0 0
0 0 0
0 0 0

 , G1 =

1 x3 0
0 0 x3
0 0 0

 , rT
1 = 2, B1 =

0 0 x1
2

0 1 x1
3

0 0 1

 ,

Q1 =

0 −x3 0
0 1 0
0 0 0

 , G2 =

1 x3 0
0 1 x3
0 0 0

 , rT
2 = 2, B2 =

0 0 x1
2

0 0 x1
3

0 0 1

 ,

Q2 =

0 0 (x3)
2

0 0 −x3
0 0 1

 ,G3 =

1 x3 0
0 1 x3
0 0 1

 , rT
2 = 3.
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Therefore, on both regularity regions, the DAE is regular with index µT = µp = µdi f f and canonical
characteristics

r = 2, θ0 = 1, θ1 = 1, θ2 = 0, d = 0.

All points from Gcrit are harmless critical points as the above solution representation confirms.

It should also be added that the further array functions E[2] and E[3] feature constant ranks, and the
differentiation index is well-defined and equal to one on the entire domain.

Example 9.20 (Riaza’s counterexample). The following example is part of the discussion whether prob-
lems with harmless critical points are accessible to treatment by geometric reduction from [50]. It is
commented in [55, p. 186] with the words: There is no way to apply the framework of [50] neither
globally nor locally around the origin.

We apply the perturbed version of the system [55, (4.6), p. 186],

x′1 −α(x1,x2,x3) = δ1,

x1x′2 − x3 = δ2,

x2 = δ3,

in which α denotes a smooth function. We recognize that

x2 = δ3,

x3 =−δ2 + x1δ
′
3,

x′1 −α(x1,δ3,−δ2 + x1δ
′
3) = δ1,

such that it becomes clear that the DAE is solvable for all sufficiently smooth perturbations δ and initial
conditions for the first solution component.

To apply the projector-based analysis we use the associated functions

f (t,x,x1) =

x1
1 −α(x1,x2,x3)

x1x1
2 − x3
x2

 , t ∈ R,x,x1 ∈ R3,

fx1(t,x,x1) =

1 0 0
0 x1 0
0 0 0

 , fx(t,x,x1) =

−αx1(x1,x2,x3) −αx2(x1,x2,x3) −αx3(x1,x2,x3)
x1

2 0 −1
0 1 0

 .

Supposing x1 ̸= 0 we form the admissible matrix functions. We drop the arguments of the functions
whenever it is reasonable. We obtain

Q0 =

0 0 0
0 0 0
0 0 1

 , G1 = fx1 + fxQ0 =

1 0 −αx3

0 x1 −1
0 0 0

 , rT
1 = rankG1 = 2, θ0 = 1,

Q1 =

0 α3/x1 0
0 1 0
0 1/x1 0

 , G2 = G1 +B1Q1 =

1 ∗ ∗
0 x1 −1
0 1 0

 , rT
2 = rankG2 = 3, θ1 = 0.

Consequently, the DAE has the two regularity regions

G+ = {z ∈ R3 : x1 > 0}, G− = {z ∈ R3 : x1 < 0}

and the critical point set

Gcrit = {z ∈ R3 : x1 = 0}.

Regarding the solvability properties we know the critical point to be harmless. The perturbation index
is two around solutions residing in a regularity region. If a solution does not cross or touch the critical
point set, then the perturbation index is two along this solution. Obviously, along reference functions x∗,
with vanishing first components, the perturbation index reduces to one.
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Example 9.21 (DAE describing a two-link robotic arm). The so-called robotic arm DAE is a well un-
derstood benchmark for higher-index DAEs of the form([

I6
02

]
x
)′

+b(x, t) = 0.

that is well described in literature, see [10], [23] and the references therein. It results from a tracking
problem in robotics and presents two types of singularities. Without going into the details of the m = 8
equations and variables with r = 6, here we interpret them in terms of the characteristics θi.

The DAE describes a two-link robotic arm with an elastic joint moving on a horizontal plane, see Figure
8 (left). The third variable x3 of the equations corresponds to the rotation of the second link with respect
to the first link.
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Two Link Robotic Arm with prescibed path

The blue marker corresponds to the elastic joint
of the two links. At the black marker the end of
one link is fixed to the origin. The position of
the red endpoint of the outer link is prescribed
by a path.
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Prescibed path and singularity circles

path
C0

C1.7159

C2

If the prescribed path crossed a singularity cir-
cle Cr with radius r, then singularities of the
DAE arise. C0 and C2 correspond to sin(x3)= 0
and cos(x3) = z∗ leads to C1.7159 for certain
model parameters.

Figure 8. As x3 is the angle between the two links, the singularities can be interpreted geometrically, see
[23], where also the original figures and the discussion of the parameters can be found.

In [23] it has been shown that critical points arise at

cos(x3) = z∗ or sin(x3) = 0,

whereas the constant value z∗ depends on the particular parameters of the model. In the consequence,
the original definition domain of the DAE I ×D = I ×R8 decomposes into an infinite number of
regularity regions whose borders are hyperplanes consisting of the corresponding critical points. Owing
to [23, Proposition 5.1] the canonical characteristics are the same on all regularity regions. If the
component x∗,3 of a solution x∗ crosses or touches such a critical hyperplane then this gives rise to
a singular behavior. In case of the robotic arm, this happens if the prescribed path crosses so-called
singularity circles, see Figure 8 (right).

In regularity regions, we obtain µT = µ pbdi f f = 5 and

θ0 = 8− rT
1 = rankT1 = 2, θ1 = 8− rT

2 = rankT2 = 2,

θ2 = 8− rT
3 = rankT3 = 1, θ3 = 8− rT

4 = rankT4 = 1,

θ4 = 8− rT
5 = rankT5 = 0, d = 0.

Indeed, monitoring these ranks is how the singularities cos(x3) = z∗ were detected, which to our knowl-
edge had not been described before.
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10 Conclusions

Until now, DAE literature has been rather heterogeneous since each approach uses quite different starting
points, definitions, assumptions, leading to own results. This diversity of the frameworks made it difficult
to compare them. Although a few equivalence statements were proven, a general and rigorous framework
was missing so far.

To get our Main Equivalence Theorem 8.1 for linear DAEs with its canonical characteristics we revised
and compiled many results from the literature and closed several gaps. By doing so, a characterization
of regularity and almost regularity that is interpretable for all approaches resulted straight forward.

The given classification of regular and critical points in terms of the canonical characteristic values now
appears to be independent of the specific background approach. Any change in a canonical characteristic
value indicates a critical point and vice versa, and there seems to be something special happening at every
critical point. So far we are aware of two categories of very different phenomena in linear DAEs arising
from critical points: Harmless critical points and serious isolated flow singularities. As a rough classifica-
tion, in the first group the flow subspace has a constant dimension while in the other group this dimension
changes. A more detailed classification of critical points in terms of the canonical characteristics must
be left for future research. Our aim here was to study regularity and find common ground. In doing so,
it was facilitating and useful to work with so-called pre-regular pairs in the basic reduction procedure in
Section 4 and not to extra emphasize the corresponding configuration spaces on the respective reduction
levels. If there are critical points, the situation becomes much more hidden. In this case, it is advisable to
work with so-called qualified pairs instead of pre-regular ones and to mark relevant configuration spaces
separately.

As far as non-linear problems are concerned, there was only room here for a brief overview showing a
number of open issues, in particular with regard to the influence of perturbations and the perturbation
index. We pay particular attention to linearizations and convincing examples, and we worked out aspects
for possible further investigations. We think that the canonical characteristics together with linearizations
and the concept of regularity regions will also play an appropriate role for nonlinear DAEs.

Overall, Main Equivalence Theorem 8.1 with the canonical characteristics is, in our opinion, the common
ground of all the considered approaches and it holds the potential for new insights.

11 Appendix

In this appendix we compile technical details about block matrix functions in a self-contained form, some
of which were used for several results in the article.

11.1 1-full matrix functions and rank estimations

The matrix M ∈ R(s+1)m×(s+1)m which has block structure built from m×m matrices is said to be 1-full,

if there is a nonsingular matrix T such that T M =

[
Im 0
0 H

]
.

Let M : I →R(s+1)m×(s+1)m be a continuous matrix function which has block structure built from m×m
matrix functions. M is said to be smoothly 1-full, if there is a pointwise nonsingular, continuous matrix

function T such that T M =

[
Im 0
0 H

]
.

Lemma 11.1. Let M : I → R(s+1)m×(s+1)m be a continuous matrix function which has block structure
built from m×m matrix functions.

The following assertions are equivalent:
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(1) M is smoothly 1-full and has constant rank rM.
(2) M has constant rank rM and M(t) is 1-full pointwise for each t ∈ I .
(3) There is a continuous function H : I → Rsm×sm with constant rank rH such that

kerM = {
[

z
w

]
∈ Rm ×Rsm : z = 0,w ∈ kerH}. (133)

(4) M has constant rank rM and

T[s] kerM = 0,

with the truncation matrix T[s] = [Im 0 · · ·0] ∈ Rm×(s+1)m.

Proof. (1)↔(2): The straight direction is trivial, the opposite direction is provided, e.g., by [37, Lemma
3.36].

(3)↔(4): The straight direction is trivial, we immediately turn to the opposite one. Let M have constant
rank rM and T[s] kerM = {0}. Denote by QM the continuous orthoprojector function onto kerM. Then,
QM must have the special form

QM =

[
0 0
0 K

]
: I → R(m+km)×(m+km),

K = K∗ : I → Rsm×sm, rankK = rankQM = (m+ sm)− rM.

Let Z : I → Rsm×(rM−m) denote a continuous basis of (im K)⊥ such that rankZ = rM −m. Then the
assertion becomes true with

H =

[
Z∗

0

]
: I → R(sm)×(sm), rankH = rankZ∗ = rM −m.

(1)↔(3): Since the straight direction is trivial again, we immediately turn to the opposite one. Let
H : I → Rsm×sm be a continuous function with constant rank rH such that (133) is valid. Then kerM
has dimension dimkerH = sm− rH which is constant. Therefore, M has constant rank rM = (s+1)m−
(sm− rH) = m+ rH .

The projector-valued matrix functions

WM = Ism+m −MM+ and QM = Ism+m −M+M =

[
0 0
0 Ism −H+H

]
are continuous and have constant rank sm+m−rM =: ρ both. Then there are continuous matrix functions
UW ,VW ,UQ,VQ being pointwise orthogonal such that (e.g. [37, Theorem 3.9])

QM =UQ

[
ΣQ 0
0 0

]
V T

Q , WM =UW

[
ΣW 0
0 0

]
V T

W ,

with nonsingular sigma blocks of size ρ . Set

C =VQ

[
Σ
−1
Q Σ

−1
W 0

0 0

]
UT

W

such that

QMCWM =UQ

[
Iρ 0
0 0

]
V T

W , im QMCWM = im QM, kerQMCWM = kerWM,

and the matrix T = QMCWM +M+ is continuous and nonsingular. It follows that T M = Ism+m −QM =
M+M = diag(Im,H+H) which means that M is smoothly 1-full.
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Lemma 11.2. For m ∈ N, a matrix function E : I → Rm×m and matrix functions

M[0](t) := E(t), M[k] : I → R(k+1)m×(k+1)m, k = 1, . . .

defined in a way that the structure

M[k+1](t) :=
[
M[k](t) 0

∗ E(t)

]
(134)

is given, for r(t) := rankE(t) and r[k](t) := rankM[k](t) it holds

r[k](t)+ r(t)≤ r[k+1](t)≤ r[k](t)+m, t ∈ I , k ≥ 0.

Proof. The structure (134) obviously leads to

r[k+1](t)≥ r[k](t)+ r(t)

and

r[k+1](t) = dimim
[
M[k](t) 0

∗ E

]
≤ dimim

[
M[k](t)

]
+m = r[k](t)+m.

11.2 Continuous matrix function with rank changes

We quote the following useful result from [11, Proof of Theorem 10.5.2]:

Theorem 11.3. Let the matrix function M : [a,b]→ Rm×n be continuous and let

ϕ = {t0 ∈ [a,b] : rankM(t) is not continuous at t0}

denote the set of its rank-change points.

Then the set ϕ is closed and has no interior and there exist a collection S of open intervals {(aℓ,bℓ)}ℓ∈S,
such that ⋃

ℓ∈S
(aℓ,bℓ) = [a,b], (aℓi ,bℓi)∩ (aℓ j ,bℓ j) = /0 for ℓi ̸= ℓ j,

and integers rℓ ≥ 0, ℓ ∈S, such that

rankM(t) = rℓ for all t ∈ (aℓ,bℓ), ℓ ∈S.

As emphasided already in [11], the set ϕ and in turn collection S can be finite, countable, and also
over-countable.

11.3 Strictly block upper triangular matrix functions and array functions of them

In this part, for given integers ν ≥ 2, l ≥ ν , l1 ≥ 1, . . . , lν ≥ 1, such that l = l1 + . . .+ lν , we denote by
SUT = SUT (l,ν , l1, . . . , lν) the set of all strictly upper triangular matrix functions N : I →Rl×l showing
the block structure

N =


0 N12 ∗ · · · ∗

0 N23 ∗ ∗
. . . . . .

...
Nν−1,ν

0

 , Ni j = (N)i j : I → Rli×l j , Ni j = 0 for i ≥ j.

If l = ν and li = · · ·= lν = 1 then N is strictly upper triangular in the usual sense.

The following lemma collects some rules that can be checked by straightforward computations.
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Lemma 11.4. N, N̂ ∈ SUT and N1, . . . ,Nk ∈ SUT imply

(1) N + N̂ ∈ SUT .
(2) NN̂ ∈ SUT , and the entries of the secondary diagonals are

(NN̂)i,i+1 = 0, i = 1, . . . ,ν −1,

(NN̂)i,i+2 = (N)i,i+1(N̂)i+1,i+2, i = 1, . . . ,ν −2.

(3) Nν = 0 and N1 · · ·Nk = 0 for k ≥ ν .
(4) I −N remains nonsingular and (I −N)−1 = I +N + · · ·+Nν−1.
(5) (I − N̂)−1N = N + N̂N + · · ·+(N̂)ν−2N and

((I − N̂)−1N)i,i+1 = (N)i,i+1, i = 1, . . . ,ν −1.

The following two subsets of SUT are of special interest because they enable rank determinations and
beyond.

• Supposing l1 ≥ ·· · ≥ lν we denote by SUTcolumn ⊂ SUT the set of all N ∈ SUT having exclusively
blocks (N)i,i+1 with full column rank, that is

rank(N)i,i+1 = li+1, i = 1, . . . ,ν −1. (135)

• Supposing l1 ≤ ·· · ≤ lν we denote by SUTrow ⊂ SUT the set of all N ∈ SUT having exclusively blocks
(N)i,i+1 with full row rank, that is

rank(N)i,i+1 = li, i = 1, . . . ,ν −1. (136)

Lemma 11.5. Each N ∈ SUTcolumn has constant rank l − l1 and, for k ≤ ν −1, one has

kerN = im
[

Il1
0

]
, kerNk = im


Il1

. . .
Ilk

0 0

 .

Moreover, for the product of any k elements N1, . . . ,Nk ∈ SUTcolumn it holds that

kerN1 · · ·Nk = im


Il1

. . .
Ilk

0 0

 , rankN1 · · ·Nk = l − (l1 + · · ·+ lk).

Proof. This follows from generalizing Lemma 11.4 (2) for products of several matrices and (135).

Lemma 11.6. Each N ∈ SUTrow has constant rank l − lν and, for k ≤ ν −1, one has

im N = im


Il1

. . .
Ilν−1

0 0

 , im Nk = im


Il1

. . .
Ilν−k

0 0

 .

Moreover, for the product of any k elements N1, . . . ,Nk ∈ SUTrow it holds that

im N1 · · ·Nk = im


Il1

. . .
Ilν−k

0 0

 , rankN1 · · ·Nk = l1 + · · ·+ lν−k.
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Proof. This follows from generalizing Lemma 11.4 (2) for products of several matrices and (136).

Next we turn to the derivative array function44 N[k] : I → R(kl+l)×(kl+l) associated with N ∈ SUT , that
is,

N[k] :=



N 0 · · · 0

I +α2,1N(1) N
...

α3,1N(2) I +α3,2N(1) N
...

. . . . . . . . .
...

. . . . . . . . . 0
αk+1,1N(k) · · · αk+1,k−2N(2) I +αk+1,kN(1) N


. (137)

Since the derivatives N(i) inherit the basic structure of SUT , too, we rewrite

N[k] :=



N 0 · · · 0

I +M2,1 N
...

M3,1 I +M3,2 N
...

. . . . . . . . .
...

. . . . . . . . . 0
Mk+1,1 · · · Mk+1,k−2 I +Mk+1,k N


, (138)

and keep in mind that Mi, j ∈ SUT for all i and j.

Lemma 11.7. Given N ∈ SUT , there exist a regular lower block triangular matrix function L[k], such
that

L[k] ·N[k] =



N 0 · · · 0

I Ñ2
...

0 I Ñ3
...

. . . . . . . . .
...

. . . . . . . . . 0
0 · · · 0 I Ñk+1


= ˜N[k],

whereas the matrix functions Ñ2, . . . , Ñk+1 again belong to SUT and inherit the secondary diagonal blocks
of N, that means (Ñs)i,i+1 = Ni,i+1, i = 1, . . . ,ν −1, s = 2, . . . ,k.

It holds that

NÑ2 · · · Ñk+1 = 0 if k ≥ l −1.

Moreover, for i = 1, . . . , l, as long as i+ k+1 ≤ l, it results that

(NÑ2 · · · Ñk+1)i,i+ j = (Nk+1)i,i+ j = 0, j = 1, . . . ,k,

(NÑ2 · · · Ñk+1)i,i+k+1 = (Nk+1)i,i+k+1.

Proof. Since I +M2,1 is nonsingular, with the nonsingular lower block-triangular matrix function

L 1
[k] =



I 0 0 · · · 0
0 (I +M2,1)

−1 0 · · · 0
0 −M3,1(I +M2,1)

−1 I 0 · · · 0

0 −M4,1(I +M2,1)
−1 0 I

. . .
...

...
...

...
. . . . . . 0

0 −Mk+1,1(I +M2,1)
−1 0 · · · 0 I


44See (67) in Section 6.2.
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we generate zero blocks in the first column of N[k] such that

L 1
[k] ·N[k] =



N 0 · · · 0

I Ñ2
...

0 I + M̂3,2 N
...

. . . . . . . . .
...

. . . . . . . . . 0
0 M̂k+1,2 · Mk+1,k−2 I +Mk+1,k N


,

with Ñ2 = (I +M2,1)
−1N. According to Lemma 11.4, Ñ1 has the same second diagonal blocks than N

and I + M̂3,2 is regular with the same pattern than N. If we make k such elimination steps, we obtain

L k
[k] · · · · ·L

1
[k] ·N[k] = ˜N[k],

analogously to an LU-decomposition, and L[k] := L k
[k] · · · · ·L

1
[k].

The remaining assertions are straightforward consequences of the properties of matrix functions belong-
ing to the set SUT .

Proposition 11.8. Given N ∈ SUT the associated array function N[k] has the nullspace

kerN[k] = {y =

y0
...

yk

 ∈ R(k+1)l : NÑ2 · · · Ñk+1yk = 0,yi = (−1)k+1−iÑi+1 · · · Ñk+1yk, i = 0, . . . ,k−1},

and

dimkerN[k] = dimkerNÑ2 · · · Ñk+1,

rankN[k] = kl + rankNÑ2 · · · Ñk+1.

Moreover, if N belongs even to SUTrow or to SUTcolumn, then

rankN[k] = kl + rankNk+1 = constant. (139)

Proof. Lemma 11.7 implies ker ˜N[k] = kerN[k] and rank ˜N[k] = rankN[k]. We evaluate the nullspace
ker ˜N[k],

ker ˜N[k] = {y ∈ R(k+1)l : Ny0 = 0,yi =−Ñi+2yi+1, i = 0, . . . ,k−1}

= {y ∈ R(k+1)l : NÑ2 · · · Ñk+1yk = 0,yi = (−1)k+1−iÑi+1 · · · Ñk+1yk, i = 0, . . . ,k−1},

which yields

dimker ˜N[k] = dimkerNÑ2 · · · Ñk+1,

rank ˜N[k] = kl + rankNÑ2 · · · Ñk+1.

If, additionally, N ∈ SUTcolumn, then owing to Lemma 11.5 it results that also dimkerNÑ2 · · · Ñk+1 =
dimkerNk+1 = l − (l1 + · · ·+ lk+1) such that rankNÑ2 · · · Ñk+1 = rankNk+1 = l1 + · · ·+ lk+1, and hence

rank ˜N[k] = kl + rankNk+1.

If, contrariwise, N ∈ SUTrow, then owing to Lemma 11.6 it results that also rankNÑ2 · · · Ñk+1 =
rankNk+1 = l1 + · · ·+ lν−(k+1) and hence

rank ˜N[k] = kl + rankNk+1.
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Corollary 11.9. If N ∈ SUT then, for k ≥ ν ,

kerN[k] = {y =

y0
...

yk

 ∈ R(k+1)m : y0 = 0,yi = Ñi+1 · · · Ñk+1yk, i = 1, . . . ,k−1}.
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[20] D. Estévez Schwarz, R. Lamour. A new projector based decoupling of linear DAEs for monitoring
singularities. English. Numer. Algorithms. 2016;73(2):535–565.
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