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Equations Are Everywhere

HANS ZWART AND VOLKER MEHRMANN

Abstract: In this paper we study the representation of partial differential equations (PDEs) as abstract
differential-algebraic equations (DAEs) with dissipative Hamiltonian structure (adHDAEs). We show
that these systems not only arise when there are constraints coming from the underlying physics, but
many standard PDE models can be seen as an adHDAE on an extended state space. This reflects the
fact that models often include closure relations and structural properties. We present a unifying operator
theoretic approach to analyze the properties of such operator equations and illustrate this by several ap-
plications.
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1 Introduction

In this paper we study the mathematical modeling, the analytical theory and the representation of abstract
linear differential-algebraic equations (DAEs) of the form

E ẋ(t) = A Qx(t) (1)

on the infinite-dimensional Hilbert space X with inner product ⟨·, ·⟩. We assume that A : D(A )⊆X→X
is a dissipative linear operator, i.e., ⟨A x,x⟩+ ⟨x,A x⟩ ≤ 0 for all x in the domain of A . The operators
E : X → X and Q : X → X are assumed to be bounded linear operators that satisfy further geometric
conditions and define an energy functional or Hamiltonian via

H (x) := ⟨E x,Qx⟩, (2)

which is assumed to be non-negative, i.e., H (x)≥ 0 for all x ∈ X.

We call this class of problems abstract dissipative Hamiltonian DAEs (adHDAEs).

Abstract differential-algebraic systems do not only arise by including constraints coming from the under-
lying physical system, see e.g. [13, 16, 26], but many standard systems of partial differential equations
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(PDEs) can be viewed as abstract differential-algebraic equation on an extended state-space. We present
several applications where this is the case.

The class of adHDAEs is also strongly motivated by modeling physical systems in the model class of
(abstract) port-Hamiltonian differential-algebraic systems (pHDAEs), a class which is of great relevance
in many applications and has recently seen a huge number of applications in almost all physical domains,
see e.g. [2, 3, 4, 14, 15, 18, 21, 24, 44, 32, 34, 35, 38, 45, 37]. To illustrate the concept of adHDAEs,
consider the following example.

Example 1 [23] The vibrating string in one space dimension can be modelled by the PDE

ρ
∂ 2w
∂ t2 =

∂

∂ζ

(
T

∂w
∂ζ

)
, (3)

where ρ is the mass density, w is the vertical displacement, T is the Young modulus of the material, ζ is
in a one-dimensional spatial domain, and t the time.

The port-Hamiltonian modeling approach, see [23], introduces the extended state

z(t) =

[
ρ

∂w
∂ t

∂w
∂ζ

]

in the state space X = L2(Ω;R2), with Ω the spatial interval, and leads to a representation of (3) given
by

ż(t) =

[
0 ∂

∂ζ

∂

∂ζ
0

]
︸ ︷︷ ︸

[ 1
ρ

0
0 T

]
︸ ︷︷ ︸z(t)

:= A Q̃ z(t),

with a Hamiltonian H (z(t)) = ⟨z(t),Q̃z(t)⟩. If the mass density ρ is close to zero, then it is important to
analyze what happens when one considers the density ρ = 0. For ρ close to zero, it is more appropriate
to consider a different state

x(t) =

[
∂w
∂ t
∂w
∂ζ

]
,

which leads to a representation [
ρ 0
0 1

]
︸ ︷︷ ︸ ẋ(t) =

[
0 ∂

∂ζ

∂

∂ζ
0

]
︸ ︷︷ ︸

[
1 0
0 T

]
︸ ︷︷ ︸x(t),

E ẋ(t) = A Q x(t)

where we have introduced the matrices E and Q and the differential operator A .

Note that by this change of variables the value of the Hamiltonian H stays the same, i.e.,

H (t) = ⟨z(t),Q̃z(t)⟩= ⟨E x(t),Qx(t)⟩.

However, in this formulation, we can set both ρ = 0, and T = 0 and then either E or Q or both become
singular.

For invertible E , we can express this system as a standard wave equation, of which it is known that it will
generate a contraction semigroup, provided the appropriate boundary conditions are posed, [23].

2



Hans Zwart and Volker Mehrmann | Abstract Dissipative Hamiltonian DAEs

Remark 2 Example 1 demonstrates that the use of differential-algebraic equations is essential when
considering limiting situations, see also [4, 46, 44, 39] for detailed discussions. In many applications
one can resolve the constraint equations and return to explicit formulations in the time derivative. But
this is not always a good mathematical formulation for several reasons. First of all it may happen that
the resulting system is much more sensitive under perturbations. But more important, by resolving the
constraints, they are not visible in the equations any longer, even though they usually are of physical
relevance. Furthermore, they are then also not enforced during a numerical simulation of the system, see
[5, 20, 25] and this can lead to a drift of the numerical solution from the constraint manifold.

Example 1 is a motivation to study the properties of adHDAEs of the form (1) in which both operators
E and Q may be singular matrices or non-bijective operators, and where A generates a contraction
semigroup on the Hilbert space X. When modelling physical systems in a modular fashion then often not
only E and Q may be singular but the equation (1) may be overdetermined or not uniquely solvable. For
general abstract DAEs this is hard to analyze but we present a simple characterization of singularity for
(1) in Subsection 2.1.

One may have the impression that the case that E and/or Q are singular is a very special case that is not
encountered often when modeling physical processes. However, we will demonstrate that this is almost
the standard case. To illustrate this, consider the following example.

Example 3 Consider the derivation of the diffusion/heat equation in a one-dimensional domain. The
defining relation between the temperature T and the heat flux J is given by the PDE

∂T
∂ t

=−α
∂J
∂ζ

, (4)

where α > 0 is the diffusivity constant. Using Fourier’s law to model the heat flux as proportional (with
thermal conductivity k) to the spatial derivative of the temperature, i.e.,

J =−k
∂T
∂ζ

(5)

gives the standard diffusion/heat equation

∂T
∂ t

= kα
∂ 2T
∂ζ 2 .

However, we can also express the system as adHDAE system[
α−1 0

0 0

]
︸ ︷︷ ︸

∂

∂ t

[
T
J

]
=

[
0 − ∂

∂ζ

− ∂

∂ζ
−1

]
︸ ︷︷ ︸

[
1 0
0 k−1

]
︸ ︷︷ ︸

[
T
J

]
(6)

E ẋ(t) = A Q x(t)

with X as in the previous example. Thus it is in the form (1) with E being singular. Note that in this case
the singularity of E is not caused by a physical parameter becoming zero, but it is a direct consequence
of the closure relation (5). Since these closure relations appear almost everywhere in mathematical
modelling, we see that a singular E is very common.

The discussed examples demonstrate that in modeling with adHDAEs different representations are pos-
sible, and some are preferable to others, e.g. in the case of limiting situations.

The operator A in (6) is very similar to that in (3), and so one may think that their properties are related,
but it is well-known that the wave and heat equation behave completely differently, the first has oscillating
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solution behavior while the second is diffusive, so the solution decays. However, as we will demonstrate,
the solution theory of the two PDEs is strongly related, see Example 28 below.

The structure in (1) is also motivated by the class of finite dimensional dissipative Hamiltonian descriptor
systems introduced in [3], see also [30, 32] that have the form (1) with A = J −R, where J is
(formally) skew-adjoint, and E ∗Q as well as R are self-adjoint and nonnegative (positive semidefinite).

The paper is organized as follows. In Section 2 we introduce our basic set-up together with several
assumptions. In Section 3 we study the solution theory of adHDAEs of the form (1). These results
are illustrated in Section 4 by several examples, showing their applicability. In these examples we also
recover many results, which often were obtained by other methods. In Section 5 we treat the case in
which the singularity of E restricts the state space, and again our result is illustrated by examples.

2 Representation of adHDAEs

In this section we study adHDAEs of the form (1) on an infinite-dimensional Hilbert space X. In order
to analyze the solution properties we make some general assumptions on the structure of A ,E , and Q.

Consider an abstract dissipative Hamiltonian differential-algebraic equation (adHDAE)

Eext ẋ(t) = AextQextx(t) (7)

of the form (1) with the following structural properties.

Assumption 4 i) The state-space is a Hilbert space Xext = X1 ⊕X2 ⊕X3.

ii) The operator Aext =

A1,ext

A2,ext

A3,ext

 is a dissipative operator on Xext , i.e., Re⟨Aextx,x⟩ ≤ 0 for all x in

the domain D(Aext) of Aext .
iii) The operators Eext and Qext are block-operators of the form

Eext =

E1 0 0
0 0 0
0 0 E3

 , Qext =

Q1 0 0
0 Q2 0
0 0 0

 , (8)

where E1,E3,Q1 and Q2 are bounded and boundedly invertible. Furthermore, we assume that
E ∗

1 Q1 is coercive, i.e., it is self-adjoint and (strictly) positive.
iv) There exists an s ∈C+ := {s ∈C | Re(s)> 0} such that the operator sEext −AextQext with domain

{x ∈ X | Qextx ∈ D(Aext)} is boundedly invertible.

Remark 5 Assumption 4 seems to be very restrictive at first sight. However, as we will demonstrate, it
holds for many examples and it allows us to prove our main results. However, this assumption can be
relaxed in many particular cases by using different proof techniques.

See also [13] for the analysis of the chain-index under this assumption.

In the setting of finite dimensional DAEs, see [29], condition iv) in Assumption 4 implies that the pair
(Eext ,AextQext) forms a regular pair, see e.g. [25]. We will use this terminology also in the infinite
dimensional case when the operators satisfies Assumption 4. iv). A characterization when a pair is
regular or singular is given in Subsection 2.1.
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Remark 6 In the case that Eext ,Qext are matrices, the condition that E ∗
extQext is self-adjoint means that

the columns of [
Eext

Qext

]
span an isotropic subspace of X×X∗ = X×X, see e.g. [44, 39], which is a Lagrange subspace if
the dimension is maximal, i.e., that of X. This is the case if and only if the pair (Eext ,Qext) is regular.
For Lagrange subspaces the representation (8) can always be achieved by a change of basis using a
cosine-sine decomposition, see [29, 33].

Remark 7 From the modeling point of view systems of the form (1) lead to a natural definition of an
energy functional (Hamiltonian)

H (x) := ⟨Eextx,Qextx⟩. (9)

However, the definition of the Hamiltonian is by no means unique, in particular the choice of variables
in the kernels of Eext and Qext is arbitrary and thus there are many different representations of the state
variables with the same Hamiltonian, see Example 1. Under the conditions in Assumption 4, we have
that

H (x1) = ⟨E1x1,Q1x1⟩= H (x),

i.e., the Hamiltonian may also be defined on a restricted subspace.

For a detailed discussion of this topic of different representations in the finite dimensional case, see [44,
39].

Looking at a system (7) that satisfies Assumption 4, we see that the third state, x3, does not influence
the first nor the second state. However, its behaviour is dictated by the other two. So we could regard
ẋ3 in (7) as a kind of output to the system. Since we are mainly interested in the dynamics of the first
state, a natural question is if we can find a reduced representation of the system with similar properties
by removing the third state. This topic has been discussed extensively in the case of finite dimensional
port-Hamiltonian DAEs, see [3, 30]. Since the conditions in Assumption 4 include E3 and A3,ext , it is not
clear a priori whether similar properties still hold without these assumptions. Our first result shows that
this is indeed the case.

Theorem 8 Consider an adHDAE of the form (1) that satisfies Assumption 4. Introduce the operator

A

[
x1
x2

]
:=

[
A1
A2

][
x1
x2

]
:=

[
A1,ext

A2,ext

]x1
x2
0

 , (10)

with domain

D(A ) = {
[

x1
x2

]
∈ X1 ⊕X2 |

x1
x2
0

 ∈ D(Aext)}. (11)

Then A is dissipative and with

E =

[
E1 0
0 0

]
, Q =

[
Q1 0
0 Q2

]
, (12)

the pair (E ,A Q) is regular.

Proof . For [ x1
x2 ] ∈ D(A ) we have

〈[
x1
x2

]
,A

[
x1
x2

]〉
=

〈x1
x2
0

 ,Aext

x1
x2
0

〉 .
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Since by assumption the last expression has non-positive real part, we see that A is dissipative.

Let s ∈ C+ be as in Assumption 4 iv). We will show that the operator sE −A Q, with domain {x ∈
X1 ⊕X2 | Qx ∈ D(A )}, is boundedly invertible.

Let x = [ x1
x2 ] ∈ X1 ⊕X2 be such that Qx ∈ D(A ) and (sE −A Q)x = 0. Define x3 =

1
s E

−1
3 A3,ext

[
Q1x1
Q2x2

0

]
.

With this choice, then

(sEext −AextQext)

x1
x2
x3

= 0.

Since the pair (Eext ,AextQext) is regular, this implies, in particular, that x1 = 0 and x2 = 0. Thus (sE −
A Q) is injective.

For [ y1
y2 ] ∈ X1 ⊕X2, define x̃1

x̃2
x̃3

= (sEext −AextQext)
−1

y1
y2
0

 . (13)

Then x1
x2
0

 :=

Q1x̃1
Q2x̃2

0

= Qext

x̃1
x̃2
x̃3

 (14)

is an element of D(Aext), and(sE −A Q)

[
x̃1
x̃2

]
sE3x̃3

= (sEext −AextQext)

x̃1
x̃2
x̃3

+

 0
0
y3

=

y1
y2
y3

 ,

where y3 = A3,ext

[ x1
x2
0

]
. In particular,

(sE −A Q)

[
x̃1
x̃2

]
=

[
y1
y2

]
and so (sE −A Q) is surjective. Combined with its injectivity and equations (13)–(14), we see that
(sE −A Q) is boundedly invertible.

From Theorem 8 we see that, if Assumption 4 holds for the adHDAE (7), then for the reduced adHDAE

E ẋ(t) = A Qx(t) (15)

with A , E , and Q defined in (10)–(12), the following conditions are satisfied.

Assumption 9

i) The state space is the Hilbert space X= X1 ⊕X2.

ii) A =

[
A1
A2

]
is dissipative on X.

iii) The operators E and Q are of the form

E =

[
E1 0
0 0

]
, Q =

[
Q1 0
0 Q2

]
, (16)

where E1,Q1 and Q2 are bounded and boundedly invertible operators. Furthermore, E ∗
1 Q1 is

coercive, i.e., it is self-adjoint and ⟨E1x,Q1x⟩> κ∥x∥2 > 0 for all nonzero x.
iv) There exists an s ∈ C+ := {s ∈ C | Re(s)> 0} such that sE −A Q is boundedly invertible.

6
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Theorem 8 shows that in an adHDAE system (1) that satisfies Assumption 4 there exists a reduced
subsystem for which Assumption 9 holds. In our next result we analyze the relation between the two
sets of Assumptions 4 and 9. We show in particular that we can always extend an adHDAE of the
form (15) satisfying Assumption 9 to a system of the form (1) satisfying Assumption 4 without changing
the Hamiltonian.

Theorem 10 Consider an adHDAE of the form (15) satisfying Assumption 9. Let Aext with D(Aext) ⊂
X1 ⊕X2 ⊕X3 be a dissipative extension of A such that (10) and (11) hold. Let E3 be a bounded and
boundedly invertible operator on X3, and define Eext and Qext as in (8). Then the triple (Eext ,Aext ,Qext)
satisfies Assumption 4 with the same Hamiltonian (9).

Proof . It is clear that the Hamiltonian does not change, so it remains to show that sEext −AextQext is
boundedly invertible. The equation

(sEext −AextQext)

x1
x2
x3

=

y1
y2
y3


is equivalent to the two equations

(sE −A Q)

[
x1
x2

]
=

[
y1
y2

]
and sE3x3 −A3,ext

Q1x1
Q2x2

0

= y3.

Since the pair (E ,A Q) is regular we can determine x1 and x2 uniquely, and since E3 is boundedly in-
vertible, x3 is also uniquely determined when x1,x2 are fixed. Since these inverse mappings are bounded,
we conclude that sEext −AextQext is boundedly invertible.

Based on Theorems 8 and 10 we see that we can reduce or extend regular adHDAEs when the Hamilto-
nian is not changed. For this reason from now on we only consider abstract DAEs without a component
x3, i.e., we study the adHDAE (15) under the Assumption 9, see [3, 30, 44] for the finite dimensional
case. Note however, that for discretization methods and practical applications it is essential to keep the
equation for x3 for initial value consistency checks and to avoid that the solution for the variables x1,x2
drifts off from the solution manifold, see [25].

2.1 Regularity and singularity of adHDAEs

In this section we consider the regularity and singularity of the pair of operators

(E ,A Q) (17)

associated with the adHDAE (15). We study the regularity of (17) under the first three conditions of
Assumption 9. Using the fact that

sE −A Q =

(
s
[
E1Q

−1
1 0

0 0

]
−A

)[
Q1 0
0 Q2

]
(18)

and that Q1 and Q2 are bounded and boundedly invertible, the following lemma is immediate.

Lemma 11 The operator sE −A Q is boundedly invertible if and only if sÊ −A is boundedly invertible,
where Ê =

[
E1Q

−1
1 0

0 0

]
.

Furthermore, E ∗
1 Q1 is coercive if and only if E1Q

−1
1 is coercive if and only if Q1E

−1
1 is coercive.

7
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From this lemma we see that if we want to check the regularity of (E ,A Q), we may without loss of
generality assume that Q1 and Q2 are the identity operators, and that E1 is coercive. We begin by
showing that regularity implies that A is maximally dissipative, i.e., it is dissipative and for all s > 0 the
operator sI −A is surjective.

Lemma 12 Consider an abstract adHDAE of the form (1) satisfying Assumption 9. Then the operator
A is maximally dissipative.

Proof . If s ∈C+ and since E1Q
−1
1 is coercive, we have (see Lemma 11) that A −sÊ is dissipative. Since

by assumption A − sÊ is boundedly invertible, by Lemmas 42 and 40 in the appendix we have that it is
maximally dissipative. Since sÊ is bounded this means that A is maximally dissipative.

Theorem 13 Consider a triple of operators (E ,A ,Q), where we assume that these operators satisfy the
first three conditions of Assumption 9. Then the following are equivalent.

i) The pair (E ,A Q) is regular.
ii) For all s ∈ C+ the operator sE −A Q is boundedly invertible.

iii) There exists an s ∈ C+ such that the operator sE −A Q is boundedly invertible.
iv) The operator A is maximally dissipative, and there exists an m1 > 0 such that∥∥∥∥[ E

A Q

]
x
∥∥∥∥≥ m1∥x∥ for all Qx ∈ D(A ). (19)

v) The operator A is maximally dissipative, and there exists an m2 > 0 such that∥∥∥∥[ E Q−1

A

]
x
∥∥∥∥≥ m2∥x∥ for all x ∈ D(A ). (20)

Proof . It is clear that ii) implies iii), and iii) implies that (E ,A Q) is regular, and thus iii) implies i). So
we start by proving that i) implies iv). By the given assumptions and since i) holds, Assumption 9 holds.
Thus Lemma 12 gives that A is maximally dissipative. In particular it is densely defined and closed.

Let s ∈ C be such that sE −A Q is boundedly invertible, then for x ∈ D(A Q)

∥x∥= ∥(sE −A Q)−1(sE −A Q)x∥ ≤ M∥(sE −A Q)x∥

= M
∥∥∥∥[sI −I

][ E
A Q

]
x
∥∥∥∥≤ MM1

∥∥∥∥[ E
A Q

]
x
∥∥∥∥ .

Since both M = ∥(sE −A Q)−1∥ and M1 =
∥∥[sI −I

]∥∥ are nonzero, (19) follows. It remains to show
that ker(E )∩ker(A ∗Q) = {0}. Let x ∈ ker(E )∩ker(A ∗Q), then (sQ∗E −Q∗A ∗Q)x = 0. Since Q∗E
is self-adjoint, this is the same as (sE ∗Q−Q∗A ∗Q)x = 0, and so

⟨Qx,(sE −A Q)y⟩= 0 for all Qy ∈ D(A ).

Since sE −A Q is boundedly invertible its range equals X and thus Qx = 0, and since Q is boundedly
invertible, x = 0.

Since Q is boundedly invertible it is easy to see that items iv) and v) are equivalent. So it remains to
show that iv) implies ii). To prove this, suppose that (19) holds, but that sE −A Q is not boundedly
invertible for some s ∈ C with positive real part. Then we have the following possibilities:

(a) The operator sE −A Q is not injective.
(b) The range of sE −A Q is not dense in X.
(c) The range of sE −A Q is dense but not equal to X.

8
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We will show that neither of these options is valid.

Case (a): If there exists 0 ̸= x ∈ D(A Q) such that (sE −A Q)x = 0 then consider ⟨(sE −A Q)x,Qx⟩
which is zero, and thus

0 = s⟨E x,Qx⟩−⟨A Qx,Qx⟩= s⟨E Q−1Qx,Qx⟩−⟨A Qx,Qx⟩.

Since Re(s)> 0, E Q−1 is non-negative (see Lemma 11) and since A is dissipative, taking the real part
gives that

0 = ⟨E Q−1Qx,Qx⟩.

Since E Q−1 is a non-negative bounded operator, this gives that Qx ∈ ker(E Q−1), or equivalently x ∈
ker(E ).

Applying this in equation (sE −A Q)x = 0 gives A Qx = 0. So we have shown that x ̸= 0 lies in
ker(E )∩ker(A Q), which is a contradiction to (19).

Case (b): If there exists 0 ̸= x ∈ X such that

⟨x,(sE −A Q)y⟩= 0 for all Qy ∈ D(A ), (21)

then x lies in the domain of the dual operator, i.e., in D((sE −A Q)∗), which equals D(A ∗). Further-
more, since D(A ) is dense in X, (21) implies that 0 = (sE −A Q)∗x = (sE ∗−Q∗A ∗)x. Writing x =Qz
and using the fact that A is maximally dissipative, and thus A ∗ is dissipative, we can proceed as in case
(a) to obtain that E ∗Qz = 0 and Q∗A ∗Qz = 0, or equivalently E ∗x = 0 and Q∗A ∗x = 0. Since Q∗ is
boundedly invertible, this gives A ∗x = 0. The latter gives that

⟨x,A y⟩= 0 for all y ∈ D(A ). (22)

Since A is maximally dissipative, we know that there exists yx ∈ D(A ) such that

(I −A )yx = x. (23)

Substituting this in (22) with y = yx gives

0 = ⟨x,A yx⟩= ⟨(I −A )yx,A yx⟩= ⟨yx,A yx⟩−⟨A yx,A yx⟩.

The last inner product is obviously real and non-positive. The real part of the first term is also non-
positive, and thus both terms must be zero. This gives in particular that A yx = 0, and by (23) that yx = x.
Note that we still have that E ∗x = 0.

Since Q is boundedly invertible, we can define x̃ = Q−1x, and so x̃ ∈ ker(A Q)∩ ker(E ∗Q). Since
E ∗Q is self-adjoint, this implies that x̃ ∈ ker(Q∗E ), but since Q is boundedly invertible x̃ ∈ ker(E ). So
substituting x̃ in (19) gives that x̃ = 0 and hence x = 0, which is in contradiction to our assumption x ̸= 0.

Case (c): Let s ∈C+ be given and let Qxn be a sequence in D(A ) such that (sE −A Q)xn → z as n → ∞

with z ∈ X , but not in the range of sE −A Q. Then by defining xn,m = xn − xm, we have

(sE −A Q)xn,m → 0 as n,m → ∞. (24)

If ∥xn,m∥ → 0 as n,m → ∞, then xn would be a Cauchy sequence, and thus converge to some x. In that
case z = (sE −A Q)x, and thus in the range of (sE −A Q)x. Hence in this case we have a contradiction.
So we assume that ∥xn,m∥ stays bounded away from zero for some sequence of indices {n,m}. In the
remainder of the proof we consider this sequence.

Taking the inner product of (24) with Qxn,m
∥xn,m∥ , gives

0 = lim
n,m→∞

[
s⟨E xn,m,

Qxn,m

∥xn,m∥
⟩−⟨A Qxn,m,

Qxn,m

∥xn,m∥
⟩
]
.

9
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Since Re(s)> 0 and Q∗E is self-adjoint, taking the real part gives

0 = lim
n,m→∞

[
Re(s)⟨Q∗E xn,m,

xn,m

∥xn,m∥
⟩−Re

(
⟨A Qxn,m,

Qxn,m

∥xn,m∥
⟩
)]

.

Both terms are nonnegative and since Q∗E ≥ 0 we find that

lim
n,m→∞

Q∗E
xn,m√
∥xn,m∥

= 0 ⇒ lim
n,m→∞

E
xn,m√
∥xn,m∥

= 0, (25)

where we have used that Q is boundedly invertible. Applying this in (24) and using that ∥xn,m∥ stays
bounded away from zero, we find that

lim
n,m→∞

A Q
xn,m√
∥xn,m∥

= 0. (26)

Define zn,m =
xn,m√
∥xn,m∥

, then by (24) and (25), equation (19) implies that zn,m → 0. However, by (19) this

gives that
lim

n,m→∞
∥zn,m∥= 0

which is equivalent to
√
∥xn,m∥→ 0, which is a contradiction.

So we see that neither of the cases (a), (b), or (c) is possible, and hence item ii) holds.

From Theorem 13 we can derive some easy consequences, but we begin by showing that the conditions
as stated in item iv) and v) can be simplified when A has more structure.

Lemma 14 Consider a triple of operators (E ,A ,Q) that satisfy the first three conditions of Assumption
9. Assume further that A can be written as A = J −R, with J skew-adjoint, i.e., J ∗ = −J and
R is bounded, self-adjoint and non-negative, then item v) in Theorem 13 is equivalent to

v’) There exists an m2 > 0 such that∥∥∥∥∥∥
 E Q−1

J
R

x

∥∥∥∥∥∥≥ m2∥x∥ for all x ∈ D(J ). (27)

Proof . Assume that v) holds, then we only have to show that (20) implies (27). If (27) would not hold,
then there exits a sequence {xn},n ∈ N such that, xn ∈ D(J ), ∥xn∥ = 1 and E Q−1xn,J xn and Rxn

all converge to zero. This implies that E Q−1xn and A xn = (J −R)xn converge to zero, which is a
contradiction.

Next we assume that v’) holds. Then, since A = J −R, with R is bounded and non-negative, and
J skew-adjoint, we have that D(A ) = D(A ∗) and both A and A ∗ =−J −R are dissipative, which
implies that A is maximally dissipative.

Let xn ∈ D(J ) be of norm one, and assume that A xn → 0 as n → ∞, then

⟨xn,(J −R)xn⟩ → 0

Taking the real part of this expression gives that ⟨xn,Rxn⟩ → 0. Since R is non-negative and bounded,
this implies that Rxn → 0, see [7, Lemma A.3.88.c]. Combining this with A xn → 0 gives that J xn → 0.
Hence from this we conclude that (27) implies (20).

Note that similarly, the condition iv) in Theorem 13 can be replaced. Note further that for matrices or
bounded operators a dissipative A can always be written as A = J −R, with J skew-adjoint and R
non-negative.

10
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The result of Lemma 14 also holds when A = J −R, with J skew-adjoint and bounded and R
self-adjoint and non-negative. In that case we have D(A ) = D(R).

Given the special form of E and Q the following is an easy consequence of Theorem 13.

Corollary 15 Consider an adHDAE of the form (15) satisfying the conditions i)-iii) in Assumption 9 and
define

EI :=
[

I 0
0 0

]
. (28)

Then the following are equivalent.

i) There exists an s ∈ C+ such that the operator sE −A Q is boundedly invertible.
ii) There exists an s ∈ C+ such that the operator sEI −A is boundedly invertible.

Proof . From Theorem 13 we have to show that we may replace E Q−1 by EI . This follows since

EI =

[
I 0
0 0

]
=

[
Q1E

−1
1 0

0 I

][
E1Q

−1
1 0

0 0

]
,

where we have used the invertiblity of E1 and Q. So E Q−1 and EI are boundedly invertible related to
each other, and this implies that in Theorem 13 part iv) and v) we may do the replacements.

We have shown that the regularity of the pair (E ,A Q) is equivalent to that of (EI,A ). However, this
may still be a difficult condition to check. In the following lemma we derive conditions under which this
follows from the maximal dissipativity of A .

Lemma 16 Consider an adHDAE of the form (15) satisfying the conditions i)-iii) in Assumption 9. If

there exists an ε > 0 such that A + ε

[
0 0
0 I

]
is maximally dissipative, then (E ,A Q) is regular.

Proof . Since A + ε

[
0 0
0 I

]
is maximally dissipative, we know that A + ε

[
0 0
0 I

]
−δ

[
I 0
0 I

]
is bound-

edly invertible for every δ > 0. Choosing δ = ε , we see that this implies that εEI −A is boundedly
invertible. By Corollary 15 it follows that this is equivalent to (E ,A Q) being regular.

We end this section with a few observations and additional results.

In the finite-dimensional case it has been shown in [28] that if Q is injective and the pair is singular
then the three matrices E ,J Q,RQ have a common nullspace. Here J = 1

2(A −A ∗) and R =
−1

2(A +A ∗). However, this is not true if Q is not injective.

Example 17 Consider the matrices

E =

[
e11 e12
0 0

]
, J =

[
0 −1
1 0

]
, Q =

[
0 0

q21 q22

]
.

Then

J Q =

[
−q21 −q22

0 0

]
, and sE −J Q =

[
se11 +q21 se12 +q22

0 0

]
,

and so the pair (E ,J Q) is singular. Furthermore,

E ∗Q =

[
e11 0
e12 0

][
0 0

q21 q22

]
=

[
0 0
0 0

]
is symmetric, and positive semidefinite. However, E and J Q do not have a common kernel.

11
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Since our aim was to study regularity, i.e., boundedly invertibility of sE −A Q, we had to check condi-
tions for injectivity and surjectivity. However, separate conditions can also be obtained.

Lemma 18 Consider an adHDAE of the form (1) satisfying the conditions i)-iii) in Assumption 9, and
let Ẽ and Q̃ satisfy the same assumptions as E and Q in Assumption 9, respectively. Furthermore, let
s, s̃ ∈ C+. Then the following assertions hold.

a) (s̃Ẽ −A Q̃) is injective if and only if (sE −A Q) is. Furthermore, this holds if and only if A
[

0
x2

]
=

0 implies x2 = 0.
b) Let A be maximally dissipative. The range of s̃Ẽ −A Q̃ is dense if and only if the range of

sE −A Q is dense. Furthermore, this holds if and only if A ∗ [ 0
z2

]
= 0 implies z2 = 0.

Proof . The proofs are similar to the corresponding parts of the proof of Theorem 13.

2.2 Special block operators

As a prototypical example of adHDAEs, in this section we study special block operators pairs, as they
arise e.g. in Stokes and Oseen equations that have been formulated in [12], or [36], as abstract DAE.
Similar abstract block DAE operators arise also in the study of the Euler equations in gas transport [10,
11].

In the following L (W,Y) denotes the space of bounded, linear operators between Hilbert spaces W and
Y. Furthermore, L (W) = L (W,W).

Let V be a real Hilbert space such that V⊂→X1 = X∗
1⊂→V∗, i.e., they form a Gelfand triple, see

e.g., [47]. Let A0 ∈ L (V,V∗), B0 ∈ L (U,V∗), where U is a second (real) Hilbert space. So B∗
0 ∈

L (V,U), where we have identified U∗ with U. Finally, with these operators and D0 ∈ L (U), we define
the block operator

A =

[
A0 B0
−B∗

0 −D0

]
(29)

with domain
D(A ) = {[ v

u ] ∈ V⊕U | A0v+B0u ∈ X1}. (30)

For this operator A , we study the pair (EI,A ) with EI as in (28) and begin our analysis with two simple
lemmas.

Lemma 19 Consider the operator A as in (29) with its domain as in (30). Assume that −D0 and A0
are dissipative, i.e.,

⟨A0v,v⟩V∗,V ≤ 0 for all v ∈ V, ⟨−D0u,u⟩U∗,U ≤ 0 for all u ∈ U, (31)

then A is dissipative on X1 ⊕U.

Proof . To show that A is dissipative on X1 ⊕U, we choose [ v
u ] ∈ D(A ). Then we have

⟨A
[

v
u

]
,

[
v
u

]
⟩X1⊕U+ ⟨

[
v
u

]
,A

[
v
u

]
⟩X1⊕U

= ⟨A0v+B0u,v⟩X1 + ⟨v,A0v+B0u⟩X1+

⟨−B∗
0v−D0u,u⟩U+ ⟨u,−B∗

0v−D0u⟩U
= ⟨A0v+B0u,v⟩V∗,V+ ⟨v,A0v+B0u⟩V,V∗−

⟨B∗
0v,u⟩U−⟨u,B∗

0v⟩U−⟨D0u,u⟩U−⟨u,D0u⟩U
= ⟨A0v,v⟩V∗,V+ ⟨B0u,v⟩V∗,V+ ⟨v,A0v⟩V,V∗ + ⟨v,B0u⟩V,V∗

−⟨v,B0u⟩V,V∗ −⟨B0u,v⟩V∗,V−⟨D0u,u⟩U−⟨u,D0u⟩U
= ⟨A0v,v⟩V∗,V+ ⟨v,A0v⟩V,V∗ −⟨D0u,u⟩U−⟨u,D0u⟩U ≤ 0,

12
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where we have used (31). Thus we have proved the assertion.

Therefore, if we choose E = EI , Q = I, and A as in (29)–(30) to be dissipative, then the conditions
i)–iii) of Assumption 9 are satisfied. In this setting, we study the injectivity of (EI,A ).

Lemma 20 Consider the operator A with its domain as in (29) and (30). Suppose that A is dissipative
and one of the following two conditions holds:

a) B0 is injective, or
b) the range of B0 intersected with X1 contains only the zero element,

then EI −A is injective.

Proof . We use Lemma 18 a) to prove the assertion and study the equation A [ 0
u ] = 0. Note that this

implies in particular that [ 0
u ] ∈ D(A ). By (30) this gives the condition that A00+B0u = B0u ∈ X1. So

if b) holds, this can only happen when u = 0. If B0 can map into X1, then the equation A [ 0
u ] = 0 implies

B0u = 0. Then a) gives u = 0, and the proof is complete.

Note that condition b) in Lemma 20 is sometimes rephrased as B0 is completely unbounded.

To show that EI −A is boundedly invertible, we need stronger conditions on B0 and A0. We say that
A0 satisfies a Gårding inequality with respect to X1 and V, if there exists an α1 > 0 such for all v ∈ V
the inequality

∥v∥2
X1

+ |⟨A0v,v⟩V∗,V| ≥ α1∥v∥2
V (32)

holds. Note that since A0 ∈ L (V,V∗) and V⊂→X1, we always have that

∥v∥2
X1

+ |⟨A0v,v⟩V∗,V| ≤ α2∥v∥2
V

for some α2 > 0.

Lemma 21 Let A0 ∈L (V,V∗) be dissipative and satisfy the Gårding inequality (32). Then iV−A0 is a
boundedly invertible operator from V to V∗. Here iV is the inclusion map from V into V∗, i.e., iV(v) = v,
for v ∈ V.

Proof . See e.g. [Section 6.5] in [19].

We will now present two theorems which give sufficient conditions for (EI,A ) to be regular.

Theorem 22 Consider the operator A given by (29) and (30). Let A0 and −D0 be dissipative, and
assume further that A0 satisfies the Gårding inequality (32). Finally, let

[
B0
D0

]
be injective and have

closed range, i.e., there exists β > 0 such that for all u ∈ U∥∥∥∥[B0
D0

]
u
∥∥∥∥
V∗⊕U

≥ β∥u∥U. (33)

Under these conditions, EI −A is boundedly invertible.

Moreover, EI −A is boundedly invertible if and only if the Schur complement B∗
0(iV−A0)

−1B0 +D0
is boundedly invertible.

13
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Proof . The proof consists of several parts. We begin by showing that the Schur complement function
G(1) := B∗

0(iV−A0)
−1B0 +D0 is accretive, i.e., for all u ∈ U it holds that

Re⟨G(1)u,u⟩ ≥ 0. (34)

We have

⟨G(1)u,u⟩= ⟨B∗
0(iV−A0)

−1B0u,u⟩+ ⟨D0u,u⟩
= ⟨(iV−A0)

−1B0u,B0u⟩V,V∗ + ⟨D0u,u⟩
= ⟨v,(iV−A0)v⟩V,V∗ + ⟨D0u,u⟩,

with v = (iV−A0)
−1B0u. Since −D0 and A0 are dissipative, inequality (34) then follows.

Next we show that A is maximally dissipative. For this we look at the equation

(I −A )

[
v
u

]
=

[
x1
y

]
for an arbitrary x1 ∈ X1 and y ∈ U, where we search a solution [ v

u ] ∈ D(A ). The above equation can be
written as two equations

(I −A0)v−B0u = x1 and B∗
0v+D0u+u = y.

Since X1 ⊂ V∗, we have by Lemma 21 that the first equation has the solution v ∈ V given by

v = (iV−A0)
−1B0u+(iV−A0)

−1x1. (35)

Substituting this in the second equation leads to the following equation for u

B∗
0(iV−A0)

−1B0u+D0u+u+B∗
0(iV−A0)

−1x1 = y,

which we can write as
(G(1)+ I)u = y−B∗

0(iV−A0)
−1x1. (36)

By (34) we have that −G(1) is a dissipative operator which is bounded, and thus maximally dissipative.
Hence for every x1 ∈X1 and y ∈U the equation (36) has a unique solution, depending continuously on x1
and y. Now v is given by (35) which depends continuously on u and x1, and thus on y and x1. It remains
to show that [ v

u ] ∈ D(A ). This follows directly since A0v+B0u = −x1 + v. So we conclude that A is
maximally dissipative.

Next we show that A satisfies (19). We know that we only have to show this for EI , see Corollary 15.
If (19) would not hold, then there exists a sequence [ vn

un ] ∈ X1 ⊕U of norm 1, such that [ vn
un ] ∈ D(A ) and

EI [
vn
un ], A [ vn

un ] both converge to zero. This can equivalently be formulated as vn → 0 in X1 and

A0vn +B0un → 0 in X1, B∗
0vn +D0un → 0 in U. (37)

We have the following equalities

⟨vn,A0vn+B0un⟩X1 −⟨un,B
∗
0vn +D0un⟩

= ⟨vn,A0vn⟩V,V∗ + ⟨vn,B0un⟩V,V∗ −⟨un,B
∗
0vn⟩U−⟨un,D0un⟩

= ⟨vn,A0vn⟩V,V∗ −⟨un,D0un⟩U. (38)

By (37) both summands in the left-most term converge to zero, and thus also the sum in the right-
most term. Since the spaces are real and the operators A0 and −D0 are dissipative, −⟨un,D0un⟩U and
⟨vn,A0vn⟩V,V∗ take values in (−∞,0]. This shows that ⟨vnA0vn⟩V,V∗ → 0 as n → ∞. Combining this with
vn → 0 in X1 and the Gårding inequality (32) gives vn → 0 in V. Since A0 is bounded from V to V∗, and

14
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since X1⊂→V∗, we find that A0vn → 0 in V∗ as n → ∞. The first relation in equation (37) gives that
B0un → 0 in V∗.

Since vn → 0 in V and since B0 is bounded from V to U, we have that B0vn → 0 in U. The second
relation in equation (37) gives that D0un → 0 in U. Since B0un and D0un converge to zero, inequality
(33) gives that un → 0. Combined with vn → 0 in X1 this is in contradiction to the assumption that
∥[ vn

un ]|X1⊕U = 1. Hence (19) holds.

So we have shown that (EI,A ) satisfies the condition of Theorem 13.iv), and thus also that (E ,A Q) is
regular. It remains to prove the last assertion of the theorem.

To prove that the invertibility of G(1) implies the invertibility of EI −A , we proceed similar to the first
item in this proof. Namely, the equation (EI −A ) [ v

u ] = [ x1
y ] with [ v

u ] ∈ D(A ) gives that v is given by
(35) and u satisfies (see also (36))

−G(1)u = y+B∗
0(iV−A )−1x1

From this and equation (35) it follows that EI −A is boundedly invertible when G(1) is. It remains to
show the opposite direction.

Assuming that EI −A is boundedly invertible gives that there is a unique and continuous mapping from
y ∈ U to [ v

u ] ∈ X1 ⊕U such that [ v
u ] ∈ D(A ), and

(EI −A )

[
v
u

]
=

[
0
y

]
.

Using Lemma 21 we can solve this equation, and find v = (iV−A )−1B0u and y = G(1)u. This gives
that there exists a continuous mapping from y to u, and thus G(1) is boundedly invertible.

From the above proof, we see that D0 being self-adjoint, which is a typical property in many applications,
see e.g. [12], was only needed in one step. Alternatively, we could have assumed that A0 was self-adjoint.
Of course both operators need to be dissipative. Property (34) is a special case of a general property which
these systems likely have, namely that G(s) is positive real, i.e., Re⟨G(s)u,u⟩ ≥ 0 whenever s ∈ C+.

Remark 23 In a recent paper, [36], it is shown that the formulation that we have discussed can also
be formulated in terms of system nodes, see Definition 4.7.2 in [41]. The assumption on A as stated in
Lemma 16 is the condition used in [48].

Using the property of the block structured pencil in (29) we have the following well-known inf-sup
conditions when D0 = 0.

Theorem 24 Consider the operator in (29) and define V0 ⊂ V as V0 = kerB∗
0 . Then

inf
0̸=v∈V0

sup
0̸=w∈V0

⟨A0v,w⟩V∗,V
∥v∥∥w∥

≥ α > 0, inf
0̸=v∈V0

sup
0̸=w∈V0

⟨A0w,v⟩V∗,V
∥v∥∥w∥

≥ α > 0, (39)

inf
0̸=u∈U

sup
0̸=v∈V

⟨B0u,v⟩V∗,V

∥u∥U∥v∥V
≥ γ > 0, (40)

and the pair (EI,A ) is regular.

Proof . See e.g. [43].
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3 Existence of solutions on the whole space

In this section we study the solution of adHDAEs of the form (15). Since x2 is a constraint to x1, we
concentrate on the solution theory for x1 first. Our first result is based on the extra assumption that the
last row in (15) does not impose a condition on x1, i.e., for every x1 there exists an x2 such that this
condition is satisfied. This implies that the algebraic equations impose no restriction on the state space
X1. The case in which that may happen is studied in Section 5.

We define the following reduced state space

X1,E Q = X1 with inner product ⟨x1, x̃1⟩E Q = ⟨x1,E
∗

1 Q1x̃1⟩, (41)

where the second inner product is the standard inner product of X1. Since E ∗
1 Q1 is coercive, the new

norm is equivalent to the original one.

Theorem 25 Consider a adHDAE system of the form (15) with (E ,A Q) regular satisfying Assumption 9
and assume that whenever

[
0
x2

]
∈ D(A ) is such that A2

[
0
x2

]
= 0, then x2 = 0.

Under these assumptions, the operator Ared : D(Ared)⊂ X1,E Q → X1,E Q generates a contraction semi-
group on the reduced space X1,E Q, where the domain D(Ared) is defined as

D(Ared) = {x1 ∈ X1,E Q | ∃ x2 ∈ X2 such that
[
Q1x1
Q2x2

]
∈ D(A ) and A2

[
Q1x1
Q2x2

]
= 0}, (42)

and for x1 ∈ D(Ared) the action of Ared is defined as

Aredx1 = E −1
1 A1

[
Q1x1
Q2x2

]
. (43)

Proof . First we have to prove that Ared is well-defined. So if for a given x1 ∈ D(Ared) we have that x2
and x̃2 are such that the condition of the domain are satisfied for [ x1

x2 ] and
[ x1

x̃2

]
, then by the linearity of

A2, we have that

A2

[
0

Q2(x2 − x̃2)

]
= 0.

By assumption, this implies that Q2(x2 − x̃2) = 0, and since Q2 is invertible, then x2 − x̃2 = 0. So there
exists at most one x2 to every x1 ∈ D(Ared), and hence Ared is well-defined.

Using that E ∗
1 Q1 = (E ∗

1 Q1)
∗, we have

⟨Aredx1,x1⟩E Q + ⟨x1,Aredx1,⟩E Q =⟨Aredx1,E
∗

1 Q1x1⟩+ ⟨E ∗
1 Q1x1,Aredx1⟩

= ⟨E −1
1 A1

[
Q1x1
Q2x2

]
,E ∗

1 Q1x1⟩+ ⟨E ∗
1 Q1x1,E

−1
1 A1

[
Q1x1
Q2x2

]
⟩

= ⟨A
[
Q1x1
Q2x2

]
,

[
Q1x1
Q2x2

]
⟩+ ⟨

[
Q1x1
Q2x2

]
,A

[
Q1x1
Q2x2

]
⟩

≤ 0,

where we have used A2

[
Q1x1
Q2x2

]
= 0 and the dissipativity of A . Hence Ared is dissipative.

Now we show that sI−Ared is onto for s ∈C+. Given
[ y1

0

]
∈X. Then by assumption, see also Corollary

15, we know that there exists a [ x1
x2 ] ∈ D(A Q) such that[

E1y1
0

]
= (sE −A Q)

[
x1
x2

]
= s

[
E1x1

0

]
−A

[
Q1x1
Q2x2

]
. (44)
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The last row of this expression gives that

A2

[
Q1x1
Q2x2

]
= 0

and so x1 ∈ D(Ared). The top row of (44) gives

sE1x1 −A1

[
Q1x1
Q2x2

]
= E1y1

or equivalently (using (42) and that E1 is boundedly invertible) (sI −Ared)x1 = y1. This gives that
sI −Ared is surjective for s ∈ C+. By the Lumer-Phillips Theorem, see e.g. [41], we conclude that
Ared generates a contraction semigroup on X1.

In the proof of Theorem 25, we did not use the regularity of the pair (E ,A Q) to show that Ared is
well-defined and dissipative. It was used only to prove the surjectivity of sI −Ared . Since the latter is
the property we want for Ared , we can ask if our regularity assumption is not too strong. The following
lemma shows that under a mild condition the two properties are equivalent.

Lemma 26 Let the first three conditions of Assumption 9 hold. Furthermore, we assume that whenever[
0
x2

]
∈ D(A ) is such that A2

[
0
x2

]
= 0, then x2 = 0. Consider the operator Ared on the domain (42) with

the action (43). Then the following are equivalent:

a) The pair (E ,A Q) is regular.
b) A is closed, A2 : D(A ) 7→X2 is surjective, and there exists an s ∈C+ such sI−Ared is boundedly

invertible;
c) A is closed, A2 : D(A ) 7→X2 is surjective, and there exists an s ∈C+ such sI−Ared is surjective;
d) A is closed, A2 : D(A ) 7→ X2 is surjective and Ared is maximally dissipative.

Proof . By Corollary 15 we only have to prove the equivalences for the pair (EI,A ). From the assump-
tions it follows that Ared is well-defined and dissipative, see the proof of Theorem 25.

a) ⇒ b): By Lemma 12 A is maximally dissipative and so it is closed. The last part follows from
Theorem 25, since if Ared generates a contraction semigroup, then sI −Ared is boundedly invertible for
all s ∈C+, see also Section 7. It remains to show that A2 is surjective. Since (EI,A ) is regular, sEI −A
is surjective. This immediately implies that A2 is surjective.

b)⇔ d): This equivalence follows from the fact that a dissipative operator Ared is maximally dissipative
if and only if sI −Ared is surjective for some/all s ∈ C+, see Lemma 40 in the appendix.

b)⇒ c): This holds trivially, since when sI −Ared is boundedly invertible, its range equals X1 and the
operator is closed.

c)⇒ a): We begin by showing that sEI −A is injective. Let [ x1
x2 ]∈ D(A ) be such that (sEI −A ) [ x1

x2 ] = 0.
So

0 =

〈[
x1
x2

]
,(sEI −A )

[
x1
x2

]〉
= s∥x1∥2 −

〈[
x1
x2

]
,A

[
x1
x2

]〉
where the last term has nonnegative real part, since A is dissipative. If x1 ̸= 0, the first part would have
strictly positive real part, which contradicts the equality and thus x1 = 0. This gives that

0 = (sEI −A )

[
x1
x2

]
= (sEI −A )

[
0
x2

]
=−A

[
0
x2

]
,

and in particular A2
[

0
x2

]
= 0, which by assumption gives x2 = 0. Thus we have shown that sEI −A is

injective.
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Next we prove the surjectivity. Let [ y1
y2 ] ∈ X be given. By the surjectivity of A2 there exists an

[ x̃1
x̃2

]
∈

D(A ) such that A2
[ x̃1

x̃2

]
=−y2. Defining

ỹ1 = sx̃1 −A1

[
x̃1
x̃2

]
,

we obtain [
ỹ1
y2

]
= (sEI −A )

[
x̃1
x̃2

]
. (45)

Since (sI−Ared) is surjective, there exists x1 such that y1 − ỹ1 = (sI−Ared)x1. By the definition of Ared
this means that there exists x2 such [

y1 − ỹ1
0

]
= (sEI −A )

[
x1
x2

]
. (46)

Adding (45) and (46) gives that
[ x1+x̃1

x2+x̃2

]
is mapped to [ y1

y2 ] by sEI −A , and we conclude that sEI −A is
surjective.

Since A − sEI is injective and surjective and since A is closed, so is A − sEI and thus injectivity and
surjectivity implies bounded invertibility, see e.g. [Corollary A.3.50][9].

In the part of the proof of Lemma 26 that c) implies d) we show that we only needed the closedness of A
to conclude from the injectivity plus surjectivity the bounded invertibility of sEI −Ared . Since A − sEI

is dissipative, it is closable, see Section 7. The closure is obviously still surjective, and thus it remains
to show that it is injective. The sEI term gives that any element in the kernel should have x1 = 0. If the
following implication holds: A2

[ 0
x2,n

]
→ 0, x2,n → x2 ⇒ x2 = 0, then the closure is injective.

Theorem 25 implies that for all x1,0 ∈ X1 there exists a unique (weak or mild) solution of

ẋ1(t) = Aredx1(t), x1(0) = x1,0. (47)

However, this is only a part of the solution of the adHDAE (1). For a classical solution, we have that
x1(t) ∈ D(Ared), and so since a given x1 yields a unique x2, we also find a (unique) x2(t) such that the
bottom equation of (1) is satisfied. In general the equation for x2(t) will not exist for all mild solutions,
as is shown on basis of Example 28, see the text following that example.

4 Applications

In this section we study several well-known classes of systems, and show that they can be seen as exam-
ples of Theorem 25. We start with the class of abstract port-Hamiltonian systems.

4.1 Abstract port-Hamiltonian systems on a 1D spatial domain.

In this section we discuss port-Hamiltonian systems and we begin with a very general setup. Let
L2,H1,H2 denote the usual Hilbert spaces of square integrable functions, and associated Sobolev spaces.
On L2((0,1);Rn) we consider the operator

A x = P1
d

dζ
x+G0(ζ )x (48)

with domain

D(A ) = {x ∈ H1((0,1);Rn) |WB

[
x(1)
x(0)

]
= 0}. (49)
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Here P1 is a real constant, symmetric, invertible matrix, and G0 : [0,1] 7→ Cn×n is Lipschitz continuous
satisfying G0(ζ )+G0(ζ )

∗ ≤ 0 for all ζ ∈ [0,1]. Furthermore, WB is a (constant) n× 2n matrix of full
rank. From [23, 27] or [22] it is known that A is maximally dissipative if and only if

vT P1v−wT P1w ≤ 0 for all v,w ∈ Rn satisfying WB

[
v
w

]
= 0. (50)

For this class of systems we show that if the conditions of Lemma 26 hold, then the associated operator
pair is regular.

Theorem 27 Consider the adHDAE system (1), where the operator A has its domain defined in equa-
tions (48) and (49). Furthermore, assume that (50) holds. Let n1+n2 = n and write X= L2((0,1);Rn) =
L2((0,1);Rn1)⊕L2((0,1);Rn2) =: X1 ⊕X2.

If the subset V0 := {x2 ∈X2 |
[

0
x2

]
∈D(A ) and A2

[
0
x2

]
= 0} contains only the zero element, then (EI,A )

is regular, i.e. Assumption 9 is satisfied for this class of systems.

If the n2×n2 right lower block of P1 is zero and the corresponding block of G0(ζ ) is invertible for almost
all ζ ∈ [0,1], then V0 = {0}.

Proof . We have to show that sEI −A is boundedly invertible. To do so we introduce some notation. We
split the matrices according to the dimensions n1 and n2, i.e.

P1 =

[
P1,11 P1,12
P1,21 P1,22

]
G0 =

[
G0,11 G0,12
G0,21 G0,22

]
. (51)

The equation y = (EI −A )x can then equivalently be written as

P1
dx
dζ

(ζ ) =

[
sI −G0,11(ζ ) −G0,12(ζ )
−G0,21(ζ ) −G0,22(ζ )

][
x1(ζ )
x2(ζ )

]
−
[

y1(ζ )
y2(ζ )

]
=: −Gs(ζ )x(ζ )− y(ζ ).

Since P1 is invertible, this is an implicit linear ordinary differential equation in ζ with variable coef-
ficients. Since Gs is Lipschitz continuous, for every initial condition x(0) this equation has a unique
solution, which we write as

x(ζ ) =
[

x1(ζ )
x2(ζ )

]
= Ψ(ζ ,0)

[
x1(0)
x2(0)

]
+

∫
ζ

0
Ψ(ζ ,τ)

[
−y1(τ)
−y2(τ)

]
dτ,

where Ψ is the fundamental solution matrix of the homogeneous system. If we would have that this
solution is in the domain of A , then this part of the proof is complete. For this we need that

WB

[
x(1)
x(0)

]
= 0,

or equivalently

(WB,1Ψ(1,0)+WB,2)x(0) =WB,1

∫ 1

0
Ψ(1,τ)

[
y1(τ)
y2(τ)

]
dτ.

If the (constant) matrix in front of x(0) is invertible, then we can find a unique x(0), and so the solution
x(·) is uniquely determined. If this matrix is not invertible, then choose 0 ̸= x(0) in its kernel, i.e.,

(WB,1Ψ(1,0)+WB,2)x(0) = 0.

This implies that
x(ζ ) := Ψ(ζ ,0)x(0)

is a solution of P1
dx
dζ
(ζ ) = −Gs(ζ )x(ζ ) which satisfies the boundary condition, i.e. WB

[
x(1)
x(0)

]
= 0. By

the definition of Gs, this means that x satisfies (sEI −A )x = 0, implying that sEI −A is not injective.
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By Lemma 18 this means that the first component of x is zero, and the second component satisfies
A

[
0
x2

]
= 0. By our assumption this gives that x2 = 0. Concluding, we see that (WB,1Ψ(1,0)+WB,2)

must be injective and thus surjective, implying that the pair (EI,A ) is regular.

To prove the last statement, considering (51), we get

A2

[
0
x2

]
=

[
P1,12

dx2
dζ

+G0,12x2

G0,22x2

]
, (52)

where we have used the condition on P1. Using the invertibility of G0,22 this can only be zero, when
x2 = 0. □

We see from (52) that even when G0,22 is singular, this equation could have only the zero function as
its solution. Since P1 is invertible and P1,22 = 0, P1,12 is of full rank and so A

[
0
x2

]
= 0 is (partly) a

differential equation. This means that it will also depend on the boundary conditions, imposed by WB,
whether x2 = 0 is its only solution.

There are several applications of Theorem 27.

Example 28 Choose

P1 =

[
0 1
1 0

]
and G0 =

[
−g0 0

0 −r

]
,

where g0 is a bounded function and r is a bounded and invertible function, and moreover both satisfy
that their real part is non-negative. Furthermore, choose

E =

[
e1 0
0 0

]
and Q =

[
1 0
0 q2

]
,

where e1,q2 are positive, bounded, and invertible functions. We take a full rank WB such that (50) holds,
and thus A is dissipative. For n1 = n2 = 1, it is not hard to see that the assumptions of Theorem 27 are
satisfied. Hence (EI,A ) is regular, and so is (E ,A Q), see Corollary 15.

Applying Theorem 25, by (43) we find that

Aredx1 =
1
e1

[
d(q2x2)

dζ
−g0x1

]
with

dx1

dζ
− rq2x2 = 0

or equivalently

(Aredx1)(ζ ) =
1

e1(ζ )

[
d

dζ

(
1

r(ζ )
dx1

dζ
(ζ )

)
−g0(ζ )x1(ζ )

]
(53)

with domain

D(Ared) = {x1 ∈ H1(0,1) | 1
r

dx1

dζ
∈ H1(0,1) and WB


x1(1)

1
r(1)

dx1
dζ

(1)
x1(0)

1
r(0)

dx1
dζ

(0)

= 0}.

If we assume that r is real-valued, then this operator is (minus) a Sturm-Liouville operator, see [9, p.
82], with the exception of the sign condition on the last term. This sign condition is a consequence of
the fact that we want dissipative operators, whereas that is not imposed in general for Sturm-Liouville
operators.

Sturm-Liouville operators always come with a specific set of boundary conditions. We can obtain these
boundary conditions by choosing the right WB, e.g. with the real matrix

WB =

[
α1 β1 0 0
0 0 α2 β2

]
,
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with α2
1 + β 2

1 > 0 and α2
2 + β 2

2 > 0. This matrix satisfies (50) if and only if α1β1 ≥ 0 and α2β2 ≥ 0.
Again these conditions are a consequence of the fact that we want dissipative operators, whereas that is
not imposed for Sturm-Liouville operators.

The diffusion/heat equation is the most well-known Sturm-Liouville operator. If we choose r = e1 = 1,
α1 = α2 = 1 and β1 = β2 = 0, then the PDE ẋ(t) = A x(t) corresponds to an undamped vibrating string
which is fixed at the boundary, whereas the PDE ẋ1(t) = Aredx1(t) corresponds to the diffusion/heat
equation with temperature zero at the boundary.

So we have constructed the heat equation out of the wave equation. If we choose r = −i, then the PDE
ẋ1(t) = Aredx1(t) corresponds to the 1-D Schrödinger equation.

Now we return to the comments made below equation (47). We once more look at the differential
equation we found for x1 in Example 28. For simplicity, we assume that e1 = 1, r = −i, and so x1
satisfies the standard Schrödinger equation. It is well-known that for an arbitrary initial condition in
L2(0,1) this will have a unique weak/mild solution. However, for an initial condition in L2(0,1) the
solution will not get smoother, and so x2(t) = i ∂

∂ζ
x1(t) will in general not lie in the state space.

Next we apply Theorem 27 to show that the equations for an Euler-Bernoulli beam can be constructed
out of two wave equations.

Example 29 Consider A of equation (48) with

P1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , G0 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


and assume that WB is a full rank 4× 8 matrix satisfying (50). We take n1 = n2 = 2, E = diag(E1,0),
Q = diag(Q1,Q2), with E1,Q1,Q2 strictly positive (2×2)-matrix valued bounded functions. It is easy
to see that the conditions of Theorem 27 are satisfied, and so are those of Assumption 9.

The operator Ared from Theorem 25 then becomes

Aredx1 = E −1
1

[
0 1
1 0

]
d

dζ

([
0 1
−1 0

][
0 1
1 0

]
d(Q1x1)

dζ

)
= E −1

1

[
0 −1
1 0

]
d2(Q1x1)

dζ 2 . (54)

For E1 =
[

ρ 0
0 1

]
, Q1 =

[
q1 0
0 q2

]
, and x1 :=

[ x1,1
x1,2

]
the associated PDE ẋ1(t) = Aredx1(t) takes the form

∂x1,1

∂ t
=− 1

ρ

∂ 2(q2x1,2)

∂ζ 2 and
∂x1,2

∂ t
=

∂ 2(q1x1,1)

∂ζ 2 ,

or in the variable x1,1

ρ(ζ )
∂ 2x1,1

∂ t2 (ζ , t) =− ∂ 2

∂ζ 2

[
q2(ζ )

∂ 2(q1(ζ )x1,1)

∂ζ 2 (ζ , t)
]
.

For ρ the mass density, q1 = 1, and q2 = E K, with E the elastic modulus and K the second moment of
area of the beam’s cross section, this is the well-known Euler-Bernoulli beam model.

We note that P1 can be seen to correspond to two wave equations, namely one in the variables x1,1 and
x1,4 and the other in the variables x1,2 and x1,3. So we can construct the beam equation out of two wave
equations.

In Example 29 we have discussed the construction of a second order port-Hamiltonian system from a
first order one, see also [27]. In the following lemma we will do this generally, and also pay attention to
the boundary conditions.
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Lemma 30 Consider an operator Ared on L2((0,1);Rn1) of the form

Aredx1 = P2
d2x1

dζ 2 +P1,1
dx1

dζ
+P0x1

with domain

D(Ared) = {x1 ∈ H2((0,1);Rn1) | W̃B


x1(1)
dx1
dζ

(1)
x1(0)
dx1
dζ

(0)

= 0},

where we assume that, for the n1 ×n1 coefficient matrices, we have that P2, P0 are skew-symmetric, P1,1
is symmetric and P2 is invertible. Furthermore, W̃B is a full rank 2n1 ×4n1-matrix.

If Ared is a generator of a contraction semigroup on L2((0,1);Rn1), then it can be constructed via Theo-
rem 25 from an A as in (48) and (49).

Proof . We recall from [27] that under the conditions on the coefficient matrices, Ared generates a con-
traction semigroup if and only if

[
vT

1,1 vT
1,2
][P1,1 P2

−P2 0

][
v1,1
v1,2

]
−
[
wT

1,1 wT
1,2
][P1,1 P2

−P2 0

][
w1,1
w1,2

]
≤ 0 (55)

for v1,1,v1,2,w1,1,w1,2 ∈ Rn1 such that W̃B

[ v1,1
v1,2
w1,1
w1,2

]
= 0.

With the matrices P2,P1,1, and P0 we choose the following n×n = 2n1 ×2n1-matrices in (48)

P1 =

[
P1,1 I

I 0

]
and G0 =

[
P0 0
0 −P−1

2

]
. (56)

From our assumption and choices we see that PT
1 = P1 and GT

0 =−G0. Furthermore, P1 is invertible.

Next we choose the matrix WB in (49) as

WB = W̃B ·diag(I,P−1
2 , I,P−1

2 ). (57)

It is clear that this has full rank n = 2n1. It remains to check that for these choices the operator A with
domain D(A ), defined via (48) and (49), satisfy the condition (50).

First we note that
[ v1

v2
w1
w2

]
∈ kerWB if and only if

[ v1
P−1

2 v2
w1

P−1
2 w2

]
∈ kerW̃B. Secondly, the following equality holds

[
vT

1 vT
2
]

P1

[
v1
v2

]
=
[
vT

1 vT
2
][P1,1 I

I 0

][
v1
v2

]
=

[
vT

1 vT
2
][P1,1 P2

I 0

][
v1

P−1
2 v2

]
=

[
vT

1
(
P−1

2 v2
)T

][P1,1 P2
−P2 0

][
v1

P−1
2 v2

]
. (58)

Combining these two facts with (55) we have that

[
vT

1 vT
2
]

P1

[
v1
v2

]
−
[
wT

1 wT
2
]

P1

[
w1
w2

]
≤ 0 for all


v1
v2
w1
w2

 ∈ kerWB.
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So we have that the operator A defined in (48) and 49), with P1 and G0 given in (56), is maximally
dissipative. Choosing n2 = n1, we see that all the conditions needed in Theorem 27 are satisfied.

Choosing E = EI and Q = I, the operator from (43) is given as[
P1,1 I

] d
dζ

[
x1
x2

]
+P0x1 with

dx1

dζ
−P−1

2 x2 = 0, (59)

with domain

{x1,x2 ∈ H1((0,1);Rn1) |WB

 x1(1)
x2(1)
x1(0)
x2(0)

= 0}. (60)

From (59) we obtain x2 =P2
dx1
dζ

. Substituting this in the first equality of (59) and in (60) gives the operator
Ared and its domain as asserted.

We have shown how different models can be constructed out of the wave equation model by imposing a
closure relation. This is the opposite construction as is usually done in Stokes or Oseen equations where
the heat equation is obtain by a restriction, see [12, 43].

In the following example we show that we can as well obtain coupled PDEs which act on different
physical domains.

Example 31 Consider the operator A of equation (48) with

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , G0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −r


with r is a bounded and invertible function satisfying Re(r(ζ )) ≥ 0 for all ζ ∈ [0,1]. We choose its
domain to be given by (49) with

WB =


1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0

 .

It is clear that this is of full rank, and it is not hard to see that (50) holds. We take n1 = 3, n2 = 1.
With these choices it is straightforward to see that the conditions of Theorem 27 hold, and so (EI,A )
is regular. Using Corollary 15, we can build the operator Ared from Theorem 25. For this we choose
E = EI , and Q = diag(ρ−1,T,1,0) with ρ,T (strictly) positive functions. This operator then satisfies

Aredx1 =


d(T x1,2)

dζ

d(ρ−1x1,1)
dζ
dx2
dζ

 with
dx1,3

dζ
= rx2.

The corresponding PDE splits into the two PDEs

∂

∂ t

[
x1,1
x1,2

]
=

[
0 1
1 0

]
∂

∂ζ

([
ρ−1 0

0 T

][
x1,1
x1,2

])
and

∂x1,3

∂ t
=

∂

∂ζ

[
r−1 ∂x1,3

∂ζ

]
.

In the first PDE we recognise the wave equation, whereas the second is a heat/diffusion equation. They
seem to be uncoupled, but we have not looked at the boundary conditions of A . Using the closure
relation dx1,3

dζ
= rx2, we see that the boundary conditions become

ρ
−1x1,1(1) = x1,3(0), T x1,2(1) = r−1 ∂x1,3

∂ζ
(0), x1,1(0) = 0 and

∂x1,3

∂ζ
(1) = 0.

So in this way the heat equation is coupled at the boundary to the wave equation, but certainly other
couplings are possible as well.
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The proof that A with D(A ) given in (48) and (49) is maximally dissipative if and only if (50) holds
was given in [27] by using boundary triplets, which will be the topic of the next subsection.

4.2 Boundary triplets

In this section we illustrate that our approach can also be used in the context of boundary triplets to
derive results that have also been obtained via different approaches. We begin by recalling the concept
of a boundary triplet. Let Am be a densely defined operator on a Hilbert space H with dual A ∗

m , and
let Γ1,Γ2 be two linear mappings from D(A ∗

m) to another Hilbert space U. The triplet (U,Γ1,Γ2) is a
boundary triplet if the following conditions are satisfied, see [17, section 3.1]:

1. For all f ,g ∈ D(A ∗
m) it holds that

⟨A ∗
m f ,g⟩H −⟨ f ,A ∗

m g⟩H = ⟨Γ1 f ,Γ2g⟩U−⟨Γ2 f ,Γ1g⟩U. (61)

2. For all u1,u2 ∈ U there exists f ∈ D(A ∗
m) such that Γ1 f = u1 and Γ2 f = u2.

By choosing f in the kernel of the boundary operators Γ1 and Γ2, we see that the corresponding restriction
of A ∗

m is symmetric, and not skew-symmetric, as is normally the case for generators of contraction
semigroups. Therefore we will work with iA ∗

m and iΓ1,Γ2.

For these operators, (61) becomes (equivalently)

⟨iA ∗
m f ,g⟩H + ⟨ f , iA ∗

m g⟩H = ⟨iΓ1 f ,Γ2g⟩U+ ⟨Γ2 f , iΓ1g⟩U. (62)

In Theorem 3.1.6 of [17] it is shown that iA ∗
m restricted to the domain

{x0 ∈ D(A ∗
m) | (K − I)Γ1x0 + i(K + I)Γ2x0 = 0} (63)

with K satisfying ∥K ∥ ≤ 1, are all maximally dissipative restrictions of iA ∗
m . We will show that this

result can be obtained alternatively via Theorem 25.

To show this, for a given boundary triplet, we define X1 = H , X2 = U, and

A =

[
A1
A2

]
=

[
A1

1
2 L(−iΓ1 +Γ2) − 1

2 I

]
(64)

with

A1

[
x1
u

]
= iA ∗

m x1,

D(A ) =

{[
x1
u

]
| x1 ∈ D(A ∗

m) with (iΓ1 +Γ2)x1 = u
}
, (65)

and L ∈ L (U).

Next we study the dissipativity of A . By the definition of A and relation (62) we find

⟨A
[

x1
u

]
,

[
x1
u

]
⟩+ ⟨

[
x1
u

]
,A

[
x1
u

]
⟩

= ⟨iA ∗
m x1,x1⟩+ ⟨x1, iA ∗

m x1⟩+

⟨1
2

L(−iΓ1 +Γ2)x1,u⟩U+ ⟨u, 1
2

L(−iΓ1 +Γ2)x1⟩U

−⟨1
2

u,u⟩U−⟨u, 1
2

u⟩U

= ⟨iΓ1x1,Γ2x1⟩U+ ⟨Γ2x1, iΓ1x1⟩U+

⟨1
2

L(−iΓ1 +Γ2)x1,u⟩U+ ⟨u, 1
2

L(−iΓ1 +Γ2)x1⟩U−⟨u,u⟩U.
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Now we define y = (−iΓ1 +Γ2)x1, and using (65) it is easy to see that

⟨iΓ1x1,Γ2x1⟩U+ ⟨Γ2x1, iΓ1x1⟩U =
1
2
⟨u,u⟩U−

1
2
⟨y,y⟩U.

Hence

⟨A
[

x1
u

]
,

[
x1
u

]
⟩+ ⟨

[
x1
u

]
,A

[
x1
u

]
⟩

=
1
2
⟨u,u⟩U−

1
2
⟨y,y⟩U+

⟨1
2

Ly,u⟩U+ ⟨u, 1
2

Ly⟩U−⟨u,u⟩U

= ⟨
[
− 1

2 I 1
2 L

1
2 L∗ − 1

2 I

][
u
y

]
,

[
u
y

]
⟩U⊕U. (66)

Using the equality[
−1

2 I 1
2 L

1
2 L∗ − 1

2 I

]
=

[
I −L
0 I

][
− 1

2 I + 1
2 LL∗ 0

0 −1
2 I

][
I 0

−L∗ I

]
and (66) we see that the operator A is dissipative if and only if LL∗ ≤ I, or equivalently if ∥L∥ ≤ 1. Next
we choose E = EI and Q = I, and so for ∥L∥ ≤ 1 all conditions in Assumption 9 are satisfied except
possibly the regularity. By Lemma 26, the regularity can be checked by the maximally dissipativity of
Ared , the closedness of A , and A2 being surjective. Since the pair (Γ1,Γ2) is surjective, it follows that
for every u ∈U there exists an x1 ∈ D(A ∗

m) such that (−iΓ1 +Γ2)x1 = 0 and (iΓ1 +Γ2)x1 =−2u. Hence[ x1
−2u

]
∈ D(A ), and A2

[ x1
−2u

]
= u, and thus A2 is surjective. That A is closed follows from the fact that

A ∗
m is closed.

So to obtain the regularity, we have to study the operator Ared . Note that the definition of the domain of
Ared already gives that the condition [ 0

u ] ∈ D(Ared) implies that u = 0. So all conditions of Theorem 25
are satisfied.

We find that Ared is given via
Aredx1 = iA ∗

m x1

with domain

D(Ared) = {x1 ∈ D(A ∗
m) | (iΓ1 +Γ2)x1 = u = L(−iΓ1 +Γ2)x1}

= {x1 ∈ D(A ∗
m) | (L+ I)iΓ1x1 +(−L+ I)Γ2x1 = 0}.

Multiplying this expression with i and taking K =−L we obtain (63), i.e., the condition of [17].

To complete the regularity proof it remains to show that Ared is maximally dissipative which is shown in
[17].

In this subsection we have seen that boundary triplets fit into the framework of adHDAEs and in the next
subsection we show this for impedance passive systems.

4.3 Impedance passive systems

Let H , V, and U be Hilbert spaces and let
[ L

K0

]
be a closed operator from V to H ⊕U. We define

V0 :=D
(
[ L

K0

]
)⊂V. Since

[ L
K0

]
is closed, V0 with its graph norm is a Hilbert space and

[ L
K0

]
is a bounded

operator from V0 to H ⊕U. Therefore L∗ and K∗
0 are in L (H ,V∗

0) and L (U,V∗
0), respectively. We

view V as the pivot space, i.e., V0⊂→V= V∗⊂→V∗
0 are subsets with dense continuous injections.
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Motivated by the Maxwell equation as well as the (damped) beam equation, the following system was
introduced in [42].

ẋ(t) =
[

0 −L
L∗ G−K∗

0 K0

]
x(t)+

[
0√
2K∗

0

]
u(t), y(t) =

[
0 −

√
2K0

]
x(t), (67)

on the state space X1 = H ⊕V. Here L,K0 satisfy the properties stated above, and G ∈ L (V0,V∗
0).

With our notation, we see how we have to interpret (67). Namely, the system operator has the following
domain

D
([

0 −L
L∗ G−K∗

0 K0

])
=

{[
h
v

]
∈ H ⊕V0 | L∗h+(G−K∗

0 K0)v ∈ V
}
, (68)

where the addition is done in V∗
0. For the rest of this subsection we concentrate on this system operator.

For the study of the system in [42] the following operator is introduced

T =

 0 −L 0
L∗ G K∗

0
0 −K0 0

 (69)

with domain

D(T ) =


 h

e
u

 ∈ H ⊕V0 ⊕U | L∗h+Ge+K∗
0 u ∈ V

 . (70)

In [42] it is shown that T is maximally dissipative1 if

Re⟨Ge,e⟩V∗
0,V0 ≤ 0. (71)

Under this condition, they apply an “external Cayley transform” to show that the system (67) is well-
defined. This gives that the system operator generates a contraction semigroup, and thus is maximally
dissipative. We will show that this result can also be obtained via our techniques. For this we define
X2 = U, and

A =

 0 −L 0
L∗ G K∗

0
0 −K0 −I


with the domain given by that of T , see (70). Since A differs from T by just the −I is the lower right
corner it is also maximally dissipative when (71) holds. We choose E = EI and Q = I. Since T is
maximally dissipative, we have that A +

[
0 0
0 I

]
is maximally dissipative, and so by Lemma 16 (E ,A Q)

is regular. Again by the −I is the lower right corner of A , we see that the condition of Theorem 25 is
satisfied, and thus the operator Ared defined by

Aredx1 = Ared

[
h
e

]
=

[
0 −L 0
L∗ G K∗

0

]h
e
u

 with −K0e−u = 0

generates a contraction semigroup. It is now straightforward to see that this is the system operator from
(67) and (68). So applying Theorem 25 we obtain the result of [42].

In [42] a similar result is also obtained for the Maxwell equations.

In general, we can regard the condition A2 [
x1
x2 ] as a closure relation, but also as an output feedback, as

we will discuss in the next subsection.

1Actually in [42] it is shown that T is m-dissipative which in our situation is equivalent to being maximally dissipative, see
Lemma 40.
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4.4 Output feedback and systems

In this section we study output feedback, i.e., we look at Acl = A0 −BK C . We can regard z = Aclx1
as the solution of

z = A0x1 +Bu with C x1 +K −1u = 0, (72)

but then we would have to assume that K is invertible. In the following example we will show that this
assumption can be removed.

Example 32 It is easy to see that if A0 generates a contraction semigroup, so will A0 −R for any
bounded, R with −R dissipative. In this example we show this using Theorem 25. For this we define

A =

 A0 B0 0
−B∗

0 0 I
0 −I −K

 ,

where (A0,D(A0)) generates a contraction semigroup on the Hilbert space Z, B0 ∈ L (U,Z), and
K ∈ L (U,U), with K +K ∗ ≥ 0. Here U is another Hilbert space. The domain of A is given by
D(A0)⊕U⊕U. Note that to apply our results we could even allow that B0 is unbounded, but here we
apply it for bounded B0.

Next we choose X1 = Z, X2 = U⊕U, E = EI and Q = I. Since A0 is a generator of a contraction
semigroup, it is clear that the first three conditions of Assumptions 9 are fulfilled. It remains the show
that (EI,A ) is regular.

Take s in the right half plane, then by the maximal dissipativity of A0,

(sEI −A )

x
u
y

=

 z
v
w

⇔

 x
B∗

0x− y
u+K y

=

(sI −A0)
−1z+(sI −A0)

−1B0u
v
w

 .

Substituting the expression for x into the second row, the following two equations remain to be solved:[
B∗

0(sI −A0)
−1B0 −I

I K

][
u
y

]
=

[
v−B∗

0(sI −A0)
−1z

w

]
. (73)

Since B0 is bounded and A0 generates a contraction semigroup, the transfer function B∗
0(sI−A0)

−1B0
converges to zero as s → ∞. Combined with the fact that

[
0 −I
I K

]
is boundedly invertible, we see that the

left hand side of (73) is boundedly invertible for s sufficiently large.

So the conditions of Theorem 25 are satisfied, and we can construct the corresponding Ared . It is given
via

Aredx1 = A0x1 +B0u with −B∗
0x1 + y = 0 and u+K y = 0

The latter two properties give u =−K y =−K B∗
0x1, and so Ared becomes

Ared = A0 −B0K B∗
0 ,

which we can view as an output feedback on the system ẋ1(t) = A0x1(t)+B0u(t),y(t) = B∗
0x1(t).

After applying the feedback we can again incorporate an input and an output, by considering the follow-
ing A on the space X= Z⊕U1 ⊕U⊕U, where U1 is a Hilbert space, and B1 ∈ L (U1,Z).

A =


A0 B1 B0 0
−B∗

1 0 0 0
−B∗

0 0 0 I
0 0 −I K

 .

We split the space as X1 = Z⊕U1, X2 = U⊕U, and so the last two rows of A form A2.
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Choosing E = EI and Q = I, then A obtained after applying the closure relation, is given by

A =

[
A0 −B0K B∗

0 B1
−B∗

1 0

]
which is maximally dissipative. This implies that the system

ż(t) = (A0 −B0K B∗
0)z(t)+B1u1(t), y1(t) =−B∗

1z(t)

is impedance passive. Note that with the choice of Q = diag(Q1, I, I, I), we get impedance passivity with
the storage function q(z) = ⟨z,Q1z⟩, see [7, Theorem 7.5.4].

5 Existence of solutions on a subspace

In the previous section we have considered the operator A under the condition that A2 was injective on
{0}⊕X2 ∩D(A ). In the following theorem we use a stronger assumption and study the existence of
solutions to (15).

Theorem 33 Consider an adHDAE (15) with operators E , A , Q and the Hilbert spaces X,X1, and
X2 satisfying the conditions of Assumption 9. Define W0 ⊂ X1 as the first component of the kernel of
A2

[
Q1
Q2

]
, i.e.,

W0 = {x1 ∈ X1 | ∃ x2 ∈ X2 s.t.
[

Q1x1
Q2x2

]
∈ D(A ) and A2

[
Q1x1
Q2x2

]
= 0}. (74)

Let X0 ⊆ X1 be the closure of W0 in X1. If

{y1 ∈ X0 | ∃ x2 ∈ X2 s.t.
[ 0

Q2x2

]
∈ D(A ) and A

[ 0
Q2x2

]
=
[

E1y1
0

]
}= {0}, (75)

then the operator Ared : D(Ared)⊂X0 →X0 generates a contraction semigroup on X0, where the domain
D(Ared) is defined as

D(Ared) = {x1 ∈ X0 | ∃ x2 ∈ X2 such that
[

Q1x1
Q2x2

]
∈ D(A ), (76)

A2

[
Q1x1
Q2x2

]
= 0 and E −1

1 A1

[
Q1x1
Q2x2

]
∈ X0}

and for x1 ∈ D(Ared) the action of Ared is defined via

Aredx1 = E −1
1 A1

[
Q1x1
Q2x2

]
. (77)

Proof . First we have to prove that Ared is well-defined. Note that D(Ared) ⊂ W0. So if for a given
x1 ∈ D(Ared) we have that x2 and x̃2 are such that the conditions on the domain are satisfied for

[
Q1x1
Q2x2

]
and

[
Q1x1
Q2x̃2

]
, then by the linearity of A2, we have that

A2

[
0

Q2x2 −Q2x̃2

]
= 0.

Furthermore, we know that y1 := E −1
1 A1

[
Q1x1
Q2x2

]
and ỹ1 := E −1

1 A1

[
Q1x1
Q2x̃2

]
are in X0. Since X0 is a

linear space, we find that

y1 − ỹ1 = E −1
1 A1

[
0

Q2(x2 − x̃2)

]
∈ X0.
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Combining the two equations gives that

A

[
0

Q2(x2 − x̃2)

]
=

[
A1
A2

][
0

Q2(x2 − x̃2)

]
=

[
E1(y1 − ỹ1)

0

]
with y1 − ỹ1 ∈ X0. Our assumption gives that y1 = ỹ1, and thus Aredx1 is unique, and so is well-defined.

We have

⟨Aredx1,x1⟩E Q + ⟨Aredx1,x1⟩E Q = ⟨E −1
1 A1

[
Q1x1
Q2x2

]
,E ∗

1 Q1x1⟩+ ⟨E ∗
1 Q1x1,E

−1
1 A1

[
Q1x1
Q2x2

]
⟩

= ⟨A
[
Q1x1
Q2x2

]
,

[
Q1x1
Q2x2

]
⟩+ ⟨

[
Q1x1
Q2x2

]
,A

[
Q1x1
Q2x2

]
⟩ ≤ 0,

where we have used that A2

[
Q1x1
Q2x2

]
= 0. Hence Ared is dissipative.

Next we show that sI−Ared is onto, where s is a complex number with positive real part in the regularity
assumption. For this, choose y1 ∈ X0. By the regularity assumption we know that there exists [ x1

x2 ] ∈
D(A Q) such that [

E1y1
0

]
= (sE −A Q)

[
x1
x2

]
= s

[
E1x1

0

]
−A

[
Q1x1
Q2x2

]
. (78)

The second row of this expression gives that

A2

[
Q1x1
Q2x2

]
= 0

and so x1 ∈ W0. The first row of (78) gives

sE1x1 −A1

[
Q1x1
Q2x2

]
= E1y1.

Using that y1 and x1 are in X0, we get that x1 ∈ D(Ared), and (sI −Ared)x1 = y1. Hence sI −Ared is
surjective for an s ∈ C+. By the Lumer-Phillips Theorem we conclude that Ared generates a contraction
semigroup on X0.

We note that if we have a classical solution of

ẋ1(t) = A x1(t),

then x1(t) ∈ D(A )⊂ W0 ⊂ X0 for all t ≥ 0, and thus there exists an x2(t) such that

E1ẋ1(t) = A1

[
Q1x1(t)
Q2x2(t)

]
and A2

[
Q1x1(t)
Q2x2(t)

]
= 0.

We can regard x2 as the Lagrange multiplier enabling x1 to stay in W0.

Example 34 Consider the system (72) but with K = 0, i.e., let

A =

[
A0 B0
−B∗

0 0

]
,

where A0 is maximally dissipative on the Hilbert space X1, and B0 ∈ L (U,X1) where B0 is injective
and has closed range, i.e., there exists β > 0 such that ∥B0u∥ ≥ β∥u∥, for all u ∈U. We choose X2 =U.
To check the regularity for our class of E and Q it suffices to check it for EI and Q = I, see Corollary 15.

We first study the invertibility of the transfer function G(s) = B∗
0(sI −A )−1B0. It is well-known that

lims→∞ sG(s) =B∗
0B0, and by our assumption on B0 this inverse exists. So for s sufficiently large sG(s)
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and thus also G(s) is boundedly invertible. Hence (EI,A ) is regular, and so is (E ,A Q). With this, we
can define X0 and Ared .

Using equation (74) we get that W0 = {x1 ∈ X1 | Q1x1 ∈ D(A0) and Q1x1 ∈ kerB∗
0}. Therefore, X0 =

Q−1
1 kerB∗

0 ∩D(A0). In many cases the domain of A0 will be dense in the kernel of B∗
0 , and thus in that

case X0 = Q−1
1 kerB∗

0 .

The element y1 is in the set defined by equation (75) if B0Q2x2 = E1y1 and Q1y1 ∈ kerB∗
0 . Thus

B∗
0Q1E

−1
1 B0Q2x2 = 0, which implies that ⟨B0Q2x2,Q1E

−1
1 B0Q2x2⟩ = 0. Since Q1E

−1
1 is coercive,

this gives B0Q2x2 = 0 and thus E1y1 = 0. The invertibility of E1 finally gives y1 = 0.

Thus, all the conditions of Theorem 33 are satisfied. We choose E = EI and Q = I, to study the A
constructed in Theorem 33.

ˆA x1 = A0x1 +B0u, with x1 ∈ D(A0),B
∗
0x1 = 0, and B∗

0(A0x1 +B0u) = 0.

The last expression gives u =−(B∗
0B0)

−1B∗
0A0x1, and so on X0 we have the operator

Aredx1 =
(
A0 −B0(B

∗
0B0)

−1B∗
0A0

)
x1.

Theorem 33 states that there is a well-defined dynamics on this space. If we interpret the second state
component as the output, then this X0 has the interpretation as the output nulling subspace. It is well-
known that the largest output nulling subspace exists when B∗

0B0 is invertible, see [8] or [49].

In general, when C ∈ L (X1,U) is such that there exists a coercive Q1 ∈ L (X1) such that C = B∗
0Q1,

then we get, with E = EI and Q = diag(Q1, I), that X0 = kerC , and

ˆA x1 =
(
A0 −B0(C B0)

−1C A0
)
Q1x1.

In the following example we study the class studied in Theorem 22. However, the applications of this
class are different, it contains e.g. the Oseen or Stokes equation, see [12] and [36]. The setup is similar
as for the impedance passive systems studied in Subsection 4.3.

Example 35 Let V be a real Hilbert space such that V⊂→X1 = X∗
1⊂→V∗, Let A0 ∈ L (V,V∗), B0 ∈

L (U,V∗), where U is a second (real) Hilbert space. So B∗
0 ∈ L (V,U∗). We identify U∗ with U. We

assume that A0 is dissipative and B0 is injective and has closed range.

With these operators we define, see also (29) and (30),

A =

[
A0 B0
−B∗

0 0

]
(79)

with domain

D(A ) = {
[

v
u

]
∈ V⊕U | A0v+B0u ∈ X1}.

By Theorem 22 we know that (EI,A ) is regular. So we can apply Theorem 33 on this class.

By the definition of A we have that

W0 = {x1 ∈ V | ∃ x2 ∈ U s.t. A0x1 +B0x2 ∈ X1, and B∗
0x1 = 0}.

Next we study the solution set of equation (75). Let y1 ∈ X0 = W0, i.e., the closure of W0 in X1, be such
that there exists an u ∈ U is such that

A

[
0
u

]
=

[
y1
0

]
. (80)

From the definition of the domain of A we obtain that B0u ∈ X1. If B0 is completely unbounded, then
this would imply that u= 0, and thus y1 = 0. Otherwise, since y1 ∈X0 there exists a sequence zn ∈W0 ⊂V
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such that zn → y1 in X1. In particular, B∗
0zn = 0. Combining this with the fact that y1 = B0u, see (80),

we find
⟨y1,y1⟩X1 = lim

n→∞
⟨zn,B0u⟩X1 = lim

n→∞
⟨zn,B0u⟩V,V∗ = lim

n→∞
⟨B∗

0zn,u⟩U = 0.

Hence y1 = 0. Thus the conditions of Theorem 33 are satisfied.

A concrete application of the set-up in the previous example is given next.

Example 36 Consider, as in [12] a linearized Navier-Stokes equation and given by

∂v
∂ t

−α∆v+∇p = 0

∇
T v = 0,

on a spatial domain Ω.

For the abstract set-up of Example 35 we choose V= H1
0 (Ω), X1 = L2(Ω), and U=X2 = L2(Ω)/R, i.e.,

two functions in U are considered to be the same if they differ by a constant. Furthermore, A is taken as

A =

[
A0 B0
−B∗

0 0

]
=

[
α∆ −∇

∇T 0

]
.

Since for v,w ∈ V ∫
Ω

(∆v)w dω =−
∫

Ω

∇v ·∇w dω,

we see that A0 is dissipative. Furthermore, it satisfies the Gårding inequality, see [12] for the proof in
the more general case of the linearized Navier-Stokes and Oseen equation. Furthermore, B0 is injective,
has closed range and satisfies the condition (33), see e.g. [6]. Hence if we choose

E =

[
I 0
0 0

]
and Q =

[
I 0
0 I

]
,

then it fits the framework of Example 35. Note that X0 is now the space of divergence free functions.

6 Conclusion and possible extensions

Abstract linear dissipative Hamiltonian differential-algebraic equations (DAEs) on Hilbert spaces are
studied. A characterization is given when these are associated with singular and regular operator pairs.
It is shown that due to closure relations and structural properties this class of operator equations arises
typically when studying classical evolution equations. This is illustrated by several applications.

However, this class does not only arises when the state spaces are Hilbert spaces, and these abstract DAEs
are not restricted to linear systems. To extend the presented theory for dissipative systems on a Banach
space, the article [40] can serve as a starting point. Among others it is shown there that Example 28 can
be treated in the context of Banach spaces as well.
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7 Appendix on dissipative operators

Dissipative operators are important in this paper, and so we list some of their properties. We begin with
its definition.

Definition 37 Let X be a (complex) Hilbert space. Then A : D(A )⊂ X→ X is dissipative if

Re⟨A x,x⟩ ≤ 0 for all x ∈ D(A ). (81)

The following equivalent characterization is very useful. For a proof we refer to e.g. Proposition 6.1.5 of
[23].

Lemma 38 The operator A : D(A )⊂ X 7→ X is dissipative if and only if

∥(λ I −A )x∥ ≥ λ∥x∥, for all x ∈ D(A ),λ > 0. (82)

For complex s with positive real part, it is easy to see that we have to replace (82) by

∥(sI −A )x∥ ≥ Re(s)∥x∥.

From this we see immediately that a dissipative A will not have eigenvalues in C+. Furthermore, when
(sI −A ) is surjective, this inequality implies that (sI −A ) is boundedly invertible. Secondly, (82)
implies that sI −A is closable, and thus A is. This means that there exists an extension of A which
we denote by A such if xn ∈ D(A ) converged to x and A xn converge to y, then x ∈ D(A ) and A x = y.
Furthermore, this closure is dissipative, see e.g. [1].

Based on this consider the following two concepts.

Definition 39 Let X be a Hilbert space, and A : D(A )⊂ X 7→ X a dissipative operator.

1. A is m-dissipative if the range of λ I −A = X for a λ > 0;
2. A is maximally dissipative if there does not exists an extension of A which is also dissipative.

Lemma 40 Let X be a Hilbert space, and A : D(A ) ⊂ X 7→ X a dissipative operator. Then it is m-
dissipative if and only if it is maximally dissipative.

For the proof we refer to Corollary 2.27 of [31]. Using this lemma we do not distinguish the two concepts,
and we have chosen to use the term maximally dissipative when 1. or 2. holds, see Definition 39.

The importance of dissipative operators is clear from the Lumer-Phillips Theorem.

Theorem 41 Let X be a Hilbert space, and A : D(A ) ⊂ X 7→ X a linear operator. Then the following
are equivalent:

1. A is maximally dissipative;
2. A is the infinitesimal generator of a contraction semigroup on X;
3. A is closed and densely defined, and A and A ∗ are dissipative.

For the proof of (1) ⇔ (2) we refer to [23, Theorem 6.1.7], and for (2) ⇔ (3) to [7, Corollary 2.3.3].

We end this appendix with a lemma.

Lemma 42 If A : D(A )⊂X 7→X a dissipative operator which is boundedly invertible, then it is maxi-
mally dissipative.

Proof . The proof follows from the fact that the resolvent set of an operator is always open. Thus there
exists a λ > 0 such that λ I −A is boundedly invertible, and in particular its range equals X.
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for 1d distributed port-Hamiltonian systems. arXiv preprint arXiv:2402.07628. 2024.

[5] K. E. Brenan, S. L. Campbell, L. R. Petzold. Numerical Solution of Initial-value Problems in
Differential-algebraic Equations. Philadelphia, PA: Society for Industrial and Applied Mathemat-
ics, 1996.

[6] F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Vol. 15. Springer Science & Busi-
ness Media, 2012.

[7] R. Curtain, H. Zwart. Introduction to Infinite-Dimensional Systems Theory, A state-space approach.
Vol. 71. Texts in Applied Mathematics. Springer, New York, 2020:xii+752.

[8] R. F. Curtain. Invariance Concepts in Infinite Dimensions. SIAM J. Control Optim. 1986;24(5):1009–
1030.

[9] R. F. Curtain, H. J. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Vol. 21.
Texts in Applied Mathematics. Springer-Verlag, New York, 1995:xviii+698.

[10] H. Egger, T. Kugler. Damped wave systems on networks: exponential stability and uniform approx-
imations. Numer. Math. 2018;138(4):839–867.

[11] H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, V. Mehrmann. On structure preserv-
ing model reduction for damped wave propagation in transport networks. SIAM J. Sci. Comput.
2018;40:A331–A365.

33



Hans Zwart and Volker Mehrmann | Abstract Dissipative Hamiltonian DAEs

[12] E. Emmrich, V. Mehrmann. Operator differential-algebraic equations arising in fluid dynamics.
Comput. Methods Appl. Math. 2013;13(4):443–470.

[13] M. Erbay, B. Jacob, K. Morris, T. Reis, C. Tischendorf. Index concepts for linear differential-
algebraic equations in finite and infinite dimensions. arXiv preprint arXiv:2401.01771. 2024.

[14] H. Gernandt, F. E. Haller, E. Reis. A linear relation approach to port-Hamiltonian differential-
algebraic equations. SIAM J. Matrix Anal. Appl. 2021;42(2):1011–1044.

[15] H. Gernandt, F. E. Haller, T. Reis, A. J. van der Schaft. Port-Hamiltonian formulation of nonlinear
electrical circuits. J. Geom. Phys. 2021;159:103959.

[16] H. Gernandt, T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations.
arXiv. 2023.

[17] V. I. Gorbachuk, M. L. Gorbachuk. On Boundary Value Problems for Operator Differential Equa-
tions. Vol. 48. Mathematics and its Applications (Soviet Series). Translated and revised from the
1984 Russian original. Kluwer Academic Publishers Group, Dordrecht, 1991:xii+347.

[18] M. Günther, A. Bartel, B. Jacob, T. Reis. Dynamic iteration schemes and port-Hamiltonian for-
mulation in coupled differential-algebraic equation circuit simulation. Int. J. Circuit Theory Appl.
2021;49(2):430–452.

[19] W. Hackbusch. Elliptic Differential Equations. Second. Vol. 18. Springer Series in Computational
Mathematics. Theory and numerical treatment. Springer-Verlag, Berlin, 2017:xiv+455.

[20] E. Hairer, G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems. 2nd. Berlin, Germany: Springer-Verlag, 1996.

[21] B. Jacob, K. Morris. On solvability of dissipative partial differential-algebraic equations. IEEE Con-
trol Systems Letters. 2022;6:3188–3193.

[22] B. Jacob, K. Morris, H. Zwart. C0-semigroups for hyperbolic partial differential equations on a
one-dimensional spatial domain. English. J. Evol. Equ. 2015;15(2):493 –502.

[23] B. Jacob, H. Zwart. Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces. Vol. 223.
Operator Theory: Advances and Applications. Basel: Birkhäuser, 2012.
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