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Abstract: In this paper, we propose and analyze numerical methods for computing Lyapunov exponents
of semi-linear differential-algebraic equations (DAEs), leveraging smooth QR factorizations and Runge-
Kutta (RK) methods with error control and automatic step size selection. We demonstrate how both
discrete and continuous QR approaches efficiently approximate Lyapunov exponents by simultaneously
solving semi-linear DAEs and their linearized counterparts. The paper details the underlying algorithms,
error analysis, and numerical integration techniques, focusing on half-explicit RK (HERK) and explicit
singly diagonal implicit RK (ESDIRK) methods. We also provide implementation details and present
numerical experiments to illustrate the efficiency of these methods.
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1 Introduction

In this paper, we propose and analyze numerical methods for computing Lyapunov exponents for semi-
linear differential-algebraic equations (DAEs) of the form

E(t)x′(t) = f (t,x(t)), t ∈ I, (1)

where the interval I = [0,∞), x : I→ Rm, E : I→ Rm×m, and f = f (t,x) : I×Rm → Rm are sufficiently
smooth functions with bounded (partial) derivatives. The leading term E is supposed to be singular, but
has a constant rank for all t ≥ 0. We also assume that the initial value problem (IVP) for DAE (1) together
with a consistent initial condition x(0) = x0 has a unique solution x(t), which is sufficiently smooth on I.

Lyapunov exponents are a powerful tool for analyzing the asymptotic behavior of solutions to ordinary
differential equations (ODEs). They are also widely used to study nonlinear systems through linearized
analysis. The stability and spectral theories of ODEs were developed by Lyapunov, Perron, Bohl, and
others (see [1, 5]). Numerical methods for computing spectral intervals of ODEs have been extensively
studied, particularly in a series of works by Dieci and Van Vleck (see [7, 8, 9, 10, 11, 12, 13]).
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Differential-algebraic equations (DAEs) arise in various applications, including constrained multibody
dynamics, electrical circuit simulation, and chemical engineering [3, 17]. The stability theory for DAEs
has been developed more recently compared to ODEs. Spectral concepts such as Lyapunov, Bohl, and
Sacker-Sell spectral intervals have been extended to general linear DAEs with variable coefficients [18,
20, 21]. These works also introduced numerical methods for computing spectral intervals using QR
and SVD factorizations. Furthermore, the stability analysis of DAEs via Lyapunov exponents has been
applied in several real-world scenarios [2, 4, 14, 23, 24].

For numerical integration of DAE systems, implicit Runge-Kutta and BDF methods are commonly used
[3, 17]. Later studies demonstrated the efficiency of half-explicit Runge-Kutta (HERK) methods as an
alternative to implicit methods [19, 22]. However, early numerical experiments [19, 22] relied solely on
uniform meshes. Embedded HERK methods with variable step sizes and error control have also been
proposed for solving nonlinear DAEs [25].

In this paper, following the results in [18, 20, 21] for linear DAEs, we present and discuss numeri-
cal algorithms for computing Lyapunov exponents associated with a particular solution of semi-linear
DAE (1). Without loss of generality, we assume that the semi-linear DAE (1) is already given in the
strangeness-free form and consider the linear variational system along a particular solution x∗(t)

E(t)y′(t) = A(t)y(t), t ∈ I, (2)

where

E(t) =
[

E1(t)
0

]
, A(t) =

∂ f
∂x

(t, x∗) =
[

A1(t)
A2(t)

]
,

and E1 ∈ C(I, Rd×m) and A2 ∈ C(I, R(m−d)×m) are of full row rank. The strangeness-free assumption
means that the matrix

Ē(t) =
[

E1(t)
A2(t)

]
(3)

is nonsingular for all t ∈ I, which - under the smoothness assumption - implies that the DAEs are of
differentiation index one [17]. Furthermore, any fully implicit index-one semi-linear DAE of the form
(1) can be reduced to the strangeness-free form by multiplying both sides of (1) by an appropriate (and
numerically computable) matrix function.

To approximate Lyapunov exponents, we simultaneously integrate the DAE systems (1) and (2) using nu-
merical methods with error control and automatic step-size selection. Previous works [20, 18, 21] focused
on linear DAEs and employed low-order integration methods without error control. Thanks to the key
reformulation and convergence analysis in [22], we leverage well-known embedded RK methods with
error estimation and automatic step-size selection. The motivation for investigating half-explicit meth-
ods in [19] and revisiting RK methods in [22] stemmed from a critical observation: applying standard
ODE methods directly to strangeness-free DAEs often leads to order reduction [19], with the exception
of collocation methods [17, Theorem 5.17]. However, collocation methods are implicit, making their use
in continuous QR methods challenging, as they require solving matrix-valued nonlinear DAEs, leading
to nonlinear matrix equations (see Section 3).

This work extends the approximation of Lyapunov exponents to semi-linear DAEs by combining estab-
lished techniques and providing detailed algorithms. Implicit RK methods with error estimation can be
efficient for stiff problems but come with increased computational cost. Therefore, in this work, we rec-
ommend the use of embedded half-explicit Runge-Kutta (HERK) and explicit singly diagonal implicit
Runge-Kutta (ESDIRK) methods [15, 16] due to their cheaper computational cost and convenient imple-
mentation. Importantly, following the approach in [22], these integration methods preserve their ODE
order. This is a significant novelty of the paper. Another novelty is the extension of the error analysis
to semi-linear DAEs. Building on the approach in [21] for linear DAEs, we present an error analysis
demonstrating the applicability of our algorithms. In these methods, errors in approximating Lyapunov
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exponents are controlled by the local integration error. Last but not least, algorithmic aspects are dis-
cussed in details. Note that while existing QR methods for ODEs and their implementations can be
adapted to semi-explicit DAEs, they are not directly applicable to more general DAEs in the strangeness-
free form like (1) and (2).

The paper is organized as follows. In the next section, we review fundamental concepts from the Lya-
punov theory of linear DAEs and extend the definition of Lyapunov exponents to semi-linear DAEs.
We also provide a brief overview of embedded RK methods with error control for solving semi-linear
DAEs in their reformulated form. In Section 3, we introduce two variants of the QR algorithm for com-
puting Lyapunov exponents of semi-linear DAEs and discuss their implementation in detail. Section 4
presents an error analysis of these QR methods. Finally, in Section 5, we showcase numerical experi-
ments demonstrating the efficiency and robustness of our approach. The paper concludes with a summary
of key findings.

2 Preliminaries

2.1 Lyapunov exponents for DAEs

In this section, we summarize key concepts from the Lyapunov exponent theory for linear DAEs and
extend them to semi-linear DAEs. For a detailed discussion on Lyapunov exponents in the linear case,
we refer to [18, 20, 21]. Our goal is to define Lyapunov exponents associated with a particular solution
of semi-linear DAEs in the form of (1).

We first recall some notions for linear DAEs of the strangeness-free form

E(t)x′ = A(t)x, t ∈ I, (4)

where

E(t) =
[

E1(t)
0

]
, A(t) =

[
A1(t)
A2(t)

]
,

and E1 ∈C(I, Rd×m) and A2 ∈C(I, R(m−d)×m) are of full row rank. Furthermore, the matrix

Ē(t) =
[

E1(t)
A2(t)

]
(5)

is nonsingular for all t ∈ I. Reduction to the strangeness-free form and solvability analysis for DAEs (1)
are discussed in [17].

Definition 2.1. A matrix function X ∈C1(I, Rm×d) is called a (minimal) fundamental solution matrix of
(4) if each of its columns is a solution of (4) and rank X(t) = d, for all t ≥ 0.

Definition 2.2. For a given minimal fundamental matrix solution X of a strangeness-free DAE system of
the form (4), we introduce

λ
u
i = limsup

t→∞

1
t

ln∥X(t)ei∥, λ
l
i = liminf

t→∞

1
t

ln∥X(t)ei∥, i = 1, 2, · · · , d,

where ei denotes the i-th unit vector. The columns of a minimal fundamental solution matrix are said
to form a normal basis if ∑

d
i=1 λ u

i is minimal. The quantities λ u
i , i = 1,2, · · · ,d, belonging to a normal

basis are called (upper) Lyapunov exponents. The set of the Lyapunov exponents is called the Lyapunov
spectrum of DAE (4).
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For the purpose of numerical computation, it is important to study the behavior of Lyapunov exponents
under small perturbations. We consider a perturbed system of DAEs

[E(t)+∆E(t)]x′ = [A(t)+∆A(t)]x, t ∈ I, (6)

where we restrict the perturbations to have the form

∆E(t) =
[

∆E1(t)
0

]
, ∆A(t) =

[
∆A1(t)
∆A2(t)

]
.

Here ∆E and ∆A are assumed to be as smooth as E and A, respectively. Perturbations of this structure are
called admissible. The DAE (4) is said to be robustly strangeness-free if it is still strangeness-free under
all sufficiently small admissible perturbations. Note that it is essential to restrict the perturbations to this
structure to prevent from changing the strangeness-index.

Definition 2.3. The upper Lyapunov exponents λ u
1 ≥ λ u

2 ≥ ·· ·λ u
d of (4) are said to be stable if for any

ε > 0, there exists δ > 0 such that the conditions supt ∥∆E(t)∥< δ , supt ∥∆A(t)∥< δ on the perturbations
imply that the perturbed DAE (6) system is strangeness-free and

|λ u
i − γ

u
i |< ε, for all i = 1, 2, · · · , d,

where the γu
i are the ordered upper Lyapunov exponents of the perturbed system (6).

The stability of distinct Lyapunov exponents can be established by the property of integral separation,
see [1].

Definition 2.4. A minimal fundamental solution matrix X for (4) is called integrally separated if for
i = 1, 2, · · · , d −1 there exists constants β > 0 and γ > 0 such that

∥X(t)ei∥
∥X(s)ei∥

.
∥X(s)ei+1∥
∥X(t)ei+1∥

≥ γeβ (t−s),

for all t, s with t ≥ s ≥ 0. If a DAE system has an integrally separated minimal fundamental solution
matrix, then we say it has the integral separation property.

In practice, the integral separation (and so the stability of Lyapunov exponents) can be checked via
the computation of Steklov differences, see [9, 11, 20, 21]. Furthermore, if DAE (4) has the integral
separation, then the lower Lyapunov exponents associated with the columns of an integrally separated
fundamental solution matrix are well defined and the set of intervals [λ l

i , λ u
i ], i = 1,2, · · · ,d, are called

the spectral intervals of DAE (4).

As described in [7, 8], Lyapunov exponents provide a meaningful way to characterize the asymptotic be-
havior of solutions for nonlinear ODEs and associated linearized systems. They provide a generalization
of the linear stability analysis for perturbations of steady state solutions to time-dependent solutions.

For a given solution trajectory x(t), one considers the linear variational system (2). Then, for a minimal
fundamental matrix solution Y (t), the matrix

Λ = limsup
t→∞

Λx0(t) := limsup
t→∞

(Y T (t)Y (t))
1
2t (7)

is well-defined under some additional boundedness assumptions, and it is a symmetric positive definite
matrix.
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If {pi, µi} denote the eigenvectors and associated eigenvalues of Λ such that Λ pi = µi pi, or pT
i Λpi = µi,

then the Lyapunov exponents with respect to the trajectory x(t) of (1) or the linear DAE system (2) are
given by

λi = ln(µi) = ln
(

limsup
t→∞

⟨Y (t)pi, Y (t)pi⟩
) 1

2t

= limsup
t→∞

1
t

ln∥Y (t)pi∥, i = 1, . . . , d, (8)

where ⟨x,y⟩= xT y and ∥x∥ := ⟨x, x⟩ 1
2 . Thus, λi is a measure of the mean logarithmic growth rate of per-

turbations in the subspace Eig(Λ, µi) = {pi ∈Rd : Λ pi = µi pi}, and λi describes how nearby trajectories
for the DAE system (1) converge or diverge from x(t).

In practice, we solve (1) with a given consistent initial condition to find the solution x(t). In parallel,
we evaluate the matrix coefficients A(t) of (2). Then, we approximate the Lyapunov exponents of linear
DAE system (2) by the methods proposed in [18, 20, 21]. In the remainder part of the paper, we will
describe the algorithms in details and discuss their implementation and error analysis. For numerical
integration, we use embedded RK methods with error control and variable stepsizes.

2.2 Runge-Kutta methods with error control and variable stepsize

When using numerical methods for integration, one has to estimate and control the actual errors of
numerical solutions. We use embedded Runge-Kutta methods to estimate the errors and choose suitable
(and variable) stepsizes accordingly to a given error tolerance. We note that numerical integration of
strangeness-free DAEs like (1) and (2) is more complicated than semi-explicit index-1 DAEs since the
differential and algebraic variables are not separated. Thus, well-known ODE methods may suffer order
reduction, see [19] and references therein. In this paper, we use the approach presented in [22] and with
regard to the efficiency, we recommend half-explicit and explicit singly diagonal implicit Runge-Kutta
methods, see [15, 16].

First, we rewrite the DAEs (1) into the form

(E(t)x(t))′ = E ′(t)x(t)+ f (t, x(t)), (9)

or in the strangeness-free formulation

(E1(t)x(t))′ = E
′
1(t)x(t)+ f1(t, x(t)),

0 = f2(t, x(t)),

on a finite interval I= [t0, T ], where E(t) =
[

E1(t)
0

]
, f (t, x(t)) =

[
f1(t, x(t))
f2(t, x(t))

]
. Note that the refor-

mulation (9) plays the key role in avoiding order reduction for the numerical methods, see [22].

For illustration of the use of half-explicit RK methods, let us take an embedded pair of explicit Runge-
Kutta methods with order p and p̂ = p+ 1, whose coefficients are c = (c1 . . . cs)

T , A = [ai j]s×s, b =
(b1 . . . bs) and b̂ = (b̂1 . . . b̂s), respectively.

Now, we consider a subinterval [tn−1, tn] and suppose that an approximation xn−1 to x(tn−1) is given.
Let Ti = tn−1 + cih be the time at stage i and the stage approximations Ui ≈ x(Ti), Ki ≈ (E1x)′(Ti), i =
1,2, . . . ,s. Furthermore, we assume that the values E1,i = E1(Ti), E

′
1,i = E

′
1(Ti) are available. The half-

5



V. H. Linh, N.D. Truong, P. Q. Tuyen | On Computation of Lyapunov Exponents

explicit Runge-Kutta scheme applied to (9) reads

U1 = xn−1,

E1,iUi = E1(tn−1)U1 +h
i−1

∑
j=1

ai jK j, i = 2,3, . . . ,s,

E1(tn)xn = E1(tn−1)xn−1 +h
s

∑
i=1

biKi.

(10)

The approximations Ui+1,Ki, i = 1,2, . . . ,s−1 can be determined from the systems given by

Ki = E ′
1(Ti)Ui + f1(Ti,Ui), i = 1, 2, · · · , s, (11)

E1(Ti+1)Ui+1 = E1(tn−1)U1 +h
i

∑
j=1

ai+1, jK j,

f2(Ti+1,Ui+1) = 0, i = 1, 2, · · · , s−1.

Finally, the numerical solution xn of order p is determined by the system

E1(tn)xn = E1(tn−1)U1 +h
s

∑
i=1

biKi, (12)

f2(tn, xn) = 0.

Due to the strangeness-free assumption, for sufficiently small h, the Jacobian matrices associated with
nonlinear systems (11) and (12) are nonsingular. Therefore, nonlinear systems (11), (12) can be solved
by the Newton iterative method.

In [22], the convergence of HERK methods applied to (9) was established, namely if the underlying ex-
plicit Runge-Kutta method is convergent of order p for ODEs, then the HERK scheme (11)-(12) applied
to (9) is convergent of order p, i.e.,

∥xn − x(tn)∥= O(hp) as h → 0,

where tn = t0 +nh is fixed.

As a consequence, [25, Proposition 1] shows that the numerical solutions of the embedded pair of Runge-
Kutta methods of orders p and p+1 for solving the DAE system (9) are convergent of order p and p+1,
respectively.

Let us denote the numerical solutions at tn by xn and x̂n, respectively. Then the local error of the numerical
solution xn can be estimated by using the difference between the two numerical solutions, e.g.

error = max
1≤i≤m

|(xn)i − (x̂n)i|
(1+ |(xn)i|)

. (13)

Given an error tolerance TOL, if h is the actual stepsize, we recommend a new suitable stepsize as follows

hnew = νh
[

TOL
error

] 1
p+1

, (14)

where ν is a safety factor, usually ν = 0.9 is used.

Alternatively, one can apply implicit Runge-Kutta methods in a similar manner to solve the IVP for the
DAEs (1)/(9), see [22]. However, the computational cost for the IRK methods is significantly increased
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since we have to solve a large nonlinear system at each step. Moreover, additional difficulties arise
with IRK schemes in the continuous QR method presented in Section 3 below. For comparison, we
suggest the ESDIRK methods presented in [15, 16] as an alternative family for numerical integration.
The implementation and convergence of ESDIRK methods with error control are similar to the above
discussions for HERK methods.

For numerical experiments in this paper, we use the HERK method based on the Dormand-Prince em-
bedded pair of orders p = 5(4), see [3], and several ESDIRK methods to solve DAEs (1) /(9).

3 QR methods

In this section, we present numerical methods based on smooth QR factorization to approximate Lya-
punov exponents of problem (1). These methods are more complicated than the ones for linear DAEs.
We must solve the semi-linear DAE to get a particular solution in order to obtain the linearized system
(2). In practice, numerical solutions of the semi-linear system and its variational linearized system are
computed using the same mesh.

3.1 Discrete QR method

In the discrete QR method, the fundamental solution matrix Y (t) and its triangular factor R are indirectly
evaluated by a re-orthogonalized integration of the DAE system (2).

First, we choose an initial stepsize h0. Let the initial matrix Y0 be given at t0 for the linearized system
(2). We perform the QR factorization Y0 = Q(t0)R(t0), where R(t0) has positive diagonal elements.

For j = 1, 2, . . . , N, let Y (t, t j−1) be the numerical solution to the matrix initial value problem

E(t)Y ′(t, t j−1) = A(t)Y (t, t j−1), (15)

Y (t j−1, t j−1) = Q(t j−1).

Then, we perform the QR factorization

Y (t j, t j−1) = Q(t j)R(t j, t j−1). (16)

We require the diagonal elements of R(t j, t j−1) be positive. Consequently, we have the unique QR
factorization Y (t j) = Q(t j)R(t j), where

R(t j) = R(t j, t j−1)R(t j−1, t j−2) . . .R(t2, t1)R(t1, t0)R(t0). (17)

Thus, we have the approximations to the upper Lyapunov exponents

λi = limsup
t→∞

1
t

ln(R(t)ii), i = 1,2, . . . ,d, (18)

where R(t)ii is the i-th diagonal element of R(t) and approximated by R(t j)ii = ∑
j
l=1 ln(R(tl, tl−1)ii). The

formula for the approximations to the lower Lyapunov exponents is similar.

In the interval from t j to t j+1, there are four steps to follow:

1. We integrate (9) to obtain a solution x(t), then compute the matrix coefficients A1(t), A2(t) corre-
sponding to solution x(t) to obtain a linearized DAE system of the form (15). We note that both
systems (9) and (15) are integrated simultaneously by embedded Dormand-Prince pair of order
4(5) in the same stages.
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Thus, with a stepsize h, we obtain approximate solutions x j+1, Yj+1 of order 5 and x̂ j+1, Ŷj+1 of
order 4.

2. In this step, we perform error control based on the pair of solutions x j+1, x̂ j+1, or on the pair of
solutions Yj+1, Ŷj+1 and the solutions x j+1, x̂ j+1. For example, we can perform error control on the
solution pair x j+1, x̂ j+1. Let h be the current stepsize and hnew be the new stepsize. We will restrict
the new stepsize as α1h ≤ hnew ≤ α2h, α1 < 1, α2 > 1, e.g. we set α1 =

1
5 , α2 = 5 and choose hnew

as follows:

• First, we estimate the error by using formula (13).

• Then, we compute the new stepsize by using formula (14). We also restrict hnew to not less
than α1h and not larger than α2h.

• Next, given a tolerance TOL, we check if error ≤ TOL, the step is accepted and the computed
new stepsize will be used for the next step. Otherwise, it is rejected, and we repeat the
integration with the new stepsize.

3. After a successful step, we perform QR factorizations (16) for Yj+1 to obtain the approximate
factor R j+1.

4. Finally, we update the approximations for λi, i = 1, . . . , d by computing

si(t j+1) = si(t j)+ ln(R j+1)ii, λi(t j+1) =
1

t j+1
si(t j+1), (19)

and solve the optimization problems minτ≤t≤t j+1 λi(t) and maxτ≤t≤t j+1 λi(t) with a given (suffi-
ciently large) τ . At the beginning, we set si(t0) = 0, i = 1, . . . , d.

The discrete QR algorithm is given in the pseudo-code form as follows.

Algorithm 3.1. Input: Given the DAE (1) on an interval [0, T ], with the consistent initial condition
x(t0) = x0, Y0 ∈ Rn×p, an error tolerance TOL, and an initial guess of stepsize h0, τ ∈ [0,T ].

Output: Approximate Lyapunov exponents λ u
i , λ l

i , i = 1, 2, . . . , p ≤ d.

Initialization:

• Set t0 := 0, and perform QR factorization Y (t0) = Q0R0, where R0 has positive diagonal elements.
• Set λi(t0) := 0 and si(t0) := 0 for i = 1, . . . , p to calculate the sum in (18).

While t j < T

1. If t j+1 = t j +h j > T then h j = T − t j;

2. We solve the initial value problem (9) and its linearized system (15) in the same stages of scheme
(11)-(12). Denote the numerical solution computed at t = t j+1 by x̄ j+1, Ȳj+1 of order 5 and
x̃ j+1, Ỹj+1 of order 4.

3. Calculate

error = max
1≤i≤m

|(x̄ j+1)i − (x̃ j+1)i|
(1+ |(x̄ j+1)i|)

,

and

hnew = νh j

(
TOL
error

) 1
p+1

.
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4. If error ≤ TOL (the step is accepted), then we carry out QR factorization Ȳj+1 = Q j+1R j+1 to find
the factors R j+1 with positive diagonal elements.

We then update the Lyapunov exponents:

t j+1 = t j +h j; Y (t j+1) = Q j+1; x(t j+1) = x̄ j+1;
si(t j+1) = si(t j)+ ln(R j+1)ii and λi(t j+1) =

1
t j+1

si(t j+1), for i = 1, 2, . . . , p.
If desired, check the integral separation property by using {si}p

i=1.
Set h j+1 = min{hnew,α2h j} and go to the next interval.
Otherwise, set h j = max{hnew, α1h j} (the stepsize will be adjusted) and go back to 2.

5. Compute si(t j+1) = si(t j)+ ln(R j+1)ii, λi(t j+1) =
1

t j+1
si(t j+1).

Update minτ≤t≤t j+1 λi(t) and maxτ≤t≤t j+1 λi(t).

3.2 Continuous QR method

For the continuous QR method, we consider the linearized DAE system of (9) and then apply the method
in [21]. The unique factorization Y (t)=Q(t)R(t) with positive diagonal elements in R is to be determined
for t ∈ I. Differentiating Y = QR and inserting this into DAE (9) yields

EQ′+EQR′R−1 = AQ. (20)

Equation (20) is a nonlinear strangeness-free DAE system for the matrix function Q. We note that the
algebraic equation of (20) satisfies A2Q = 0, its derivative is A′

2Q+A2Q′ = 0, and replace it into (20) to
obtain

Ē(Q′+QR′R−1) = ĀQ, (21)

where

Ē =

[
E1
A2

]
, Ā =

[
A1
−A′

2

]
, (22)

Now, we derive a formula for QT Q′. By [21, Lemma 12], there exists a bounded, full-column rank matrix
function P ∈C(I, Rn×p), and an upper triangular nonsingular matrix solution E ∈ C (I, Rp×p) such that

PT Ē = E QT (23)

holds. Furthermore, if we require PT P = Ip and the diagonal elements of E to be positive, then P and E
are unique. A practical method for computing P and E is described in [21].

Multiplying (21) from the left by PT defined as in (23), we obtain

E QT Q′+E R′R−1 = PT ĀQ.

Setting B := R′R−1, S(Q) := [si, j(Q)] = QT Q′, and K := PT ĀQ, it follows that S(Q) = E −1K −B. Since
S(Q) is a skew-symmetric matrix and B is upper triangular, the strictly lower part of S(Q) is defined by
the strictly lower part of W := [wi, j] = E −1K (denoted low(W )) and its upper triangular part is determined
by the skew symmetry. We have S(Q) = low(W )− [low(W )]T , i.e.,

si, j =


wi, j, i > j,
0, i = j,

−wi, j, i < j,
1 ≤ i, j ≤ p. (24)

Thus, Q is obtained by solving the initial value problem for the nonlinear strangeness-free matrix-valued
DAE

EQ′ = AQ−EQB,

9
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or equivalently
EQ′ =−EQ(W −S(Q))+AQ. (25)

For the numerical integration, we need to use a DAE solver which preserves the algebraic constraint as
well as the orthogonality condition QT Q = Ip. We also see that B =W −S(Q) = ¯upp(W )+ [low(W )]T ,
where ¯upp(W ) denotes the upper triangular part of W (including the diagonal).

We compute W by solving the upper triangular algebraic system EW = K. If we set A := K−E S(Q) =
PT ĀQ−E QT Q′, then the differential equation for the factor R is given by the upper triangular matrix
equation of size p× p

E R′ = A R, or equivalently R′ = BR. (26)

However, we are only interested in the diagonal elements ri,i of R (or more exactly, in their logarithm).
Since the system (26) is upper triangular and the diagonal elements of S(Q) are zeros, we obtain the
scalar differential equations

r′i,i = wi,iri,i, (27)

where wi,i, i = 1, . . . , p is the i-th diagonal element of the matrix W . To determine these quantities, we
introduce the auxiliary functions φi(t) defined by the solution of the initial value problems

φ
′
i (t) = wi,i(t), φi(t) = 0, (i = 1, 2, . . . , p). (28)

Finally, the functions λi(t) are defined by

λi(t) =
1
t

φi(t), i = 1, 2, . . . , p, (29)

and their limits as t → ∞ are to be approximated.

In the step from t j to t j+1, we use the Dormand-Prince pair to obtain the solutions x j+1 of order 5 and
x̂ j+1 of order 4 for the nonlinear DAE system of the form (9). Then, we use these solutions to compute
the matrix coefficients A1(t), A2(t),A

′
2(t) and find the solution Qi+1 and Q̂ j+1, respectively for nonlinear

system (25). The DAE systems (9) and (25) are integrated together by the same Runge-Kutta scheme
(11)− (12). We note that the numerical solution for (25) needs to be re-orthogonalized at each meshpoint
to preserve the orthogonality condition.

At this point, it is possible to perform error control for the solution x(t) in (9), and/or for the orthogonal
factor Q in (25). For example, we monitor the error in the solution x(t) and select a suitable stepsize as
follows.

Let h be the current stepsize, and hnew be the new stepsize.

• Estimate the error of the solution x(t) by using the formula (13).
• We compute the new stepsize by using (14), where p = 4 for Dormand-Prince embedded pair.
• We will restrict that hnew does not change too much, i.e., α1h ≤ hnew ≤ α2h; α1 and α2 are given

as in Section 3.1.
• If error ≤ TOL, the step is accepted and we go to the next step. Otherwise, it is rejected and we

repeat the integration.

Next, we use the solution Q j+1 of order 5 of nonlinear system (25) to compute P(t j+1), E (t j+1), K(t j+1)
as in (23) and their definitions, respectively. Then, we must solve for W (t j+1). Finally, we compute
φi(t j+1), λi(t j+1), i = 1, . . . , p, by their formulas in (28) and (29).

10
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Remark 3.2. In the continuous QR method, we must approximate the derivative of the coefficient −A
′
2(t).

We can compute by the analytical formula as

A
′
2(t) =

dA2

dt
=

d
dt

(
∂ f2(t, x)

∂x

)
=

∂ 2 f2(t,x)
∂x∂ t

+
∂ 2 f2(t,x)

∂x2
dx
dt

.

Otherwise, if it is not available, we can use a finite difference formula to approximate the derivative.

In summarizing the above description, we give the continuous QR algorithm as follows.

Algorithm 3.3. Input: Given the DAE (1) on an interval [0, T ], with the consistent initial condition
x(t0) = x0 of (9), and Q0 = Q(t0) as the initial value for (25), an error tolerance TOL, and an initial
guess of the step size h0.

Output: Approximate Lyapunov exponents λ u
i , λ l

i , i = 1, 2, . . . , p.

Initialization:

• Set j = 0, t0 := 0. Compute P(t0), E (t0), and K(t0) as in (23).
• Calculate W (t0) by its formula.
• Set λi(t0) := 0 and φi(t0) := 0 for i = 1, . . . , p.

While t j < T

1. If t j+1 = t j +h j > T then h j = T − t j;

2. We solve the initial value problems for DAE (9) and for system (25) in the same stages in schemes
(11)-(12) to find x(t j+1) and Q(t j+1) on [t j, t j+1]. Denote the numerical solution computed at
t = t j+1 by x̄ j+1, Q̄ j+1 of order 5 and x̃ j+1, Q̃ j+1 of order 4.

3. Calculate

error = max
1≤i≤m

|(x̄ j+1)(i)− (x̃ j+1)(i)|
(1+ |(x̄ j+1)(i)|)

hnew = νh j

(
TOL
error

) 1
p+1

;

4. If error ≤ TOL (the step is accepted) then we reorthogonalize the factor Q(t j+1) of (25) as: Q̄ j+1 =
Q j+1R j+1 to find R j+1 with positive diagonal elements.

We then update the Lyapunov exponents:

t j+1 = t j +h j;
x(t j+1) = x̄ j+1 and Q(t j+1) = Q j+1;
We compute P(t j+1), E (t j+1), K(t j+1) and solve W (t j+1);
Compute φi(t j+1) and λi(t j+1), for i = 1, 2, . . . , p as in (28) and (29).
If desired, we compute the Steklov differences to check integral separation property;
Set h j+1 = min{hnew,α2h j} and go to the next interval.
Otherwise, set h j = max{hnew, α1h j} (the stepsize will be adjusted) and go back to 2.

5. Update minτ≤t≤t j+1 λi(t) and maxτ≤t≤t j+1 λi(t).

11
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4 Error analysis

In this section, we aim to give an error analysis for the QR methods described above. We need to integrate
the semi-linear DAEs of the form (1) on the interval [0, T ], together with an initial condition x(0) = x0.
Linearizing the equation (1) along the obtained solution, we obtain the linear DAE (2). Thus, we solve
simultaneously two systems (1) and (2). In order to obtain error analysis, we first recall the error analysis
of the QR methods for linear DAE (2), see [21]. Then, we will investigate the perturbation analysis for
semi-linear DAE (1) and linearized DAE (2).

4.1 Error analysis of the QR methods for linear DAEs

A careful error analysis of the QR methods for the linear case was given in [21]. Under the integral
separation assumption, the absolute errors of computed Lyapunov exponents can be estimated by a bound
that has essentially the same magnitude as the local integration errors that can be controlled.

The error analysis for the Lyapunov exponents combines two parts: backward error analysis and forward
error analysis. We briefly summarize the idea and the main results in [21] below.

Backward error analysis. The main aim of the backward error analysis is to show that the exact real-
ization of the QR methods can be interpreted as the solution of a piecewise constant and upper triangular
differential system, while the numerical realization can be interpreted as the solution of a perturbed sys-
tem. Theorem 23 and Theorem 25 in [21] state that the perturbation arising in the coefficient matrix has
the same magnitude as the local discretization error for the discrete/continuous QR method.

Forward error analysis. In the forward error analysis for the discrete/continuous QR method presented
in [21], we consider an implicitly given linear time-varying system of upper triangular form together with
a perturbed system, where the perturbations in the coefficients are small and can be estimated. Assuming
the integral separation and some further boundedness conditions, Theorem 31 and Corollary 32 in [21]
give a bound for the gaps between the Lyapunov exponents of the unperturbed system and those of the
perturbed one. This bound can be computed explicitly by using the bounds of the perturbations.

Since the main error source in the QR methods is the error arising from numerical integration, under
the assumptions stated in the backward and forward error analysis, we can conclude that the error of the
Lyapunov exponents has the same order of magnitude as the local error tolerance. Namely, if we use an
integrator of order p and consider only discretization errors arising from numerical integration, then the
errors of the Lyapunov exponents in both the QR methods have magnitude O(hp), where h = max j≥1 h j

is the maximal stepsize.

It is important to note that unfortunately we cannot deal with the error caused by the time termination,
i.e., the error arising from truncating the semi-infinite interval to a finite one when approximating the
limit as t → ∞.

4.2 Error analysis of the linearization

By extending the error analysis for nonlinear ODEs, see [7], we will consider error analysis for semi-
linear DAEs. Our goal is to compute the Lyapunov exponents of the semi-linear problem

E(t)x′ = f (t,x), x(0) = x0, (30)

with the reference solution x(t) = φ(t, x0).

To compute the Lyapunov exponents of (30), we would like to obtain the Lyapunov exponents for the
linear variational problem

E(t)X ′(t) =
∂ f
∂x

(
t,φ(t, x0)

)
X(t), i.e., E(t)X ′(t) = A(t)X(t), (31)

12
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subject to some initial conditions X0.

By the exact QR factorizations on the problem (31) and the error analysis in [21, Section 4.1], we would
find a sequence {t j} such that

X(t j) = Q(t j)R(t j, t j−1) . . .R(t2, t1)R(t1, t0)R0. (32)

In practice, we will have a numerical approximation to the reference solution ψh(t, x0) instead of φ(t, x0).
Thus, we will end up attempting to approximate the Lyapunov exponents of the problem

E(τ)Y ′(τ) =
∂ f
∂x

(
τ,ψh(τ, x0)

)
Y (τ), i.e., E(τ)Y ′(τ) = Ã(τ)Y (τ), (33)

and by the exact QR factorizations on the problem (33), we would find a sequence of {τ j} such that

Y (τ j) =U(τ j)V (τ j, τ j−1) . . .V (τ2, τ1)V (τ1, τ0)V0. (34)

Assume that there exist smooth monotone functions ω j(t) such that

ω j(t j) = τ j, ω j(t j+1) = τ j+1,

and define ω(t) = ω j(t) for all t ∈ [t j, t j+1). We further assume that for all t ≥ 0, there exist constants
ε > 0 and δ > 0 such that

(a) |ω(t)− t| ≤ δ , (35)

(b) ∥ψh(ω(t), x0)−φ(t, x0)∥ ≤ ε.

Here, δ and ε are proportional to the absolute local error in approximating the semilinear DAE system.

In addition to the errors arising from the backward and forward error analysis for the linear DAE system,
we face the error arising from the difference between two linear problems (31) and (33), that is, we will
compare the matrix functions A and Ã.

To address this issue, analogously to the ODE case [7], we have the following theorem.

Theorem 4.1. Suppose that (35) holds and let the second-order derivatives fxt and fxx exist and be
continuous. Then, we have

∥Ã(τ)−A(t)∥ ≤ Mδ +Nε, (36)

where M and N are bounds on the second order derivatives fxt and fxx, respectively.

Proof. By the integral calculus, we have that

fx
(
ω(t),ψh(ω(t), x0)

)
− fx

(
t,φ(t, x0)

)
= fx

(
ω(t),ψh(ω(t), x0)

)
− fx

(
t,ψh(ω(t), x0)

)
+ fx

(
t,ψh(ω(t), x0)

)
− fx

(
t,φ(t, x0)

)
=

∫ 1

0
fxt
(
t + s(ω(t)− t),ψh(ω(t), x0)

)
ds
(
ω(t)− t

)
+
∫ 1

0
fxx

(
t,φ(t, x0)+ s

(
ψh(ω(t), x0)−φ(t, x0)

))
ds
(
ψh(ω(t), x0)−φ(t, x0)

)
,

for 0 ≤ s ≤ 1 and t ≥ 0.
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So, applying the estimates in (35), we obtain a bound

∥ fx
(
ω(t),ψh(ω(t), x0)

)
− fx

(
t,φ(t, x0)

)
∥

≤ max
0≤s≤1

∥ fxt
(
t + s(ω(t)− t),ψh(ω(t), x0)

)
∥|ω(t)− t|

+ max
0≤s≤1

∥∥∥ fxx

(
t,φ(t, x0)+ s

(
ψh(ω(t), x0)−φ(t, x0)

))∥∥∥∥ψh(ω(t), x0)−φ(t, x0)∥.

That is
∥Ã(τ)−A(t)∥ ≤ Mδ +Nε.

The bound (36) combined with the stability result for Lyapunov exponents implies that for Mδ +Nε

small enough uniformly in t, the Lyapunov exponents of systems (31) and (33) are close to each other.

5 Numerical experiments

In this section, we carry out some numerical experiments with both continuous and discrete QR algo-
rithms using the Dormand-Prince method and the ESDIRK methods as described in Section 3. The
algorithms have been implemented by Matlab version R2022a and the numerical results are obtained on
a computer with Intel CPU core I5 processor 2.7 GHz.

To test the performance of the numerical methods, we consider several examples of nonlinear
strangeness-free DAEs and apply the QR algorithms to approximate their Lyapunov exponents. Here
we present the numerical results for a real-life example and a constructive one. For numerical integra-
tion, we use the HERK method based on the Dormand-Prince pair and several ESDIRK methods from
[15, 16].

Example 5.1. Consider the semi-explicit DAE system which models a nonlinear damp-spring system in
[6]

x′1 = x2,

x′2 = −k1

M
x1 −

k2

M
x3

1 −
b
M

x2 +
x4

M
,

0 = x2 − rx3,

0 = −k2

M
x3

1 +

(
2r2

J
− 1

M

)
bx2 −

k1

M
x1 +

(
r2

J
+

1
M

)
x4,

with initial conditions x1(0) = 1, x2(0) = 1, x3(0) = 1
2 , x4(0) = 0, and parameter values taken from [6],

k1 = 1, k2 = 1, b = 2, r = 2, M = 1, J = 4.

We can rewrite the above system as follows

E(t)x′(t) = f (x),

where x(t) = (x1(t), x2(t), x3(t), x4(t))T and

E(t) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and f (t,x) =


x2

− k1
M x1 − k2

M x3
1 −

b
M x2 +

x4
M

x2 − rx3

− k2
M x3

1 +
( 2r2

J − 1
M

)
bx2 − k1

M x1 +
( r2

J + 1
M

)
x4

 .
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Table 1 and Table 2 display the computed Lyapunov exponents with respect to different values of the
error tolerance TOL by using the half-explicit Dormand-Prince method.

Table 1. Lyapunov exponents by the discrete QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17903157 -2.82030775 4580 0.558963

5000 10−4 -0.17750595 -2.82221670 22907 1.888204

10000 10−4 -0.17731527 -2.82245528 45816 3.891060

1000 10−5 -0.17902793 -2.82048083 7029 0.699758

5000 10−5 -0.17750506 -2.82238425 35156 2.899508

10000 10−5 -0.17731470 -2.82262218 70316 6.150663

1000 10−6 -0.17902253 -2.82050542 10890 1.099596

5000 10−6 -0.17750396 -2.82240051 54464 4.749011

10000 10−6 -0.17731415 -2.82263738 108931 9.135048

Table 2. Lyapunov exponents by the continuous QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17980518 -2.82074422 865 0.256192

5000 10−4 -0.17766056 -2.82244931 4277 0.832777

10000 10−4 -0.17739246 -2.82266247 8543 1.395277

1000 10−5 -0.17981842 -2.82072801 874 0.259642

5000 10−5 -0.17766273 -2.82244646 4287 0.906540

10000 10−5 -0.17739351 -2.82266108 8553 1.365671

1000 10−6 -0.17982136 -2.82071778 892 0.274772

5000 10−6 -0.17766358 -2.82244421 4305 0.845633

10000 10−6 -0.17739399 -2.82265991 8570 1.458471

We also implement several ESDIRK methods presented in [15] in the discrete QR algorithm. The numer-
ical results show that the ESDIRK methods require more computational time than the HERK method.
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Table 3. Lyapunov exponents by the discrete QR algorithm using ESDIRK34 method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17902421 -2.82038368 10020 0.707572

5000 10−4 -0.17750535 -2.82227923 50113 2.565906

10000 10−4 -0.17731551 -2.82251616 100229 5.098090

1000 10−5 -0.17902248 -2.82049556 18245 1.032116

5000 10−5 -0.17750399 -2.82239049 91256 4.610991

10000 10−5 -0.17731418 -2.82262734 182520 9.095078

1000 10−6 -0.17902231 -2.82050608 32877 1.810772

5000 10−6 -0.17750394 -2.82240085 164448 8.193071

10000 10−6 -0.17731414 -2.82263770 328913 16.396372

Table 4. Lyapunov exponents by the discrete QR algorithm using ESDIRK54b method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17902458 -2.81535892 2202 0.263587

5000 10−4 -0.17750439 -2.81724595 10955 0.982761

10000 10−4 -0.17731437 -2.81748183 21988 1.84532

1000 10−5 -0.17902306 -2.81948801 3177 0.493237

5000 10−5 -0.17750398 -2.82139569 15913 2.015899

10000 10−5 -0.17731416 -2.82163186 31819 3.922165

1000 10−6 -0.17902233 -2.82048569 6973 0.659497

5000 10−6 -0.17750394 -2.82238048 34857 2.800313

10000 10−6 -0.17731414 -2.82261734 69713 5.513546

Example 5.2. Now, we construct a new strangeness-free system by transforming the previous example
as follows. First, we take the system[

E11(t) 0
0 0

]
x′(t) =

[
E11(t) f (t, x)

g(t, x)

]
,

where E11(t) =
[

cos(γ1t) sin(γ1t)
−sin(γ1t) cos(γ1t)

]
and

f (t, x) =
[

x2
−x1 − x3

1 −2x2 + x4

]
, g(t, x) =

[
x2 −2x3

−x1 − x3
1 +2x2 +2x4

]
.

We then change the variables by setting x(t) = Q(t)y(t), where Q(t) is a Givens rotation

Q(t) =


cos(γ2t) 0 0 sin(γ2t)

0 cos(γ3t) sin(γ3t) 0
0 −sin(γ3t) cos(γ3t) 0

−sin(γ2t) 0 0 cos(γ2t)

 .
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Thus, the above system becomes a semi-linear DAE of the form[
Ê1(t)

0

]
y′(t) =

[
f̂ (t, y)
ĝ(t, y)

]
,

where

Ê1(t) =
[

E11(t) 0
]

Q(t), ĝ(t,y) = g(t, Qy),

f̂ (t,y) = E11(t) f (t, Q(t)y)− [E11(t) 0]Q′(t)y.

To get a linear variational system, we linearize the above system along the given solution y∗ to obtain[
Ê1(t)

0

]
u′ =

[
Â1(t)
Â2(t)

]
u,

where

Â1(t) =
∂ f̂ (t, y∗)

∂y
= E11(t)

∂ f (t, x∗)
∂x

Q(t)− [E11(t) 0]Q′(t),

Â2(t) =
∂ ĝ(t, y∗)

∂y
=

∂g(t, x∗)
∂x

Q(t).

For our numerical tests, we use different values for parameters γ1, γ2, γ3 and the initial conditions

y1(0) = 1, y2(0) = 1, y3(0) =
1
2
, y4(0) = 0.

Clearly the Lyapunov exponents of this example are the same as those of the previous example.

In the following tables, we display the interval length T , different error tolerances TOL, the computed
Lyapunov exponents, the number of steps, and the CPU-time to approximate Lyapunov exponents by the
discrete and the continuous QR algorithms.

In Tables 5-6, we present numerical results by the discrete QR algorithm for this strangeness-free system
with two different parameter sets γ1 = 1, γ2 = 2, γ3 = 3 and γ1 = 20, γ2 = 100, γ3 = 200.

Table 5. Lyapunov exponents by the discrete QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17903161 -2.82059790 3985 0.943338

5000 10−4 -0.17750554 -2.82240853 19917 4.506534

10000 10−4 -0.17731478 -2.82274736 39833 9.271679

1000 10−5 -0.17902655 -2.82050775 6087 1.552909

5000 10−5 -0.17750475 -2.82240921 30421 6.987843

10000 10−5 -0.17731453 -2.82264689 60839 14.020309

1000 10−6 -0.17902252 -2.82050758 9374 2.272484

5000 10−6 -0.17750396 -2.82240265 46842 10.616184

10000 10−6 -0.17731415 -2.82263953 93678 21.575532
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Table 6. Lyapunov exponents by the discrete QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17976496 -2.82127345 31043 10.012391

5000 10−4 -0.17824721 -2.82317224 155155 48.464997

10000 10−4 -0.17805749 -2.82340959 310295 98.683108

1000 10−5 -0.17911753 -2.82061094 47209 16.454477

5000 10−5 -0.17759861 -2.82250735 235948 86.814337

10000 10−5 -0.17740875 -2.82274440 471871 165.901471

1000 10−6 -0.17903376 -2.82052018 71619 25.547329

5000 10−6 -0.17751530 -2.82241518 357912 122.833276

10000 10−6 -0.17732549 -2.82265206 715778 251.898163

Next, the numerical results by the continuous QR method using Dormand-Prince method are displayed
in Tables 7-8.

Table 7. Lyapunov exponents by the continuous QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17937204 -2.82119132 2013 0.744567

5000 10−4 -0.17716789 -2.82294473 10032 3.195832

10000 10−4 -0.17689251 -2.82316380 20055 6.388512

1000 10−5 -0.17985206 -2.82070347 3135 1.237828

5000 10−5 -0.17765247 -2.82245862 15627 5.089826

10000 10−5 -0.17737755 -2.82267799 31242 10.198042

1000 10−6 -0.17986002 -2.82068455 4921 1.791315

5000 10−6 -0.17767114 -2.82243776 24537 7.992353

10000 10−6 -0.17739754 -2.82265691 49058 15.725143

Table 8. Lyapunov exponents by the continuous QR algorithm using Dormand-Prince method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17926189 -2.82126759 29114 14.871598

5000 10−4 -0.17709000 -2.82301589 145501 73.598495

10000 10−4 -0.17681852 -2.82323442 290984 139.676315

1000 10−5 -0.17976240 -2.82076474 47571 23.700261

5000 10−5 -0.17758862 -2.82251680 237794 123.334587

10000 10−5 -0.17731691 -2.82273581 475572 228.881655

1000 10−6 -0.17982984 -2.82069480 75801 37.847378

5000 10−6 -0.17766016 -2.82244476 378931 180.256558

10000 10−6 -0.17738895 -2.82266351 757844 366.559093
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We also test the efficiency of ESDIRK34 and ESDIRK54b methods presented in [15]. The numerical
results obtained by the discrete QR algorithm for the case γ1 = 1, γ2 = 2, γ3 = 3 are displayed in Tables
9-10.

Table 9. Lyapunov exponents by the discrete QR algorithm using ESDIRK34 method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17901947 -2.82067699 8565 1.639997

5000 10−4 -0.17750054 -2.82257306 42771 8.083445

10000 10−4 -0.17731068 -2.82281006 85528 16.039974

1000 10−5 -0.17902206 -2.82052288 15471 3.155167

5000 10−5 -0.17750359 -2.82241784 77267 14.694354

10000 10−5 -0.17731379 -2.82265469 154511 28.652010

1000 10−6 -0.17902232 -2.82050865 27759 5.586281

5000 10−6 -0.17750390 -2.82240349 138649 25.909193

10000 10−6 -0.17731410 -2.82264033 277261 51.264427

Table 10. Lyapunov exponents by the discrete QR algorithm using ESDIRK54b method

T TOL λ1 λ2 steps CPU-time (s)

1000 10−4 -0.17903531 -2.82113820 3143 1.201963

5000 10−4 -0.17751485 -2.82303791 15695 6.077862

10000 10−4 -0.17732486 -2.82327528 31384 11.717520

1000 10−5 -0.17902337 -2.82054659 5566 2.274696

5000 10−5 -0.17750471 -2.82244189 27802 10.467966

10000 10−5 -0.17731489 -2.82267878 55596 20.886199

1000 10−6 -0.17902250 -2.82051025 9297 3.633157

5000 10−6 -0.17750400 -2.82240518 46449 17.483210

10000 10−6 -0.17731420 -2.82264204 92890 34.767049

A comparison of the results in Tables 5-10 reveals the efficiency and robustness of both QR methods. For
the case of slowly varying coefficients (small values of the parameters γi), the continuous QR method
tends to be faster. However, for larger parameter values, both methods require more steps and CPU
time, with the discrete method being slightly more efficient. ESDIRK methods require more computa-
tional time in these examples, but they are recommended for stiff problems. Additionally, implementing
ESDIRK methods within the continuous QR approach is more complex due to the nonlinear matrix
equations that arise from their implicit nature.

Remark 5.3. If a DAE system can be analytically transformed into an equivalent ODE, the QR-based
algorithms developed by Dieci and Van Vleck [9, 11] may be applied directly to compute Lyapunov expo-
nents. In such cases, these established ODE methods are expected to outperform the DAE-oriented ap-
proaches proposed in this work, as the transformation eliminates the singularity and reduces the system
dimension. However, for general DAEs, deriving an analytically equivalent ODE is typically infeasible,
and thus the system must be addressed in its original differential–algebraic form.
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6 Conclusions

In this paper, we have proposed QR methods that incorporate half-explicit Runge-Kutta (HERK) meth-
ods for numerical integration to compute Lyapunov exponents of semi-linear DAEs. Error control in the
simultaneous integration of both the semi-linear DAE and its linearized system is achieved using em-
bedded pairs, such as Dormand-Prince and ESDIRK methods, following the approach in [22]. We have
analyzed the errors in Lyapunov exponent approximations using both discrete and continuous QR meth-
ods, demonstrating that the Lyapunov exponent error is essentially controlled by the local integration
error. Numerical experiments confirm the efficiency of QR methods and validate the error analysis.

These methods can be extended to general nonlinear DAEs and sensitivity analysis. More research is
needed to refine the continuous QR algorithm. Furthermore, developing robust software packages and
testing them on large-scale DAE problems from real-world applications remains an important future
direction.
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