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Abstract: We study the problem of state transition on a finite time interval with minimal energy supply
for linear port-Hamiltonian systems. While the cost functional of minimal energy supply is intrinsic
to the port-Hamiltonian structure, the necessary conditions of optimality resulting from Pontryagin’s
maximum principle may yield singular arcs. The underlying reason is the linear dependence on the
control, which makes the problem of determining the optimal control as a function of the state and the
adjoint more complicated or even impossible. To resolve this issue, we fully characterize regularity
of the (differential-algebraic) optimality system by using the interplay of the cost functional and the
dynamics. In case of the optimality DAE being characterized by a regular matrix pencil, we fully
determine the control on the singular arc. In case of singular matrix pencils of the optimality system,
we propose an approach to compute rank-minimal quadratic perturbations of the objective such that
the optimal control problem becomes regular. We illustrate the applicability of our results by a general
second-order mechanical system and a discretized boundary-controlled heat equation.
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1. Introduction

Since their introduction in [31] and especially in recent years, port-Hamiltonian systems have been suc-
cessfully applied in the modeling of a wide variety of physical processes: mechanics [5, 6, 43, 29],
electrical engineering [39, 42], thermodynamics and fluid dynamics [1, 37, 38, 15], economics [28], see
also [47, 10, 16] and the recent survey [33].

Recently, optimal control of port-Hamiltonian systems has also been given some attention, see, e.g.,
[19, 50]. Since port-Hamiltonian modeling is energy-based, the energy supplied to the system is readily
available as a mathematical expression in terms of the ports and it is natural from an application point
of view to employ it as the objective minimized in optimal control problems (OCPs), cf. [40, 12]. For
an application to energy-optimal building control we refer to [41]. Entropy-optimal control is consid-
ered in [34, 35], see also the recent preprint [11] showing existence of solutions leveraging an exergy
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functional. However, the resulting OCP is singular and standard solution techniques, e.g. construction
of Riccati state feedback, are not directly applicable, see e.g. [32, 22]. One could instead employ gen-
eral techniques for singular optimal control like those studied in [2, 3]. But these approaches would not
exploit the particular structure of the port-Hamiltonian system and the chosen cost function. Instead we
apply and extend techniques developed in [8] to derive, under weaker conditions than regularity of the
optimal control problem, a condition that guarantees the existence of an optimal solution with a closed
form for the associated optimal control. This weaker condition is related to the regularity of the matrix
pencil, which is associated with the necessary optimality condition arising from a Pontryagin maximum
principle. The derivation of this general existence condition using the port-Hamiltonian structure of the
OCP is at the center of our work. In the case where this existence condition fails to hold, we provide
a regularization procedure via minimal-rank perturbations of the cost functional such that the pencil
associated with the optimality condition becomes regular.

For a fixed time horizon T > 0, the problem of transferring an initial state xS ∈Kn of a port-Hamiltonian
system under control constraints to a desired state xT ∈Kn with minimal energy supply can be formulated
as

min
u∈L1([0,T ],Km)

∫ T

0
Re
(
y(t)Hu(t)

)
dt

s.t. d
dt x(t) = (J−R)Qx(t)+Bu(t) for a.e. t ∈ [0,T ],

x(0) = xS, x(T ) = xT ,

y(t) = BHQx(t), u(t) ∈ U for a.e. t ∈ [0,T ],

(1)

where U⊂Km, m ≤ n, is a non-empty, convex and compact set, and

(J,R,Q,B) ∈ Σn,m :=
{
(J,R,Q,B) ∈

(
Kn×n)3 ×Kn×m

∣∣∣J =−JH , R = RH ≥ 0, Q = QH ≥ 0
}
.

We note that to any control u ∈ L1([0,T ],Km) there is a unique state x ∈W 1,1([0,T ],Kn) such that in (1),
as usual in optimal control, we may only optimize over controls. The OCP (1) was studied in [40, 12], see
also [34] for a particular infinite-dimensional case. While in these papers it has been shown that, under a
reachability condition of the terminal state, an optimal solution of (1) typically exists, one can, a priori,
neither expect its uniqueness nor that the associated optimal control can be expressed as a state or output
feedback in terms of the optimal trajectory and the associated Lagrange multiplier (also called costate or
adjoint) in a unique way. To illustrate this issue, we consider the particular case of box constraints, that
is,

U=
{

z ∈Km
∣∣ Rez j ∈ [v j,v j], Imz j ∈ [w j,w j] for all j ∈ {1, . . . ,m}

}
,

where v j,w j,v j,w j ∈ R with v j ≤ v j and w j ≤ w j for all j ∈ {1, . . . ,m}. By the Pontryagin maximum
principle, see e.g. [26, 36, 25], for an optimal state-control pair (x,u) ∈W 1,1([0,T ],Kn)×L1([0,T ];Km)
there exist λ ∈W 1,1([0,T ],Kn) and a constant λ0 ∈K such that (λ (t),λ0) ̸= 0 for all t ∈ [0,T ] and

d
dt λ (t) =−

(
(J−R)Q

)H
λ (t)−λ0QBu(t), (2a)

d
dt x(t) = (J−R)Qx(t)+Bu(t), (2b)

u(t) ∈ argmin
ū∈U

Re
(
ūHBH (λ0Qx(t)+λ (t))

)
(2c)

for a.e. t ∈ [0,T ]. Using the switching function ς(t) = BH(λ0Qx(t)+λ (t)), the pointwise minimization
in (2c) yields the following componentwise characterization for almost all t ∈ [0,T ]:

Reς j(t)> 0 implies Reu j(t) = v j and Imς j(t)> 0 implies Imu j(t) = w j,

Reς j(t)< 0 implies Reu j(t) = v j and Imς j(t)< 0 implies Imu j(t) = w j.
(3)
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However, if Reς j(·) vanishes on a set with non-zero Lebesgue measure, then (2c) does not provide any
information on Reu j(·) on that set. The same holds analogously for the imaginary part. The nondegen-
erate connected components of the set{

t ∈ [0,T ]
∣∣∃ j ∈ {1, . . . ,m} : Reς j(t) = 0 ∨ Im ς j(t) = 0

}
are called singular arcs, cf. [2, 51].

In [40, Theorem 8] it was shown that the simple condition imB∩ kerRQ = {0} allows for the unique
characterization of the optimal control on singular arcs in terms of the optimal state x and the adjoint λ .
In Proposition 3.9 below, we prove that the condition imB∩kerRQ= {0} can be characterized in terms of
the Jordan structure associated with the eigenvalue ∞ (the Kronecker index) of the differential-algebraic
optimality system along singular arcs.

In this paper, we are mainly interested in characterizations of the optimal control on singular arcs, i.e.
intervals on which some components of the switching function vanish. To illustrate our approach, let
us assume the control constraints are inactive on an interval [t0, t1], 0 ≤ t0 < t1 ≤ T , i.e. u(t) /∈ ∂U
for all t ∈ [t0, t1]. Consequently, all components of the switching function vanish on [t0, t1] due to the
contraposition of (3). Then, the pointwise inclusion (2c) may be replaced with the algebraic condition
ς(t) = 0 for all t ∈ [t0, t1] such that (2) is a differential-algebraic equation (DAE). Conversely, by the
Pontryagin Maximum Principle, this DAE is the optimality system of the unconstrained counterpart of
(1), i.e.,

min
u∈L1([t0,t1],Km)

∫ t1

t0
Re
(
y(t)Hu(t)

)
dt

s.t. d
dt x(t) = (J−R)Qx(t)+Bu(t) for a.e. t ∈ [t0, t1],

x(t0) = x0, x(t1) = x1,

y(t) = BHQx(t) for a.e. t ∈ [t0, t1],

(4)

where x0 ∈Kn and x1 ∈Kn are the states at which the optimal solution of (1) enters, respectively, leaves
the singular arc.

Typically, only some (and not all) of the control constraints are inactive, i.e. u is in a face of ∂U of nonzero
dimension or, equivalently, the indices {1, . . . ,m} are partitioned by the (nonempty) sets of active indices

A :=
{

i ∈ {1, . . . ,m}
∣∣Reu j(t) ∈ {v j,v j} and Imu j(t) ∈ {w j,w j}

}
and inactive indices I = {1, . . . ,m} \A . After suitable permutation one can split the control into u =[
u⊤I , u⊤A

]⊤, which yields the dynamics

d
dt

x(t) = (J−R)Qx(t)+BI uI (t)+BA uA (t). (5)

Here, uA (t) is determined by the pointwise minimization (2) and can, thus, be treated as in inhomogene-
ity f (t)=BA uA (t) in the state equation of (4). This splitting has to be adapted whenever the active set A
changes. However, for simplicity of exposition, we will analyse the homogeneous case, i.e. A = ∅, so
that the optimal control problem that is considered throughout the note is equivalent to the unconstrained
problem (4). All our considerations are generalizable to characterize the inactive controls uI in case of
active constraints as the inhomogenities only enter the differential equations in (2).

The approach in [8] studies the optimality conditions associated with (4) obtained by the Pontryagin
maximum principle. When this optimality system is regular in the DAE sense, then the optimal control
is linearly determined by the optimal state trajectory and associated adjoint. Moreover, criteria on the
existence and uniqueness of an optimal control can be deduced, see also [32] for a detailed discussion
and numerical methods.
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For cases where this regularity is not given, one can resort to regularizations of the OCP via “small”
perturbations of the original cost functional by a “small” quadratic term in the control and obtains the
regularized optimal control problem

min
u∈L1([t0,t1],Km)

∫ t1

t0

[
Re(y(t)Hu(t))+u(t)HSu(t)

]
dt

s.t. d
dt x(t) = (J−R)Qx(t)+Bu(t) for a.e. t ∈ [t0, t1],

x(t0) = x0, x(t1) = x1,

y(t) = BHQx(t) for a.e. t ∈ [t0, t1]

(6)

for some S ∈ Km×m with SH = S ≥ 0. In order to stay “close” to the original problem (4), we aim
to choose S “minimally” (in the sense that the rank of S is minimal) so that the associated optimality
DAE is regular. This desirable feature results from the intricate interplay of the cost functional and the
port-Hamiltonian dynamics in the corresponding optimality conditions and thus is referred to as “hidden
regularity” in the title of this work. An alternative type of smallness of the regularization would be to set
S = αI with small α > 0, which corresponds to a Tikhonov regularization as is typical in optimal control
of partial differential equations [46].

This work is structured as follows. First, we recall the necessary and sufficient optimality conditions
obtained from the Pontryagin maximum principle. These conditions are given as a linear DAE in the
state, the adjoint, and the control. Solution formulas for this DAE in terms of the Drazin inverse can be
applied if the associated pencil is regular. Therefore, we study the properties of this pencil in Section 3.
Our results are summarized in Figure 1. In particular, in Subsection 3.1, we provide characterisations
of regularity which extend Campbell’s results [8] and relate them to the sufficient regularity condition
kerR∩ imB = {0} proposed in [40, Theorem 3.8]. Then, in Subsection 3.2, we use the characterisations
of regularity to find a rank-minimal regularization term S. In Subsection 3.3, it is shown that the condition
kerR∩ imB = {0} characterises the case that the index of the optimality pencil is three. In Section 4, we
study existence and uniqueness of an optimal solution under the assumption of a regular optimality pencil.
In particular, a state-feedback law is deduced. Lastly, we illustrate the results with some examples.

Nomenclature

K either R or C
Kn×m the set of n×m matrices with entries in K
AH the conjugate transpose of a matrix A ∈Kn×m

σ(A) the spectrum of A ∈Kn×n

A ≥ 0 for A ∈Kn×n means that xHAx ≥ 0 for all x ∈Kn

A > 0 for A ∈Kn×n means that xHAx > 0 for all x ∈Kn \{0}
Σn,m :=

{
(J,R,Q,B) ∈ (Kn×n)

3 ×Kn×m
∣∣∣J =−JH , R = RH ≥ 0, Q = QH ≥ 0

}
L1([0,T ],Kn) the vector space of all Lebesgue measureable and absolutely inte-

grable functions f : [0,T ]→Kn, T > 0
f |W restriction of the function f : V →Rn to W ⊆V
C k(I,Kn) the set of k-times continuously differentiable functions f : I →Kn for

a nonempty open interval I ⊆ R
C k([0,T ],Kn) :=

{
f |[0,T ]

∣∣∃ε > 0 : f ∈ C 1((−ε,T + ε),Kn)
}

W 1,1([0,T ],Kn) the set of absolutely continuous functions f : [0,T ]→Kn with (weak)
derivative f ′ ∈ L1([0,T ],Kn), T > 0

V [t] the vector space of all polynomials with entries in the vector space V
V [[t]] the vector space of all formal power series with entries in the vector

space V
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2. Necessary optimality condition

Before we derive necessary optimality conditions, we transform the objective into a quadratic cost func-
tional without mixed terms. Since the dynamics of (6) have port-Hamiltonian structure with quadratic
Hamiltonian energy function x 7→ 1

2 xHQx, we have the well-known energy balance equation, see e.g.
[47],

1
2

x(t1)HQx(t1)−
1
2

x(t0)HQx(t0) =
∫ t1

t0

[
Rey(t)Hu(t)− x(t)HQRQx(t)

]
dt (7)

for all tuples (x,y,u) ∈W 1,1([t0, t1],Kn)×W 1,1([t0, t1],Kn)×L1([t0, t1],Km) satisfying the system

d
dt x(t) = (J−R)Qx(t)+Bu(t),

y(t) = BHQx(t)
(8)

for a.e. t ∈ [t0, t1]. Thus, again for tuples (x,y,u) satisfying (8), the cost functional of (6) can be rewritten
as ∫ t1

t0

[
Rey(t)Hu(t)+u(t)HSu(t)

]
dt =

1
2

x(t1)HQx(t1)−
1
2

x(t0)HQx(t0)

+
∫ t1

t0

[
x(t)HQRQx(t)+u(t)HSu(t)

]
dt.

The OCP (6) includes the initial condition x(t0) = x0 and the terminal constraint x(t1) = x1. Thus,
1
2 x(t1)HQx(t1)− 1

2 x(t0)HQx(t0) is a constant on the set of feasible trajectories of (6) and can be neglected
in the minimization. Therefore, we may equivalently consider the linear-quadratic optimal control prob-
lem

min
u∈L1([t0,t1],Km)

1
2

∫ t1

t0

[
x(t)HQRQx(t)+u(t)HSu(t)

]
dt

s.t. d
dt x(t) = (J−R)Qx(t)+Bu(t) for a.e. t ∈ [t0, t1],

x(t0) = x0, x(t1) = x1,

(9)

which has the same optimal solutions as (6)1. The stage cost (also commonly called Lagrange term or
running cost [26]) of (9) is the quadratic function

g : Kn ×Km →K, (x,u) 7→ 1
2

[
x
u

]H [QRQ 0
0 S

][
x
u

]
.

Then, the associated optimal control Hamiltonian function reads

H : Kn ×Km ×Kn ×K→K, (x,u,λ ,λ0) 7→ λ
H(J−R)Qx+λ

HBu+λ0g(x,u).

By the Pontryagin maximum principle (see e.g. [26, p.102]), one has the following necessary optimality
condition: If (x,u) ∈W 1,1([t0, t1],Kn)×L1([t0, t1],Km) is an optimal trajectory of (9), then there exists a
function λ ∈ W 1,1([t0, t1],Kn) and a constant λ0 ∈ K so that (λ (t),λ0) ̸= (0,0) for almost all t ∈ [t0, t1]
and the DAE

− d
dt λ =

(
(J−R)Q

)H
λ +λ0QRQx, (10a)

d
dt x = (J−R)Qx+Bu, (10b)

0 =−BH
λ −λ0Su (10c)

1As stated previously, we consider a trivial set of active constraints A = ∅ for expository reasons. Active constraints would
lead to a source term in the dynamics of (9) in view of (5). This source term does not change the structure of the underlying
pencil which is the main focus of this work.
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with boundary conditions x(t0) = x0 and x(t1) = x1 is fulfilled for almost every t ∈ [t0, t1]. We briefly state
a result on normalization of the stage-cost adjoint λ0 under a controllability assumption.

Lemma 2.1. Let J,R,Q ∈ Kn×n, B ∈ Kn×m and S ∈ Km×m, and let (λ ,x,u,λ ) ∈ W 1,1([t0, t1],Kn)×
W 1,1([t0, t1],Kn)× L1([t0, t1],Kn)×K be a solution of (10). If ((J − R)Q,B) is controllable, i.e.
rank

[
B,(J−R)QB, . . . ,((J−R)Q)n−1B

]
= n, then the scalar multiplier in (10) satisfies λ0 ̸= 0.

Proof. We abbreviate A = (J−R)Q and assume that λ0 = 0. Then, (10c) yields BHλ = 0 and (10a) reads
as d

dt λ = −AHλ , hence BHAHλ (t) = −BH d
dt λ (t) = 0 for almost every t ∈ [t0, t1]. From the continuity

of λ , we conclude that BHAHλ ≡ 0 on [t0, t1]. Inductively, one obtains BH(Ak)Hλ ≡ 0 on [t0, t1] for
k = 0,1, . . . ,n−1. By the controllability of (A,B), this implies that λ (t) = 0 for all t ∈ [t0, t1]. With the
non-triviality condition (λ (t),λ0) ̸= (0,0) for all t ∈ [t0, t1] of the Pontryagin maximum principle, we
conclude that λ0 ̸= 0.

In view of the previous lemma, in all theoretical discussions below we assume that λ0 ̸= 0. In this case,
dividing (10a) and (10c) by λ0 and rescaling λ , we can without loss of generality normalize λ0 = 1.

An important result, establishing a one-to-one relationship of the optimality system (10) with λ0 ̸= 0
and the optimal control problem (9) is the following theorem ensuring also sufficiency of the necessary
optimality conditions.

Theorem 2.2 ([8, Theorem 1]). Let (λ ,x,u) ∈
(
W 1,1([t0, t1],Kn)

)2×L2([t0, t1],Km) be a solution of (10)
with λ0 = 1 satisfying x(t0) = x0 and x(t1) = x1. Then (x,u) is a solution of the optimal control prob-
lem (9).

Taking additionally the structural properties of (J,R,Q,B)∈ Σn,m into account, the optimality system (10)
is equivalent to the following self-adjoint DAE, see [21, 23]:

d
dt

0n×n In 0n×m

−In 0n×n 0n×m

0m×n 0m×n 0m×m


︸ ︷︷ ︸

=:E

λ

x
u

=

 0n×n (J−R)Q B
((J−R)Q)H QRQ 0n×m

BH 0m×n S


︸ ︷︷ ︸

=:AS

λ

x
u

 (11)

for a.e. t ∈ [t0, t1] and for consistent boundary conditions at t0 and t1.

Since we are in the constant coefficient case, we can analyse the properties of (10) via the properties of
the optimality pencil sE −AS, which actually has a special symmetry structure that can be effectively
used in numerical methods for solving the boundary value problem, see [7]. Before we continue with the
analysis of the pencil, we first consider an example of a second-order mechanical system.

Example 2.3. A large class of systems from elastomechanics (possibly after a suitable finite-element
discretization) can be formulated as a second-order control system

M d2

dt2 q+D d
dt q+Kq = u (12)

with symmetric matrices M,D,K ∈ Rℓ×ℓ, ℓ ∈ N, where the mass matrix M and the stiffness matrix K
are positive definite, respectively, and the damping matrix D is positive semi-definite.In the following we
consider the fully damped case such that D is positive definite. Typical initial conditions at t = t0 are
given by the position q(t0) and the velocity q̇(t0). Performing a first-order formulation by composing the

6
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state x = [ x1
x2 ] ∈ R2ℓ from momentum x1 = Mq̇ and position x2 = q, the system (12) can equivalently be

written in the form

d
dt x =

([
0ℓ×ℓ −Iℓ

Iℓ 0ℓ×ℓ

]
︸ ︷︷ ︸

J

−
[

D 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ

]
︸ ︷︷ ︸

R

)[
M−1 0ℓ×ℓ

0ℓ×ℓ K

]
︸ ︷︷ ︸

Q

x+
[

Iℓ
0ℓ×ℓ

]
︸ ︷︷ ︸

B

u,

see for example [48] for an application in the control of high-rise buildings. We observe that kerRQ∩
imB = {0} holds; that is, the sufficient condition for regularity derived in [40] is satisfied. Thus, we can
inspect the corresponding optimal control problem (6) for any 0 ≤ t0 ≤ t1 ≤ T without regularization
term, i.e. S = 0. This optimal control problem then characterizes the optimal solutions of (1) on singular
arc. Whenever the switching function is nonzero ς(t) ̸= 0, any optimal input u⋆(t) ∈ ∂U is readily
obtained via the Pontryagin Maximum Principle, i.e. from (2c). Further, using the Hautus Lemma, see
e.g. [44], it is immediate that the pair ((J −R)Q,B) is controllable. Hence, we may assume that λ0 = 1
in (10).

Decomposing also λ =
[

λ1
λ2

]
∈ R2ℓ analogously to the state, (10c) is equivalent to

λ1(t) = 0 for all t ∈ [t0, t1]. (13)

The adjoint equation (10a) reads

d
dt

[
λ1
λ2

]
=

[
M−1D −M−1

K 0

][
λ1
λ2

]
−
[

M−1DM−1 0
0 0

][
x1
x2

]
and inserting (13) yields

d
dt λ2(t) = 0 for a.e. t ∈ [t0, t1] and λ2(t) =−DM−1x1(t) for all t ∈ [t0, t1].

From this, we further conclude

d
dt x1(t) = 0 for a.e. t ∈ [t0, t1] with x1(t)≡ x0

1 and x1(t) = x1
1 for all t ∈ [t0, t1].

This already yields the condition x0
1 = x1

1 on the entry and exit point of the singular arc and λ2(t) =
−DM−1x0

1 for all t ∈ [t0, t1]. Inserting this into the second row of the state equation yields d
dt x2(t) =

M−1x0
1 for a.e. t ∈ [t0, t1] and thus

x2(t) = x0
2 +(t − t0)M−1x0

1 for all t ∈ [t0, t1].

From this we get the additional condition x1
2 = x0

2+(t1− t0)M−1x0
1, coupling the entry and exit point with

the time at which the solution leaves the singular arc. In particular, if x0 ̸= x1, an optimal solution only
exists for one particular length t1 − t0 of the singular arc.

Finally, the first row of the state equation implies the formula for the optimal control, which is the
feedback law

u(t) = DM−1x1(t)+Kx2(t) = (D+(t − t0)K)M−1x0
1 +Kx0

2 for all t ∈ [t0, t1],

where the last part of the equation is an explicit solution formula in terms of the initial value.

In Example 2.3 we observed that, for second-order mechanical systems, the control on the singular arc
can be expressed directly via the entry point x0. The aim of this paper is to provide a generalisation of this
approach to optimal control problems of the form (4) or, if a regularization is necessary, its regularized
counterparts (6), or (9). To derive an explicit solution formula, we recall the concept of the Drazin
inverse.

7
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Definition 2.4 (Drazin inverse, see [24, Definition 2.2.2]). Let M ∈Kn×n. The unique matrix MD ∈Kn×n

with the properties

(i) MDM = MMD,
(ii) MDMMD = MD,

(iii) there exists ν ∈ N0 : MDMν+1 = Mν ,

is called the Drazin inverse of M. The minimal ν satisfying (iii) is called the (Riesz) index of M and
coincides with the nilpotency index of M, which is the size of the largest Jordan block associated with the
eigenvalue zero.

Recall further the well-known solution formula for initial value problems associated with linear time-
invariant differential-algebraic systems with commuting coefficients using the Drazin inverse, see
e.g. [24, Lemma 2.3.2 and Theorem 2.3.4] for a proof.

Proposition 2.5. Let I ⊆ R be an interval with t0 ∈ I and consider the homogeneous system( d
dt E −A

)
z = 0, (14)

with E,A ∈Kn×n satisfying EA = AE and kerE ∩kerA = {0}. A function z ∈ C 1(I,Rn) is a solution of
(14) if, and only if, z(t0) ∈ imEDE and

z = eEDA(·−t0)z(t0). (15)

Unfortunately, the matrices E and AS in the optimality system (11) commute if, and only if, B = 0 in
which case the optimal control problem (9) becomes trivial, since the boundary value problem either
possesses no solution (which is generically the case) or every control is optimal. However, if the pencil
sE −AS is regular (i.e. det(sE −AS) ∈ K[s] is not the zero-polynomial), then there exists µ ∈ K so
that µE −AS is invertible and the coefficient matrices of the transformed pencil (µE −AS)

−1(sE −AS)
commute as the following elementary result shows.

Lemma 2.6 ([9, Lemma 2, p. 418]). Let E,A∈Kn×n. Then for every µ ∈K such that µE−A is invertible,

[(µE −A)−1E][(µE −A)−1A] = [(µE −A)−1A][(µE −A)−1E].

It is then clear that the interplay of Proposition 2.5 and Lemma 2.6 leads to a solution formula for (11)
if the pencil sE −AS is regular, see [24] for a detailed analysis. However, it should be noted that this
formula characterises only continuously differentiable solutions, while we initially considered weak solu-
tions in, e.g., (6). On the other hand, we ultimately seek for an optimal control which is a linear feedback
of the state or the state and associated adjoint. In this case, the solution of the optimality system (11) is
smooth and can be obtained from the solution formula.

3. Analysis of the optimality pencil sssE −−−A SSS

In this section, we study properties of the pencil associated to the optimality DAE (11). In particular,
we consider its regularity, which is strongly connected with the solution formula in terms of the Drazin
inverse, the index and rank-minimal choice of the regularization term S. The main results of this section
are summarised in the Figure 1.
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3.1. Regularity

Conditions that characterize the regularity of the pencil sE −AS via normal and staircase forms are
well studied, see [7, 8, 32]. The next proposition contains such conditions in the special case of port-
Hamiltonian systems.

Proposition 3.1. Let (J,R,Q,B) ∈ Σn,m and S ∈ Km×m with SH = S ≥ 0. Then the following statements
are equivalent:

(i) The pencil sE −AS is regular.
(ii) There exists µ ∈K\ (σ(−((J−R)Q)H)∪σ((J−R)Q)) such that the matrix

Sµ := S−
[
BH 0

][ 0 (J−R)Q−µI
((J−R)Q)H +µI QRQ

]−1[B
0

]
∈Km×m (16)

is invertible.
(iii) There exists ω ∈ R such that

iω /∈ σ((J−R)Q) and kerS∩kerRQ
(
(J−R)Q− iωI

)−1B = {0} . (17)

(iv) There exists ω ∈ R such that

iω /∈ σ(JQ) and kerS∩kerRQ
(
JQ− iωI

)−1B = {0} . (18)

(v) There exists ω ∈ R such that

iω /∈ σ(JQ) and kerS∩B−1(JQ− iωI)kerRQ = {0} , (19)

Proof. The equivalence of (i)–(iii) follows directly from Proposition 1 and Theorem 5 from [8], and the
equivalence of (iv) and (v) is straightforward. It remains to prove that sE −AS is regular if, and only if,
(iv) holds. To this end, we first show that for all z ∈ C\

(
σ(JQ)∪σ

(
(J−R)Q

))
we have(

JQ− zI
)−1RQ

(
(J−R)Q− zI

)−1
=
(
(J−R)Q− zI

)−1RQ
(
JQ− zI

)−1
.

This follows immediately by applying
(
JQ− zI

)−1 from the left and from the right to the equality

RQ
(
(J−R)Q− zI

)−1(JQ− zI
)
= RQ(JQ−RQ− zI)−1(JQ− zI)

= RQ(JQ−RQ− zI)−1(JQ−RQ− zI +RQ)

= RQ+RQ(JQ−RQ− zI)−1RQ

= (JQ−RQ− zI +RQ)(JQ−RQ− zI)−1RQ

= (JQ− zI)(JQ−RQ− zI)−1RQ

=
(
JQ− zI

)(
(J−R)Q− zI

)−1RQ.

Hence, for all z ∈ C\
(
σ(JQ)∪σ

(
(J−R)Q

))
,

kerRQ((J−R)Q− zI)−1B = ker
(
(J−R)Q− zI)

)−1RQ(JQ− zI)−1B

= kerRQ(JQ− zI)−1B.

Since the spectrum of matrices is continuous with respect to the Hausdorff distance, cf. [18, Theorem
II.5.14], we conclude that if (17) holds for some ω ∈ R, then it holds in a neighborhood of this ω . The
same holds for (18). Since σ(JQ)∪σ

(
(J −R)Q

)
is finite, we conclude that (17) implies (18) and vice

versa.

9
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Remark 3.2. In [8, Theorem 7] it is proven that regularity of sE −AS is also equivalent to the uniqueness
of optimal controls for the OCP (9), if they exist.

Typically, the necessary and sufficient conditions for the regularity of the pencil sE −AS in Propo-
sition 3.1 are hard to verify in applications, since all of them are existence statements which contain
resolvents. Therefore, we seek to find explicit or resolvent-free conditions. A necessary condition, that
meets both requirements is the following result inspired by [8, Proposition 6].

Proposition 3.3. Let (J,R,Q,B) ∈ Σn,m and S ∈Km×m with SH = S ≥ 0. If sE −AS is regular, then

kerS ∩
n−1⋂
r=0

kerRQ(JQ)rB = {0} . (20)

The converse implication holds for single-input-single-output systems (i.e. the case m = 1), but not in
general.

Proof. If sE −AS is regular, then (18) holds for all but finitely many ω ∈ R due to Proposition 3.1 (iv),
and since the set of all µ ∈ K so that µE −AS is invertible is either empty or co-finite. Thus, there
exists some Ω > ∥JQ∥ so that for all ω ∈R\ (−Ω,Ω) one has that iω /∈ σ(JQ) and kerS∩kerRQ(JQ−
iωI)−1B = {0}. Hence, for all ω ∈ R\ (−Ω,Ω) the Neumann series

(JQ− iωI)−1 =−
∞

∑
k=0

(
−i
ω

)k+1

(JQ)k

converges absolutely and

RQ(JQ− iωI)−1B =−
∞

∑
k=0

(
−i
ω

)k+1

RQ(JQ)kB. (21)

Using the Cayley-Hamilton Theorem, see e.g. [27, Theorem 8.6], we have that for all r ≥ n there exist
coefficients ar

0, . . . ,a
r
n−1 ∈K, such that

(JQ)r =
n−1

∑
j=0

ar
j(JQ) j.

Hence, we conclude that for all r ≥ n

n−1⋂
ρ=0

kerRQ(JQ)ρB ⊂ ker
n−1

∑
ρ=0

ar
ρRQ(JQ)ρB = kerRQ(JQ)rB.

This shows that kerS∩
⋂n−1

r=0 kerRQ(JQ)rB = kerS∩
⋂

∞
r=0 kerR(JQ)rB. Therefore, for all v ∈ kerS∩⋂n−1

r=0 kerRQ(JQ)rB and for all ω ∈ R\ (−Ω,Ω), we have that

RQ(JQ− iωI)−1Bv =−
∞

∑
k=0

RQ(JQ)kBv
(
−i
ω

)k+1

= 0

and hence v = 0.

Consider the case that m = 1, i.e. S ∈ K1×1 and B ∈ Kn×1. If S is non-zero, then the pencil sE −AS is
obviously regular. If S = 0 then Proposition 3.1 (iv) yields that sE −AS is regular if, and only if, there
exists ω ∈ R, with iω /∈ σ(JQ) and RQ(JQ− iωI)−1B ̸= 0. Seeking a contradiction, assume that (20)
holds and that RQ(JQ− iωI)−1B = 0 for all ω ∈R with iω /∈ σ(JQ). In this case, the representation (21)

10
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and the identity theorem for power series [20, Corollaries 1.2.4 and 1.2.7] yield that RQ(JQ)rB = 0 for
all r ∈ N0, which contradicts our assumption. Therefore sE −AS is indeed regular.

The following example shows that the converse implication does not hold in general. Let n = m = 2,
Q = B = I2, S = 02×2 and

J =

[
0 −1
1 0

]
, R =

[
1 0
0 0

]
.

Then for ω ∈ R\{±1} we have

kerRQ(JQ− iωI)−1 = (J− iωI)kerR =
{
(z, iωz)⊤

∣∣z ∈ C
}
̸= {0} .

Since kerS =Cm, Proposition 3.1 (iv) yields that sE −AS is singular. On the other hand, we have, for all
ω,µ ∈ R\{±1} with ω ̸= µ

kerR(J− iωI)−1 ∩kerR(J− iµI)−1 = {0} .

Using the Neumann series, this yields that (20) holds; for details see the upcoming Lemma 3.4. This
shows that (20) is, in general, not sufficient for regularity of sE −AS.

We have seen that the condition (20) is necessary but not sufficient for regularity of sE −AS. The
following lemma reveals the underlying reason for this shortcoming: sE −AS is regular if, and only if,
kerS∩ kerRQ(JQ− iωI)−1B = {0} for one fixed ω ∈ R, whereas the condition (20) holds if and only
if the intersection of the kernel of RQ(JQ− iωI)−1B over infinitely many ω ∈ R has trivial intersection
with kerS.

Lemma 3.4. Let (J,R,Q,B) ∈ Σn,m and S ∈Km×m with SH = S ≥ 0. Then (20) holds if, and only if, there
exists Ω > 0 such that all ω1 > ω0 > Ω fulfil the property

kerS ∩
⋂

ω0<ω<ω1

kerRQ(JQ− iωI)−1B = {0} . (22)

Proof. Let φ := 1
ω

. Then, the series (21) is a formal power series F ∈ Kn×m[[φ ]] with non-vanishing
convergence radius ρ ≥ 1

∥JQ∥ , where we use the convention 1
0 = ∞. Each v ∈Km induces then the formal

power series F(·)v ∈ Kn[[φ ]] whose convergence radius is at least ρ . By definition of F , we then have
for all φ ∈ (−ρ,ρ) and for all v ∈Km that

F(φ)v = RQ
(

JQ− i
φ

I
)−1

Bv.

Therefore, the identity theorem for power series [20, Corollaries 1.2.4 and 1.2.7] yields the equivalence

v ∈ kerS∩
n−1⋂
r=0

kerRQ(JQ)rB ⇐⇒ v ∈ kerS and F(·)v ≡ 0.

The latter is equivalent to

v ∈ kerS ∩
⋂

ω0<|ω|<ω1

kerRQ(JQ− iωI)−1B

for all ω0 < ω1 ∈ (1/ρ,∞). This shows that (20) and (22) are indeed equivalent.

As we have demonstrated, the inverse-free necessary condition (20) is not sufficient for regularity of
sE −AS. However, the next proposition presents an inverse-free necessary and sufficient condition.

11
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Proposition 3.5. Let (J,R,Q,B) ∈ Σn,m and S ∈ Km×m with SH = S ≥ 0. The pencil sE −AS is regular
if, and only if, there exists ω ∈ R such that

iω /∈ σ(JQ) and BkerS∩ (JQ− iωI)kerRQ = {0} and kerB∩kerS = {0}. (23)

Proof. Assume that the pencil sE −AS is regular. By Proposition 3.1 (iv), there exists some ω ∈ R with
iω /∈ σ(JQ) such that kerS∩kerRQ(JQ− iωI)−1B = {0}. In particular, this implies that kerS∩kerB =
{0}. Let v∈BkerS∩(JQ− iωI)kerRQ. Then, there exists u∈ kerS so that v=Bu and (JQ− iωI)−1Bu∈
kerRQ or, equivalently, u ∈ kerRQ(JQ− iωI)−1B. Thus, u = 0 and hence v = 0, so that (23) holds.

Conversely, let ω ∈ R be such that (23) holds for this particular ω . Let u ∈ kerS∩kerRQ(JQ− iωI)−1B
and set v := Bu ∈ BkerS. Then RQ(JQ− iωI)−1v = 0, i.e. v ∈ (JQ− iωI)kerRQ. Hence, we obtain
v= 0 or, equivalently, u∈ kerB. Since kerB∩kerS= {0}, we conclude that u= 0 and Proposition 3.1 (iv)
yields that sE −AS is regular.

Condition (23) implies, in particular, that the block matrix [B,JQ− iωI] acts injectively on the cartesian
product kerS×kerRQ. This immediately yields a rank criterion for the regularity of sE −AS.

Corollary 3.6. Let (J,R,Q,B)∈ Σn,m and S ∈Km×m with S = SH ≥ 0. Then the pencil sE −AS is regular
if, and only if, there exists ω ∈ R such that

dim
(
BkerS+(JQ− iωI)kerRQ

)
= m+n− (rankS+ rankRQ) (24)

Proof. Let ZS ∈ Km×(m−rankS) and ZR ∈ Kn×(n−rankRQ) be matrices with full column rank such that
imZS = kerS and imZR = kerRQ and we have the formula

dim(BkerS+(JQ− iωI)kerRQ) = rank [BZS,(JQ− iωI)ZR].

Let sE −AS be regular. In view of Proposition 3.5, this is the case if, and only if, the restriction of B to
kerS is injective and BkerS∩ (JQ− iωI)kerRQ = {0} for some ω ∈ R so that JQ− iωI is invertible.
Hence, for this particular ω we have rankBZS = dimBkerS = dimkerS = m− rankS and rank(JQ−
iωI)ZR = dim(JQ− iωI)kerRQ = dimkerRQ = n− rankRQ and the sum BkerS+(JQ− iωI)kerRQ is
a direct sum. Thus, (24) holds, i.e.

dim(BkerS+(JQ− iωI)kerRQ) = dim(BkerS)+dim((JQ− iωI)kerRQ)

= n+m− (rankS+ rankRQ)

Conversely, assume that (24) is satisfied. The set of all ω ∈ R such that rank [BZS,(JQ− iωI)ZR] <
n+m− (rankS+ rankRQ) either coincides with R or is finite. By condition (24), the former does not
hold. In particular, there is some ω ∈ R so that iω /∈ σ(JQ) such that (24) holds at this ω . Then, we
can conclude analogously that (23) holds. From Proposition 3.5, we conclude that the pencil sE −AS is
regular.

Whereas the previous characterizations of regularity required the choice iω /∈ σ(JQ), condition (24) can
be verified without computing the spectrum of JQ.

3.2. Rank-minimal regularization of the cost functional

Recall that one of our goals is to choose a positive semidefinite matrix S ∈ Km×m of minimal rank, to
achieve regularity of the optimality system. This is different compared to the common regularization of
the optimal control problem by S = εIm, ε > 0, see e.g. [14], which produces a regular optimal control
problem. Here, if possible, we seek to ensure a regular optimality DAE without full rank penalisation

12
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that inevitably penalizes all control directions (even though this is not necessary from a theoretical point
of view to ensure feedback-type controls).

Lemma 3.7. Let (J,R,Q,B) ∈ Σn,m be such that the pencil sE −AS is singular for S = 0. Let ω ∈R with
iω /∈ σ(JQ) and consider the subspace

V := B−1(JQ− iωI)kerRQ.

Let S ∈Km×m with S = SH ≥ 0 and kerS =V⊥ (e.g. the orthogonal projection onto V ). Then sE −AS is
a regular pencil. Moreover, if ω is chosen such that

dimB−1(JQ− iωI)kerRQ = min
{

dimB−1(JQ− zI)kerRQ
∣∣z ∈ C

}
, (25)

which holds for all but finitely many ω ∈ R with iω /∈ σ(JQ), then

rankS = min
{

rank Ŝ
∣∣sE −AŜ regular

}
. (26)

Proof. Since V ∩V⊥ = {0}, Proposition 3.1 (v) yields that sE −AS is regular. Assume now that (25)
holds. We show that S is rank-minimal in the sense of (26). Let Ŝ ∈ Km×m with rank Ŝ ≤ rankS so that
Ŝ = ŜH ≥ 0 and sE −AŜ is regular. By Proposition 3.1 (v), we find some ω0 ∈ R so that iω0 /∈ σ(JQ)

and ker Ŝ∩B−1(JQ− iω0I)kerRQ = {0}. Since (25) holds if, and only if,

dim(imB+(JQ− iωI)kerRQ) = max
{

dim(imB+(JQ− zI)kerRQ)
∣∣z ∈ C

}
,

the condition (25) is fulfilled for all but finitely many ω ∈ R. Therefore, we may choose ω0 so that
dimB−1(JQ− iω0I)kerRQ = dimV . We conclude that

m ≥ dim
(

ker Ŝ+B−1(JQ− iω0I)kerRQ
)

= dimker Ŝ+dimB−1(JQ− iω0I)kerRQ

≥ dimkerS+dimV = dimV⊥+dimV = m.

Therefore the inequalities are equalities and we conclude dimker Ŝ = dimkerS or, equivalently, rank Ŝ =
rankS. Thus, S is indeed rank-minimal in the sense of (26).

The following result extends [40, Theorem 8] to regularized cost functionals and not necessarily invert-
ible matrices Q, providing a sufficient condition for regularity of sE −AS.

Proposition 3.8. Let (J,R,Q,B) ∈ Σn,m and S ∈Km×m with S = SH ≥ 0. If

BkerS∩kerRQ = {0} and kerB∩kerS = {0}, (27)

then sE −AS is regular. The converse is false, in general. Moreover, if (27) holds, then optimal controls
for the OCP (9) (if they exist) are unique.

Proof. In the following, denote by MS,T (A) the minor of a matrix A with row and column index sets S
and T , respectively, where |S|= |T |.

Let ZS ∈Km×(m−rankS)and ZR ∈Kn×(n−rankRQ)such that imZQ = kerS and imZR = kerRQ. Then assump-
tion (27) yields that [BZS,ZR] has full column rank τ = n+m− (rankS+ rankRQ). Hence, there exists a
non-zero minor MS,T ([BZS,ZR]) of [BZS,ZR] with |S| = |T | = τ . By continuity, there exists ε > 0 such
that MJ,K([BZS,(irJQ+ I)ZR]) does not vanish for r ∈ (0,ε). Hence,

τ = rank [BZS,(i ε

2 JQ+ I)ZR] = rank
[
BZS,(JQ− i 2

ε
I)ZR

]
= dim(BkerS+(JQ− i 2

ε
I)kerRQ),

13
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which is (24) with ω = 2
ε
.

To show that the converse is, in general, not true, consider n = 2 and m = 1. Let S = 0 and let B =
[

1
0

]
,

which certainly fulfills kerB∩kerS = {0}. Further, set

J =

[
0 1
−1 0

]
, R =

[
0 0
0 1

]
, and Q = I.

Then, kerR = imB ̸= {0} and (27) is violated. For all z ∈ R and v = v1
[

1
0

]
∈ kerR we have

−v1

[
iω
1

]
= (J− iωI)v ∈ imB

if, and only if, v = 0 and hence we conclude that (23) holds. Proposition 3.5 yields that sE −AS is
regular.

The previous result included a condition which is sufficient but not necessary for regularity. In the
following we show that it is indeed necessary for regularity with an additional condition on the index.

3.3. Index of the optimality DAE (10)

An important property for the numerical solution of the optimality boundary value problem (10) is the
Kronecker index, i.e. the size of the largest block associated with the eigenvalue ∞ in the Kronecker
canonical form [13] of the pencil sE −AS. The next proposition characterizes condition (27) in the case
S = 0 in terms of the Kronecker index.

Proposition 3.9. Let (J,R,Q,B) ∈ Σn,m, and S = 0m×m. Then

imB∩kerRQ = {0} and kerB = {0} (28)

holds if, and only if, the pencil sE −AS is regular with Kronecker index three.

Proof. First of all, since S = 0 we have that (28) is equivalent to (27). Hence, by Proposition 3.8, the
pencil is regular in both logical directions of the proof. Therefore, we may assume that the pencil is
regular. By Proposition 3.5, there exists ω ∈ R with iω /∈ σ(JQ)∩σ(−JQ) such that

imB∩ (JQ− iωI)kerRQ = imB∩ (JQ+ iωI)kerRQ = {0}= kerB.

We now have to prove that V := imB∩kerRQ = {0} if, and only if, the pencil is of index three. We set
A := (J−R)Q.

One easily computes the first four elements of the increasing Wong sequence (see [4, Definition 2.1]
or [49]), defined by W0 = {0} and Wk+1 = E −1ASWk for k ∈ N0, as W1 = {0} × {0} ×Km, W2 =
{0}× imB×Km,

W3 =

{[
−QRQv
Av+w

]
: v,w ∈ imB

}
×Km

W4 =

{[
−QRQJQv−QRQw

A2v+Aw+ y

]
: v ∈V, w,y ∈ imB

}
×Km.

Note that here E −1 denotes the preimage of the map defined by E and not the inverse of E . Hence, W0 ̸=
W1 and W1 ̸=W2. Moreover, W2 ̸=W3, since W2 =W3 is equivalent to imB⊂ kerRQ and JQ imB⊂ imB,
which leads to

(JQ− iωI) imB ⊂ imB∩ (JQ− iωI)kerR = {0},

14
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i.e., B = 0, contradicting kerB = {0}. From [4, Proposition 2.10], we conclude that the Kronecker index
of the pencil index is at least three, and that the index is three if, and only if, W3 = W4.

Now, W3 = W4 is easily seen to be equivalent to the statement that for each x ∈ V there exist v,w ∈
imB such that RQJQx = RQv and JQJQx = JQv+w. Hence, V = {0} obviously implies W3 = W4.
Conversely, assume that W3 = W4 and let x ∈ V . Then there exist v,w ∈ imB such that RQJQx = RQv
and (JQ)2x = JQv+w. Since RQx = 0 and thus RQ[(JQ+ iωI)x− v] = 0, we have

(JQ− iωI)[(JQ+ iωI)x− v] = ((JQ)2 +ω
2I)x− (JQ− iωI)v

= w+ω
2x+ iωv ∈ imB∩ (JQ− iωI)kerRQ = {0},

and hence
(JQ+ iωI)x = v ∈ imB∩ (JQ+ iωI)kerRQ = {0}.

Thus, x = 0 follows which shows that V = {0}.

In the case that S ̸= 0, the index of the pencil sE −AS does not need to be three if (27) holds.

Example 3.10. Observe that, for all (J,R,Q,B) ∈ Σn,m and Hermitian positive semidefinite S ∈ Km×m,
W1 = {0}×{0}×Km, W2 = {0}× imB×Km and

W3 =

{[
−QRQv
Av+w

]
: v,w ∈ imB

}
×Km;

in particular the first three entries of the increasing Wong sequence of sE −AS do not depend on S. The
fourth entry can be calculated as

W4 =

{[
−(QRQJQ+QJQRQ)v−QRQw

A2v+Aw+ y

]
: v ∈ imB∩ (BHQRQ)−1imS, w,y ∈ imB

}
×Km.

Consider now the case n = 2, m = 1 and (J, In, In,B) ∈ Σn,m with to be determined skew-Hermitian

J ∈ Kn×n and B ∈ Kn×m. Then, (27) is equivalent to kerB∩ kerS = {0}. Consider B =

[
0
1

]
, which has

trivial kernel so that (27) holds, and S = 1 ∈ K1×1. Further, imB∩ (BHQRQ)−1imS = imB = {0}×K
and hence

W4 =

{[
−2Jv−w

A2v+Aw+ y

]
: v,w,y ∈ imB

}
×Km.

For J =

[
0 1
−1 0

]
it is easy to see that W4 ̸= W3 and hence the index of sE −AS is at least four.

It may be observed that the condition (28) is fulfilled for the choice (E,J,R,B) = (J, In, In,B). Therefore,
the pencil sE −A0 is regular with index three. By Proposition 3.1, each pencil sE −AS with invertible
S is regular, so that in the presented example all pencils sE −AS with S ∈ K1×1 are regular. Moreover,
the first four entries in the increasing Wong sequence of E −AS for nonzero S ∈ K1×1 do not depend
on the value of S so that it may be concluded that the index of the pencil E −AS is three for S = 0, and
at least four otherwise. When we interpret this example for the associated optimal control problem(s),
then S in the pencil sE −AS corresponds to the summand Su2 in the stage cost. Since the optimality
DAE is regular for S = 0, there is no need to implement a nontrivial quadratic term in the control u as
a regulariser. If we do this nevertheless, then the index of the optimality DAE is higher that the index of
the “non-regularised” optimality DAE.

Of course, the condition (27) is only sufficient and not necessary for regularity. In particular, the index
of a regular pencil is not necessarily equal to three. Moreover, the presence of a nontrivial regulariser S
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does not imply that the index needs to be higher than three. In the following examples, we illustrate this
circumstance.

Example 3.11. If S = Im, then Proposition 3.1 implies that the pencil sE − AS is regular for all
(J,R,Q,B) ∈ Σn,m. In particular for (J,R,Q,B) = (0,0,0,0), we have

sE −AS = s

 0 In 0
−In 0 0
0 0 0

−
0 0 0

0 0 0
0 0 Im

 .
In this case, AS leaves W1 = {0}×{0}×Km invariant and the preimage of W1 = {0}×{0}×Km under
E is kerE = W1. This shows that the Kronecker index of sE −AS equals one. The same holds for any
positive definite S.

Example 3.12. Consider S = Im and (0,0,0,B) ∈ Σn,m with B ̸= 0; in particular, sE −AS is a regular
pencil. Then, we have W1 = {0}×{0}×Km and W2 = {0}× imB×Km for the first two entries of the
increasing Wong sequence of sE −AS. Further

W3 = E −1ASW2 = E −1imB×{0}×Km = W2

and hence the Kronecker index of sE −AS equals two. Again, the same holds for any positive definite S.

Of course, the optimality pencils in Examples 3.11 and 3.12 are singular for all non-invertible S so that
we may at this point not conclude that the introduction of a regularising term with higher rank than
necessary can lead to an optimality DAE with lower index than the optimality DAE with minimal-rank
regulariser.

We summarize our results and we illustrate further equivalences and implications in Figure 1.
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s

 0 I 0
−I 0 0
0 0 0

−

 0 (J−R)Q B
((J−R)Q)H QRQ 0

BH 0 S

 is regular

There exists µ ∈ C such that

S −
[
BH 0

][ 0 µI − (J−R)Q
−µI − ((J−R)Q)H QRQ

]−1[B
0

]
is invertible

There exists ω ∈ R such that
iω /∈ σ((J − R)Q) and kerS ∩ kerRQ((J − R)Q − iω)−1B = {0}

There exists ω ∈ R such that
iω /∈ σ(JQ) and kerS ∩ kerRQ(JQ − iωI)−1B = {0}

There exists ω ∈ R such that
iω /∈ σ(JQ) and BkerS ∩ (JQ − iωI)kerRQ = {0}and kerB ∩ kerS = {0}

There exists ω ∈ R such that
iω /∈ σ(JQ) and kerS ∩ B−1(JQ − iωI)kerRQ = {0}

kerS ∩
n⋂

r=0
kerRQ(JQ)rB = {0}BkerS ∩ kerRQ = {0} and

kerB ∩ kerS = {0}

Proposition 3.1 (ii) and [8, Proposition 1]

Proposition 3.1 (iii) and [8, Theorem 5]

Proposition 3.1 (iv)

Proposition 3.5

Proposition 3.1 (v)

Proposition 3.8

Proposition 3.3

Figure 1. Equivalent, sufficient and necessary conditions for regularity of the optimality DAE (10).
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4. Existence of an optimal trajectory

In our considerations so far, we have only focused on the regularity of the pencil associated with the
necessary and sufficient optimality conditions of the port-Hamiltonian optimal control problem (6). Us-
ing the general solution formula that we presented in Proposition 2.5, we can derive a solution formula
for (11) along the lines of [8, pp. 1096].

Recall the Drazin inverse from Definition 2.4 and note that MDM = MMD coincides with the spectral
projection onto the direct sum of the generalized eigenspaces (root subspaces) of M corresponding to its
non-zero eigenvalues.

Proposition 4.1. Let (J,R,Q,B) ∈ Σn,m and S ∈Km×m with SH = S ≥ 0 be such that sE −AS is regular.
Choose µ ∈K\ (σ((J−R)Q)∪σ(−((J−R)Q)H)) such that µE −AS is invertible, define Sµ as in (16)
and

Eµ :=
[

0 (J−R)Q−µI
((J−R)Q)H +µI QRQ

]−1

,

Nµ :=
(

Eµ +Eµ

[
B
0

]
S−1

µ

[
BH 0

]
Eµ

)[
0 −I
I 0

]
, (29)

Mµ := S−1
µ

[
BH 0

]
Eµ

[
0 −I
I 0

]
. (30)

A function
[
λ T xT uT

]T ∈ C 1([t0, t1],Kn+n+m) is a solution of (11) if, and only if,
[

λ (t0)
x(t0))

]
∈

im(ND
µ Nµ) and [

λ

x

]
= e−[ND

µ (I−µNµ )]( ·−t0)
[

λ (t0)
x(t0)

]
,

u = MµND
µ

[
λ

x

]
.

(31)

Proof. In view of the calculations in [8, pp. 1096] and Proposition 2.5,
[
λ T xT uT

]T is a solution
of (11) if, and only if, there are vλ ,vx ∈Kn so that[

λ

x

]
= e−[ND

µ (I−µNµ )](·−t0)ND
µ Nµ

[
vλ

vx

]
,

u = MµND
µ

[
λ

x

]
.

(32)

Note that ND
µ Nµ is the spectral projection onto the sum of the root subspaces of Nµ corresponding to

the non-zero eigenvalues. Therefore, every function with
[

λ (t0)
x(t0))

]
∈ im(ND

µ Nµ) that has the representa-

tion (31) is indeed a solution of (11). Conversely, let
[
λ T xT uT

]T ∈C 1([t0, t1],Kn+n+m) be a solution

of (11) and let vλ ,vx ∈ R be such that (32) holds. Then
[

λ T (t0)
xT (t0)

]
= ND

µ Nµ

[
vλ

vx

]
∈ im(ND

µ Nµ), which

proves the assertion.

The statement of Proposition 4.1 shows that the subspace im(ND
µ Nµ) determines the set of admissible

initial values for the boundary value problem (11). Since (11) does not depend on the particular choice
of µ , the subspace im(ND

µ Nµ) does not either, which is shown in the following corollary.

18
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Corollary 4.2. Let (J,R,Q,B) ∈ Σn,m and S ∈ Km×m with SH = S ≥ 0 be such that sE −AS is regular.
Choose µ,ν ∈ K \ (σ((J −R)Q)∪σ(Q(J +R))) such that both µE −AS and νE −AS are invertible.
Then we have im(ND

µ Nµ) = im(ND
ν Nν).

The following proposition finally characterizes the existence of a solution of the optimality system with
prescribed initial and terminal values for the state, cf. [8, Theorem 4].

Proposition 4.3. Let (J,R,Q,B) ∈ Σn,m and S ∈ Km×m with SH = S ≥ 0. Let µ ∈ K \ (σ((J −R)Q)∪
σ(−(J −RQ)H)) be such that µE −AS is invertible and let E1,E2,E3,E4 : R→ Kn×n be such that for
all t ∈ R

e−[ND
µ (I−µNµ )](t−t0) =

[
E1(t) E2(t)
E3(t) E4(t)

]
. (33)

If E3(t1) is invertible, then (11) possesses a solution
[
λ T xT uT

]T ∈ C 1([t0, t1],Kn+n+m) with x(t0) =
x0 and x(t1) = x1 if, and only if,[

E3(t1)−1[x1 −E4(t1)x0]
x0

]
∈ im(ND

µ Nµ). (34)

Proof. By Proposition 4.1, the system (11) has a solution (x,λ ,u) with x(t0) = x0 if, and only if,[
λ T (t0)
xT (t0)

]
= ND

µ Nµ

[
vλ

vx

]
∈ im(ND

µ Nµ) and (31) holds. If we evaluate the state of such a solution at time

t1, we obtain

x(t1) = E3(t1)λ (t0)+E4(t1)x0,

and hence x(t1) = x1 if, and only if, λ (t0) = E3(t1)−1[x1 −E4(t1)x0].

The optimal control that we have obtained in Proposition 4.1, cf. (31), is not a state feedback solution, as
it depends additionally on the adjoint. However, Proposition 4.3 enables us to eliminate this dependence
and to define the optimal control as a state feedback.

Corollary 4.4. Let (J,R,Q,B) ∈ Σn,m and S ∈ Km×m with SH = S ≥ 0. Let µ ∈ K \ (σ((J −R)Q)∪
σ(−(J −RQ)H)) be such that µE −AS is invertible. Consider the decomposition (33), assume that
Eµ

3 (t1) is invertible and let the condition (34) hold.

Then, the unique optimal control of (9) is given by

u(t) = MµND
µ e−[ND

µ (I−µNµ )](t−t0)
[

Eµ

3 (t1)
−1[x1 −Eµ

4 (t1)x
0]

x0

]
for all t ∈ [t0, t1] with Nµ and Mµ as defined in (29) and (30).

Proof. The formula (31) implies that

u = MµND
µ e−[ND

µ (I−µNµ )](·−t0)
[

λ (t0)
x(t0)

]
.

Inserting the formula λ (t0) = Eµ

3 (t1)
−1[x1 −Eµ

4 (t1)x
0] derived in the proof of Proposition 4.3 yields the

assertion.
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5. Illustrating examples

In this section, we provide several examples to illustrate the theoretical results of the previous sections.
As shown in Proposition 4.1, more specifically in (31), the flow of the optimality DAE (11) can be
calculated by means of the matrix function Hµ : R→K2n×2n, defined by

Hµ(t) := e−[ND
µ −µND

µ Nµ ](t−t0)ND
µ Nµ .

Example 5.1. First, we revisit Example 2.3 and set ℓ= 1 and M = K = 1, i.e. we consider the matrices

J :=
[

0 −1
1 0

]
, R :=

[
d 0
0 0

]
, Q := I2, B :=

[
1
0

]
for some damping coefficient d > 0 and the corresponding minimal energy optimal control problem, cf.
(9) with S = 0:

min d
∫ t1

t0
x2

1 dt s.t. d
dt x =

[
−d −1
1 0

]
x+
[

1
0

]
u, x(t0) = x0, x(t1) = x1.

The associated optimality pencil is then given by

sE −A0 =


s−d 1 d 0 0
−1 s 0 0 0
0 0 s+d 1 −1
0 0 −1 s 0
1 0 0 0 0

 .

As already noted in Example 2.3, the pencil is regular since the condition imB∩kerRQ= {0} is satisfied,
cf. Proposition 3.8. The flow of the associated DAE can be calculated along the lines of Proposition 4.1,

Hd : R→ R4×4, t 7→ e−[ND
d −dND

d Nd ](t−t0)ND
d Nd =

1
d


0 0 0 0
0 d 0 0
0 −1 0 0
1 −t 0 d

 ,
cf. Appendix A.1 for details. This flow maps an initial state and adjoint state[

(λ 0)⊤ (x0)⊤
]⊤ ∈ im(ND

d Nd) =
{[

0 −dz z ζ
]⊤ ∣∣z,ζ ∈ R

}
to the trajectories of the adjoint λ and the state x. Especially, we conclude that each initial value x0

admits a unique λ 0 ∈ R2 so that the optimality system corresponding to sE −A0 possesses a solution
with initial conditions λ (t0) = λ 0 and x(t0) = x0. In particular, an initial condition

[
0 −dx0

1 x0
1 x0

2

]
generates the state trajectory

x(t) =
[

x0
1

tx0
1 + x0

2

]
. (35)

Therefore, the optimality system yields an optimal solution if, and only if, x1
1 = x0

1 and x1
2 = t1x0

1 + x0
2.

Directly applying Proposition 4.3, we get from (34) the necessary and sufficient condition
1
d (x

1
2 − x0

2 − t1x1
1)

− 1
d x1

1
x0

1
x0

2

=

 1
d

[
−t1 1
−1 0

](
x1 −

[
0 0
0 1

]
x0
)

x0

 ∈ imND
d Nd =

{[
0 −dz z ζ

]T ∣∣z,ζ ∈ R
}
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for the existence of an optimal trajectory that transfers the initial value x(t0) = x0 to the terminal value
x(t1) = x1. To calculate the associated optimal control, we refer to Proposition 4.1. Recall that

Md =−S−1
d

[
BH 0

]
Ed =

1
d3

[
2d3 +d −2d2 −1 −d3 d2

]
.

Therefore, we obtain the associated control

u(t) = MdND
d

[
λ (t)
x(t)

]
=

1
d4

[
d3 −d4 0 d4

][λ (t)
x(t)

]
= (t +d)x0

1 + x0
2. (36)

The formulas for the optimal state (35) and control (36), and the consistent boundary conditions coin-
cide with the findings of Example 2.3 for this particular scalar case. We stress, however, that in Exam-
ple 2.3 we heavily exploited the structure of the second-order mechanical system, whereas the approach
of Proposition 4.1 employed here only hinges on the port-Hamiltonian structure of the OCP.

Next we draw upon two academic examples: The first one illustrates that we can choose S = 0, while the
second one shows how to compute the minimal pertubation.

Example 5.2. Consider the matrices

J :=
[

i 0
0 0

]
, R :=

[
0 0
0 1

]
, Q :=

[
1 i
−i 1

]
, B :=

[
1
0

]
.

It is clear that J is skew-Hermitian, that R and Q are Hermitian and positive semidefinite. Using Propo-
sition 3.5, we verify that sE −A0 is regular. Let ω ∈ R\{0,1}. Then we have

(JQ− iωI)−1 kerRQ =

[
i(1−ω) −1

0 −iω

]−1{[ z
iz

] ∣∣z ∈ C
}
=

{[
−iz
− z

ω

]
|z ∈ C

}
,

see Appendix A.2 for the calculation of kerRQ. Since B has full column rank and imB = C×{0}, we
have imB∩(JQ− iωI)−1 kerRQ = {0} and hence Proposition 3.5 yields that sE −AS is regular. In view
of Proposition 4.1, for given t0 ∈ R the solutions (x,λ ,u) have the form

[
λ (t)
x(t)

]
= T


e

1
2 (i−

√
3+8i)(t−t0) 0 0 0
0 e

1
2 (i+

√
3+8i)(t−t0) 0 0

0 0 e(1−i)(t−t0) 0
0 0 0 1

T−1
[

λ (t0)
x(t0)

]
,

u(t) =− 5
1−2i

(
x1(t)+(2− i)x2(t)− iλ2(t)

)
(37)

for all t ∈ R with T given in Appendix A.2. Given x0,x1 ∈ C2 and t0 < t1 ∈ R, we conclude that (37) has
a solution (x,λ ,u) with x(t0) = x0 and x(t1) = x1 if, and only if,

x1 =
1

(28i−12)

[
(8+10i)e(1−i)(t1−t0)−20+8i (8+10i)e(1−i)(t1−t0)+20−8i
(8+10i)e(1−i)(t1−t0)−8−20i (8+10i)e(1−i)(t1−t0)+8+20i

]
x0. (38)

Therefore, we can use the presented method to find an optimal solution of the associated optimal control
problem (9) if, and only if, the boundary conditions x0 and x1 fulfill (38). To obtain the same result
from (34) in Proposition 4.3, we have

H1(t1) = eAt1 = TeT−1AT T−1 = T


e

1
2 (i−

√
3+8i)(t1−t0) 0 0 0
0 e

1
2 (i+

√
3+8i)(t1−t0) 0 0

0 0 e(1−i)(t1−t0) 0
0 0 0 1

T−1,
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where we omit the details of the calculation.

Next, we give an example in which the pencil sE −A0 is singular, and use Lemma 3.7 to find a rank-
minimal perturbation S so that the perturbed pencil sE −AS is regular.

Example 5.3. Let J = i, R = 0, Q = 1 and B =
[
1 i

]
∈ C1×2. Then (J,R,Q,B) ∈ Σn,m. In this case

sE −A0 =


s− i 0 0 0

0 s− i −1 −i
1 0 0 0
i 0 0 0

 .
is evidently singular. Since kerRQ = C, we have B−1(JQ− iωI)kerRQ = C2 and by Lemma 3.7 the
pencil E −AS with S ∈Km×m symmetric and positive semidefinite is regular if, and only if, S is positive
definite. Recall that the DAE associated with the pencil sE −A0 aims to determine the optimal solutions
of the optimal control problem

min 0

s.t. d
dt x = ix+u1 + iu2, x(t0) = x0, x(t1) = x1

and we see that every solution of the ODE which fulfills the boundary conditions is optimal. If t1 − t0 is
no multiple of 2π , then the function

x : R→ C, t 7→ ei(t−t0)x0 +
ei(t1−t0)x0 − x1

iei(t−t0)− i

is an optimal solution with constant control. However, our perturbed problem associated with the regular
pencil sE −AS is the optimal control problem

min
∫ t1

t0
uHSudt

s.t. d
dt x = (J−R)Qx+Bu, x(t0) = x0, x(t1) = x1.

Consider e.g. S = I2. Then for all µ ∈C we have that µE −AS is invertible if, and only if, µ ̸= i. Taking
e.g. µ = 2i, we get

(2iE −AI)
−1 =


i 0 0 0
0 i −1 −i
1 0 −1 −1
i 0 0 −1


−1

=


−i 0 0 0
0 −i i −1
−i 0 −1 0
1 0 0 −1

 ,
and hence,

N2i =

[
−i 0
0 −i

]
, ND

2i = N−1
2i =

[
i 0
0 i

]
, and M2i =

[
−i 0
1 0

]
.

Then ND
2i(I −2iN2i) = ND

2i −2i and we can calculate, for all t ∈ R,

H2i(t) = e−[ND
2i(I−2iN2i)](t−t0) =

[
ei(t−t0) 0

0 ei(t−t0)

]
.

By Proposition 4.1, all solutions of the DAE ( d
dt E −AI)(λ ,x,u) with the initial condition x(0) = x0 are
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given as

λ (·) = ei(·−t0)λ (0),

x(·) = ei(·−t0)x0,

u(·) = λ (·)
[

1
i

]
.

In particular, we have a solution of the optimality DAE that fulfills the boundary values for x if, and only
if, x1 = ei(t1−t0)x0. Note, that Proposition 4.3 is not applicable as E3(t) = 0 is not invertible in this case.

As last example, we consider a boundary controlled heat equation.

Example 5.4. We consider the temperature distribution in a domain Ω ⊂Rd , d ∈ {1,2,3} with a Dirich-
let boundary control on a part of the boundary Γc ⊂ ∂Ω. The model is given by

θ̇(t,ω) = κ∆θ(t,ω), ω ∈ Ω, t ∈ [0,T ],

θ(t,γ) = u(t,γ), γ ∈ Γc, t ∈ [0,T ],

θ(s,γ) = 0, γ ∈ Γ\Γc, t ∈ [0,T ],

where θ(t,ω) is the temperature at time t ∈ [0,T ] at the space point ω ∈ Ω and κ > 0 is a heat conduc-
tivity coefficient. Discretizing in space by central finite differences, see e.g. [45], with a regular mesh of
mesh size h > 0 and n ∈ N grid points {ω0, . . . ,ωn−1}, leads to a control problem

żh(t) =−Rhzh(t)+Bhu(t), t ∈ [0,T ],

where zh(t) ∈ Rn consists of the nodal values of the temperature profile, i.e. (zh(t)) j = θ(t,ω j) for
j ∈ {0, . . . ,n− 1}. The matrix Rh ∈ Rn×n is the finite difference matrix associated with the negative
Laplace operator at all mesh points. The input matrix Bh ∈ Rn×m, describes the matrix with associated
with the m∈N grid points on the control boundary Γc. Adding an output equation y= BT

h zh yields a port-
Hamiltonian system of the form (8) with R = Rh, J = 0, Q = I and B = Bh, where R = Rh is symmetric
and positive semidefinite with a kernel of the dimension of the number of grid points on the boundary.
However, as the values on the boundary points are fixed, the corresponding rows of Bh are zero, such
that imBh ∩kerRh = {0}.

We briefly illustrate this for the one-dimensional case with Ω = [0,1], Γc = {0} and Γ \Γc = {1} with
equidistant grid 0 = ω0 < .. . < ωn−1 = 1. For t ∈ [0,T ] we obtain the finite-difference approximation at
the interior nodes

∆θ(t,ω j)≈
θ(t,ω j+1)−2θ(t,ω j)+θ(t,ω j−1)

h2 , j = 1, . . . ,n−2.

Moreover, incorporating the boundary conditions θ(t,ω0) = u(t) and θ(t,ωn−1) = 0, we get

∆θ(t,ω1)≈
θ(t,ω2)−2θ(t,ω1)+u(t)

h2 and ∆θ(t,ωn−2)≈−2θ(t,ωn−2)−θ(t,ωn−3)

h2
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and thus

Rh =



0 0 0 0 · · · 0

0 2 −1
. . . . . .

...

0 −1
. . . . . . . . . 0

0
. . . . . . . . . −1 0

...
. . . . . . −1 2 0

0 · · · 0 0 0 0


∈ Rn×n, Bh =


0
1
0
...
0

 ∈ Rn×1.

Here, clearly kerRh = span{e1,en} and imBh = span{e2}, where e j ∈Rn, j ∈ {1, . . . ,n} is the canonical
unit vector. Thus, imBh ∩ kerRh = 0. Considering the corresponding optimal control problem with
minimal energy supply, applying Proposition 3.8 yields regularity of the corresponding optimality system
and Proposition 3.9 implies that the associated DAE has index three. In particular this shows that a
regularization term in the cost penalizing the control is not necessary.

6. Conclusions and outlook

The optimality system associated with the problem of steering a port-Hamiltonian system from an initial
state to a terminal state on a given time interval with minimal energy supply has been studied. Regularity
of this differential-algebraic equation has been characterized exploiting the port-Hamiltonian structure.
Minimal rank quadratic perturbations of the cost functional have been characterized so that the perturbed
problem produces a regular optimality system. Assuming regularity, the solution formula for regular lin-
ear time-invariant differential-algebraic equations leads to a characterization of optimal solutions. More-
over, we have derived conditions which allow to characterize the optimal control as a state feedback.
Last, the results are illustrated by means of examples, including second-order mechanical systems and a
discretized heat equation.

Future works consider extensions to control of nonlinear or infinite-dimensional port-Hamiltonian sys-
tems, such as beam equations, building upon [34] are subject to future research. In the nonlinear case,
first steps were conducted by [17, 30]. In the infinite-dimensional case, we expect that the structure of
the descriptor matrix in the optimality DAE can help to generalize the results.

A. Detailed Calculations

A.1. Calculations for Example 5.1

We calculate Sµ at µ = d. In view of [8, Formula (35)], we have

Sd =−B⊤(d − J−R)−1R(d − J+R)−1B

=−[1,0]
[

0 1
−1 d

]−1[d 0
0 0

][
2d 1
−1 d

]−1[1
0

]
=− d3

2d2 +1
,

and after some tedious, but straightforward calculations

Ed =
1

2d2 +1


2d3 +d −2d2 −1 −d3 d2

2d2 +1 0 −d2 d
0 0 d −1
0 0 1 2d

 , Nd =
1
d3


0 0 0 0
0 d2 0 0
d2 −d 0 0
d −1 0 d2


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using the definition Nd = Ed +Ed

[
B
0

]
S−1

d

[
BH 0

]
Ed . To calculate the Drazin inverse, we transform Nd

in Jordan form

S−1NdS =


0 1 0 0
0 0 0 0
0 0 1

d 1
0 0 0 1

d

 with S :=


0 d 0 0
0 0 0 −d3

1 0 0 d2

0 −1 1 0

 .
Hence, its Drazin inverse can be calculated as

ND
d = S


0 0 0 0
0 0 0 0
0 0 d −d2

0 0 0 d

S−1 =
1
d


0 0 0 0
0 d2 0 0
0 −d 0 0
d 1 0 d2

 .
Thus, we get

ND
d −dND

d Nd =
1
d


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 .

A.2. Calculations for Example 5.2

To verify that Q=

[
1 i
−i 1

]
is positive semidefinite, we calculate the characteristic polynomial as χQ(s)=

det(s−Q) = (s−1)2 −1 = s(s−2) and hence σ(Q) = {0,2} so that Q is indeed positive semidefinite.
The kernel of RQ can be easily calculated directly from

kerRQ = ker
[

0 0
−i 1

]
=
{
(z, iz)

∣∣z ∈ C
}
.

To solve (11), we calculate Sµ for µ = 1. By [8, Formula (35)], we have

S1 =−BH(I −Q(J+R))−1Q(I − (J−R)Q)−1B =
1−2i

5
̸= 0.

Further, we have

E1 =


0 −1 1−2i

5
2+i

5
i 1+ i − 2+i

5
1−2i

5
0 0 4+2i

5 − 2+i
5

0 0 − 1−2i
5

3−i
5

 and ND
1 = N−1

1 =


2+ i −i 1 i
−1 0 −i 1
0 0 1− i 1
0 0 −i 2

 .
Hence, we have A := ND

1 (I4 −N1) = ND
1 − I4. The characteristic polynomial of A is given by

χA(s) = s(s+ i−1)
(

s− 1
2
(i+

√
3+8i)

)(
s− 1

2
(i−

√
3+8i)

)
.

Thus, A is diagonalizable and a direct calculation verifies that the transformation matrix

T :=
1√

3+8i(28i−12)


2 2 2 0

1− i(2+
√

3+8i) 1− i(2−
√

3+8i) −3−3i 0
0 0 −2−5i 1
0 0 −2−5i i


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diagonalizes the matrix A as T−1AT = diag(1
2(i−

√
3+8i), 1

2(i+
√

3+8i),1− i,0).
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