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Abstract 

We examine the plausibility of four established and 

innovative identification strategies for agricultural 

production functions using farm-level panel datasets 

from five EU countries. Newly suggested proxy and 

dynamic panel approaches provide attractive concep-

tual improvements over received Within and duality 

models. Even so, empirical implementation of such 

advancements does not always live up to expectations. 

This is particularly true for the dynamic panel estima-

tor, which mostly failed to identify reasonable elastici-

ties for the (quasi-) fixed factors. Less demanding proxy 

approaches represent an interesting alternative for 

agricultural applications. In our EU sample, high pro-

duction elasticities for materials prevail. Hence, im-

proving the availability of working capital is the most 

promising way to increase agricultural productivity. 
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1 Introduction 

The aim of this article is to review the central identify-

ing assumptions maintained by six traditional and 

recent approaches to the estimation of production 

functions, apply them to farm-level data and ask how 

plausible they are in an agricultural context. Our 

methodological contribution is that we provide the 

first comparative evaluation of a number of recently 

proposed production function estimators for agricul-

tural data. Our empirical contribution is a unique and 

current set of estimated production elasticities for five 

firm-level datasets at the EU country level. 

Our European database covers firm-level data 

from five EU member states that was collected  

following a harmonized procedure in all countries. 

This is one of the first micro studies of agricultural 

productivity that simultaneously uses firm-level  

data from several countries for comparative purpos-

es.
1
 This extensive data allows us to come up with 

new, country-specific estimates of production elastici-

ties in agriculture that are potentially robust to en-

dogeneity and collinearity issues. While agriculture is 

a classical field of productivity estimation, there has 

been surprisingly little systematic analysis using the 

production function approach recently. MUNDLAK 

(2001) attributes this to the emergence and wide-

spread acceptance of duality theory in agricultural 

economics from the 1970s onwards. This approach 

typically recovers the price elasticity of factor demand 

but not the production elasticities. As MUNDLAK 

(2001) notes and as we discuss below, the dual ap-

proach is based on restrictive theoretical assumptions 

and far from being without methodological problems. 

One key expectation from duality was that it would 

allow a more flexible representation of technology, 

such as based on the Translog functional form 

(SHUMWAY, 1995). Interestingly, our results show 

that making the Cobb Douglas production function 

more flexible by adding quadratic and interaction 

terms does not add much insight. In the Ordinary 

Least Squares (OLS) and WOOLDRIDGE (2009) case, 

the results were highly implausible, whereas they 

differed little from the Cobb Douglas for the Within 

panel estimator. 

Our empirical estimates suggest that output elas-

ticities of labor, land and fixed capital are low 

throughout our European subsamples. This finding is 

in contrast to recent estimates by MUNDLAK et al. 

(2012), according to whom there are significant re-

turns to land and fixed capital in a cross-country sample  

of developing and developed countries. On the other 

hand, our materials elasticity is quite high, around 0.7. 

This outcome is particularly prominent in the  

                                                           
1
  RIZOV et al. (2013) provide an EU-wide comparative 

analysis based on the OLLEY and PAKES (1996) estima-

tor. The distinct literature studying frontier models has 

just recently begun to address endogeneity concerns, in-

cluding an application to dairy farms in the EU by 

LATRUFFE et al. (2017). 
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LEVINSOHN and PETRIN (2003) (LP), WOOLDRIDGE 

(2009) (WLP) and BLUNDELL and BOND (2000) (BB) 

estimators. In the conceptual part, we argue that these 

estimators provide more plausible identification strat-

egies than established Within or duality approaches. 

While the one-period control function models of LP 

and WLP are easier to implement empirically, the 

multiperiod adjustment process implied by the BB 

model is more compelling in an agricultural context. 

But BB failed to produce reasonable results for the 

fixed variables in most of our country subsamples. 

There is hence a trade-off among theoretical plausibil-

ity and empirical robustness of the different identifica-

tion strategies. 

In the following Section 2, we discuss the key 

identification problems that have motivated much of 

the methodological debate in production function 

estimation as well as the four main assumptions in-

voked in the literature to address them. Section 3 de-

scribes the dataset. Section 4 presents the empirical 

results. Section 5 concludes. 

2 Identification Problems in  
Production Function Estimation 
and Approaches to their Solution 

2.1 A Typology of Production Factors 

The process of agricultural production serves as a 

useful illustration for the different nature of produc-

tion factors. For the ensuing discussion, two charac-

teristics of these factors are of particular importance:  

 their variability or the ease with which they can 

be adjusted, and  

 whether they are observed by the econometrician. 

Table 1 differentiates three categories of variability. 

Among the highly variable factors are intermediate 

inputs such as seed, fertilizer or concentrate fodder. 

These factors are typically included in farm-level da-

tasets and thus observed by the econometrician (type I 

factors). In economic parlance, they are also called 

“control variables” because the decision maker (the 

farmer) can manipulate their level to achieve his/her 

objectives. Other highly variable control variables 

may be hard to observe from the outside, such as work 

effort (type IV factors).  

Other important factors are much less variable 

and are subject to adjustment costs (type II and V 

factors, depending on whether they are observed). For 

example, land is often available in limited quantities 

only and subject to long-term rental agreements. Agri-

culture in Europe is typically organized in family 

farms on which labor is often highly immobile and 

may be influenced significantly by life cycle consid-

erations of the farm family (GLAUBEN et al., 2009). 

Agricultural credit markets suffer from informational 

asymmetries and may be characterized by rationing 

and high transaction costs (see e.g. PETRICK and 

LATRUFFE, 2006). Management has long been recog-

nized as an important factor of production that is nev-

ertheless difficult to measure (MUNDLAK, 1961). 

A final group includes factors that are completely 

fixed in the long run, such as the geographic location 

of the farm or the quality of its soils (type III and VI 

factors). All the less variable factors type II, III, V and 

VI are called “state variables”, as their value cannot 

be modified within a short-term planning horizon. 

As indicated in Table 1, there is an important dis-

tinction between the highly variable and unobserved 

factors type IV and VII. Some of these also come as a 

surprise to the farmer. They represent exogenous 

states (shocks) of the environment (type VII factors). 

However, how the farmer reacts to these shocks will 

be endogenous (type IV factors). 

 

Table 1.  A typology of production factors in 

agriculture 

 Highly 

 variable 

Subject to 

adjustment 

costs 

Fixed 

Observed  

by econome-

trician & 

farmer 

Type I 

seed, fertilizer, 

chemicals, 

concentrate, 

livestock num-

bers 

Type II 

land, labor, 

machinery, 

buildings 

Type III 

geographical 

location 

Typically 

unobserved 

by econome-

trician but 

known to  

the farmer 

Type IV 

farmer’s effort, 

reaction to 

environmental 

shocks  

Type V 

management 

abilities,  

human capital 

of labor force, 

availability  

of a farm 

successor 

Type VI 

soil  

quality,  

climatic 

conditions 

Unobserved 

by econome-

trician & 

unanticipated 

by the farmer 

Type VII 

weather events, 

rainfall, diseases,  

legal require-

ments 

-- -- 

Source: authors 

2.2 Two Problems of Identification 

To illustrate the involved problems, we start with a 

simple model of a farmer wishing to produce an  

aggregate output. Denote 𝑦𝑖𝑡 the natural logarithm of 
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farm i’s output Y at time t, Ait land use of this farm, Lit 

labor, Kit fixed capital and Mit materials or working 

capital. These four factors of production are observed 

by the econometrician. 𝜔𝑖𝑡 is an aggregate, farm-

specific, time-varying factor that is anticipated by the 

farmer at the time of decision making about current 

production, but unobserved by the econometrician. 

Without further specification, it compounds the effects 

of factors categorized as type IV to VI in Table 1. 𝜀𝑖𝑡 

is a productivity shock not anticipated by the farmer 

(and not observed, thus type VII), or simply meas-

urement error. Assuming a linear structure of the 

model and the availability of panel data containing the 

observed output and inputs, the econometrician’s 

problem is to recover farm productivity determined by 

the following equation: 

𝑦𝑖𝑡 = 𝑓(𝐴𝑖𝑡 , 𝐿𝑖𝑡 , 𝐾𝑖𝑡 , 𝑀𝑖𝑡) + 𝜔𝑖𝑡 + 𝜀𝑖𝑡, (1) 

where 𝑓(∙) is the production function.  

Because 𝜔𝑖𝑡 will likely be correlated with the 

other input choices, estimation of (1) is subject to an 

endogeneity problem (MARSCHAK and ANDREWS, 

1944). The production elasticities of the observed 

factors are not identified as the compound error term 

𝜔𝑖𝑡 + 𝜀𝑖𝑡 is not identically and independently distrib-

uted (i.i.d.). Regressing output on observed input lev-

els using OLS and choosing an appropriate functional 

form for 𝑓(∙) will produce biased estimates. In partic-

ular, input coefficients will be upward biased if there 

is serial correlation in 𝜔𝑖𝑡. This effect will be stronger 

the easier it is to adjust input use (LEVINSOHN and 

PETRIN, 2003: 332). A typical OLS result may be that 

the coefficients of labor and materials are upward 

biased, while those of land and capital are downward 

biased. Much of the methodological literature on  

production function estimation is concerned with  

precisely this issue (see the instructive review in 

GRILICHES and MAIRESSE, 1998). 

According to the implicit theoretical setup so far, 

all observed factors are assumed to be control varia-

bles and are treated as being fully flexible (as if they 

all belonged to type I). The typical assumption in the 

literature (e.g. CHAMBERS, 1988) is then that output 

and all factors are traded on perfectly competitive 

markets so that on each of the markets all farmers face 

the same one price for the traded good. If farmers 

maximize profits defined as revenues from the sale of 

output minus costs of all inputs and 𝑓(∙)  is a monoto-

nous and concave function, the canonical decision rule 

for allocating inputs is identical for all inputs and says 

that the marginal revenue product of each factor 

should equal its factor price. For example, for materi-

als this decision rule is as follows: 

𝑝𝑌 𝜕𝑓

𝜕𝑀
= 𝑝𝑀, (2) 

with p
Y
 denoting the price of output and p

M
 that of 

materials, respectively. Estimation of (1) requires the 

assumption that the technology represented by 𝑓(∙)  is 

identical for all farmers included in the estimating 

sample. If all farmers also face the same price on each 

of the output and input markets, there is nothing in the 

model that induces heterogeneous factor use across 

farms except for the unobserved 𝜔𝑖𝑡. This is the col-

linearity problem pointed out recently by BOND and 

SÖDERBOM (2005) and ACKERBERG et al. (2007). 

Factor use across firms varies only with the unob-

served 𝜔𝑖𝑡, so that again the different production elas-

ticities are not identified. 

We now review the main approaches found in the 

literature to deal with either of these identification 

problems. The discussion is guided by Table 2, which 

summarizes the four approaches we distinguish. After 

introducing each approach, we ask how plausible the 

specific identifying assumption is in the context of 

agriculture. We then evaluate to what extent the two 

key identification problems presented before are ad-

dressed and how the resulting estimator can be applied 

in practice. 

2.3 Additively Separable,  
Time-invariant Firm Characteristics 

The key idea of this approach is that 𝜔𝑖𝑡 can be fur-

ther decomposed into: 

𝜔𝑖𝑡 = 𝛾𝑡 + 𝜂𝑖 + 𝑣𝑖𝑡, (3) 

where 𝛾𝑡 is a time-specific shock that is identical for 

all farms in t (likely a type VII event), 𝜂𝑖 is a farm-

specific fixed effect that does not vary over time (a 

type VI factor), and 𝑣𝑖𝑡 is the remaining farm- and 

time-specific productivity shock (type VII). Think of 

𝛾𝑡  representing common weather or policy shocks 

and 𝜂𝑖 capturing soil quality or time-invariant prefer-

ences of the manager. In a farming context, 𝑣𝑖𝑡 may 

represent local weather conditions that vary between 

farms and years. If they are not anticipated by the 

manager, 𝑣𝑖𝑡 is subsumed into 𝜀𝑖𝑡. This approach 

leads to the popular fixed effects approach. By apply-

ing a “within” transformation, the fixed effect (𝜂𝑖) is 

“swept out” of the estimating equation. Suggested by 

MUNDLAK (1961) in a farming context to eliminate 

“management bias” from the equation, this model has 

found widespread application at different levels of 
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aggregation. The effect of 𝛾𝑡 is typically taken into 

account by including time dummies into the model. 

An alternative to Within is to estimate the model in 

first differences, as discussed by WOOLDRIDGE (2010: 

321-326).  

MUNDLAK et al. (2012: 146) present a recent ap-

plication to agricultural productivity at the country 

level where the fixed and year effects alone explained 

98.5% of output variation. Even so, the question re-

mains whether it is legitimate to assume that 𝑣𝑖𝑡 is an 

innovation that is orthogonal to observed factor use so 

that all unobserved factors are indeed either time in-

variant or the same for all farms.  

Table 1 suggests that farm- and time-specific un-

observed effects which the farmer still takes into ac-

count when making input decisions (type IV and V) 

are very likely to be relevant. Examples include annu-

al fluctuations in rainfall or pest occurrence as well as 

patterns of livestock health. Furthermore, applications 

in practice have found that the within transformation 

removes (too) much variance from some of the varia-

bles, particular those which display little variation 

over time. In agriculture, input levels of the type II 

production factors land, labor and fixed capital often 

vary only little in time. As a consequence, the signal-

to-noise ratio with regard to these factors is reduced 

and the estimated coefficients are biased downwards 

(GRILICHES and MAIRESSE, 1998: 180-185). Finally, 

without further assumptions, the collinearity problem 

is not addressed at all by this approach. 

2.4 Profit Maximization  
and Perfect Competition 

This approach imposes further microeconomic theory 

upon the data, including its main assumptions of profit 

maximization and perfect competition on product and 

input markets. A key result of this theory is the first-

order condition (2), which multiplied through with 
𝑀

𝑝𝑌𝑌
 

yields (for the case of materials): 

Table 2.  Identifying assumptions in production function estimation 

 (A)  

𝝎𝒊𝒕 is additively 

separable & time 

invariant 

(B) 

Profit maximization & 

perfect competition on 

product & factor 

markets 

(C) 

Heterogeneous frictions 

in factor adjustments 

(D) 

𝝎𝒊𝒕 evolves monotonously with an 

observed characteristic of the firm 

If correct, does 

the assumption 

solve the endoge-

neity problem? 

Yes. Yes if prices can be 

used as instruments. 

Yes if adjustment costs 

are sufficiently hetero-

geneous across inputs. 

Yes. 

Does it solve  

the collinearity 

problem? 

Not without further 

assumptions. 

Yes if there is only one 

free input. 

Yes if adjustment costs 

are sufficiently hetero-

geneous across inputs. 

Not without further assumptions: 

ACKERBERG et al. (2015), 

WOOLDRIDGE (2009). 

Practical  

implementation 

“Within” regression to 

sweep out fixed effect. 

Share regression, 

approaches based on 

duality. 

Typically combined with 

assumption (A) in a 

dynamic panel data 

regression model using 

first differences. 

Semiparametric control function 

approaches using investment or 

intermediate inputs as proxies. 

Remaining  

problems 

Remaining variance 

may be too small to 

allow precise parame-

ter estimation. 

Prices with sufficient 

variation may not be 

observed. Heterogene-

ous firm-specific prices 

may not be exogenous. 

Weak instruments, small 

variance of differenced 

variables. 

Zero observations for proxies  

(e.g., investment). Slowly changing 

unobserved effects are not captured. 

Plausibility  

in agriculture 

Limited plausibility as 

farm- & time-specific 

effects are likely, e.g. 

reactions to weather 

shocks. 

Limited plausibility as 

market imperfections 

on labor, land & capital 

markets are widespread 

in agriculture. 

Plausible for land, labor, 

fixed capital, less for 

seed, fertilizer, plant 

protection, concentrate, 

energy. 

Plausible for annually fluctuating 

shocks, less for slowly changing 

unobservables such as soil or man-

agement quality. 

Examples in  

the literature 

Widely used. See 

MUNDLAK (1961); 

overview in GRILICHES 

and MAIRESSE (1998). 

Widely used. See 

overview in MUNDLAK 

(2001). 

BLUNDELL and BOND 

(2000), HEMPELL (2005). 

No agricultural applica-

tions so far. 

OLLEY and PAKES (1996), LEVINSOHN 

and PETRIN (2003), KAZUKAUSKAS  

et al. (2010) on Irish dairy farms,  

PETRIN and LEVINSOHN (2012),  

RIZOV et al. (2013) on EU-15 agr. 

Source: authors 
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𝜕𝑓

𝜕𝑀

𝑀

𝑌
=

𝑝𝑀𝑀

𝑝𝑌𝑌
. (4) 

If one further assumes constant returns to scale, (4) 

says that the production elasticity of each input (left 

hand side) is equal to its value share in revenue (right 

hand side). All value shares add up to one. Given 

these assumptions, revenue shares of inputs are valid 

estimators of production elasticities. For the simple 

Cobb Douglas technology, the problem of estimating 

production elasticities has thus been “solved” by the 

imposition of strong theoretical assumptions. Howev-

er, production function estimates of elasticities in 

agriculture were often found to differ from observed 

revenue shares (MUNDLAK, 2001).  

For more flexible functional forms, (4) has led to 

the widely applied share regression model. For exam-

ple, if the production function is assumed to be Trans-

log the first order condition yields the following share 

regression (again for the case of materials): 

𝑠𝑖𝑡
𝑀 = 𝛼𝑀 + 𝛼𝑀𝑀𝑚𝑖𝑡 + 𝛼𝑀𝐴𝑎𝑖𝑡 + 𝛼𝑀𝐿𝑙𝑖𝑡 

+𝛼𝑀𝐾𝑘𝑖𝑡 + 𝜔𝑖𝑡
𝑀 + 𝜀𝑖𝑡

𝑀, (5) 

with 𝑠𝑖𝑡
𝑀 =

𝑝𝑖𝑡
𝑀𝑀𝑖𝑡

𝑝𝑖𝑡
𝑌 𝑌𝑖𝑡

 the revenue share of materials of 

firm i at time t, 𝛼𝑋 the direct and cross-elasticities of 

the involved inputs, 𝜔𝑖𝑡
𝑀 the part of the unobserved 

productivity characteristic that affects 𝑠𝑖𝑡
𝑀, and 𝜀𝑖𝑡

𝑀 an 

i.i.d. error term.  

Note that (5) is still subject to the endogeneity 

and collinearity of factors. The way out of these prob-

lems typical to this approach is finding appropriate 

instruments for the input levels, such as factor prices. 

However, factor prices may not be exogenous and 

may depend on past and current decisions of the 

farmer. Under such conditions, the theoretical model 

underlying this approach is clearly too simplistic to 

allow straightforward identification of the production 

function. On the other hand, if factor markets were at 

least approximately working as postulated by the the-

oretical ideal, there should be little price variation 

across farms so that the value of prices for solving the 

endogeneity and collinearity problems is doubtful.  

2.5 Heterogeneous Frictions  
in Factor Adjustment 

If prices are problematic instruments, another option 

is to look for a different source of exogenous variation 

that has explanatory power for productivity analysis. 

One such source now routinely employed, which is 

based on the literature on dynamic panel data model-

ing, are past decisions on factor use (ARELLANO and 

BOND, 1991; BLUNDELL and BOND, 1998). This liter-

ature suggests that current variation in input use is 

caused by lagged adjustment to past productivity 

shocks. It thus introduces the history of input use as a 

source of identification. Such identification is plausi-

ble if modifications of input levels are subject to ad-

justment costs (BOND and SÖDERBOM, 2005). This 

approach effectively turns observed input levels into 

state variables (type II) and makes them subject to an 

intertemporal optimization problem. One way to ac-

count for costly adjustment is to allow serial correla-

tion of the unobserved productivity characteristic (𝑣𝑖𝑡) 

of the firm.  

BLUNDELL and BOND (2000) use lagged levels 

and differences of inputs as instruments in a General 

Methods of Moments (GMM) framework to estimate 

this model. Note that the within transformation (Sec-

tion 2.3) assumes strict exogeneity of inputs which 

means that ωit must not be transmitted to any future 

period. First differencing (FD) to eliminate fixed ef-

fects only assumes that input levels are sequentially 

exogeneous, i.e. transmission of ωit to the next but one 

and subsequent periods is allowed (CHAMBERLAIN, 

1982; WOOLDRIDGE, 2010: 321-326). FD is thus the 

typical approach to eliminate time invariant heteroge-

neity in GMM applications, as it allows input levels 

lagged more than two periods to be used as instru-

ments for contemporaneous differences (ARELLANO 

and BOND, 1991). Of course, these instruments will 

only have power if there actually is such a transmis-

sion (e.g. motivated by adjustment costs). To increase 

the power of the GMM approach, BLUNDELL and 

BOND (1998) have shown that in addition to past lev-

els, also lagged differences of inputs can be used as 

instruments if they are orthogonal to the fixed effects 

(𝜂𝑖) – an assumption which will hold if their variance 

is assumed to be, in the broadest sense, stationary 

(ROODMAN, 2009: 114-115). This leads to the systems 

GMM estimator for production functions presented in 

BLUNDELL and BOND (2000). 

If factor levels can suitably be instrumented by 

this approach, it addresses both the endogeneity and 

the collinearity problems. Contrary to the duality ap-

proach presented in Section 2.4, it is much more plau-

sible that the instruments proposed here are actually 

valid in an agricultural context. There are important 

production factors in agriculture which are subject to 

adjustment costs (or “transaction costs”; type II varia-

bles in Table 1) and such costs should be an element 

in any plausible theory of agricultural factor markets. 
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As the nature of these costs is likely to differ among 

factors (see Section 2.1), it is also plausible that dif-

ferent factors of production display different dynamic 

paths of adjustment. This is a favorable condition for 

identification (BOND and SÖDERBOM, 2005). It is only 

with regard to some intermediate inputs such as seed, 

fertilizer, plant protection, concentrate, or energy that 

factor use appears to be more flexible so that the as-

sumption of adjustment costs may be harder to justify 

(type I factors). In sum, this estimator is a promising 

candidate for agricultural applications. 

2.6 Monotonous Coevolution of  
Unobserved Productivity Shocks  
with Observed Firm Characteristics 

The final method to be discussed here avoids the main 

disadvantage of any fixed effects approach to unob-

served heterogeneity, which is the typically low vari-

ance of the transformed variables. However, it also 

does not rely on the strong a-priories about market 

structure of duality theory to identify the productivity 

parameters of interest. It rather attempts to proxy 𝜔𝑖𝑡 

(as a compound type IV to VI production factor) by a 

non-parametric control function which itself contains 

only observed firm characteristics. OLLEY and PAKES 

(1996) were the first to suggest log investment (𝑖𝑖𝑡) as 

an observed characteristic driven by 𝜔𝑖𝑡: 

𝑖𝑖𝑡 = 𝑖𝑡(𝜔𝑖𝑡, 𝑘𝑖𝑡), (6) 

where 𝑘𝑖𝑡 is the pre-determined level of capital use at 

time t. The latter is assumed to evolve according to 

𝑘𝑖𝑡+1 = (1 − 𝛿)𝑘𝑖𝑡 + 𝑖𝑖𝑡, with 𝛿 the depreciation rate.  

The function 𝑖𝑡(∙) can vary over time and is not 

parametrically restricted except that it needs to be 

monotonous in 𝜔𝑖𝑡. This latter trait allows inversion 

of this function, so that: 

𝜔𝑖𝑡 = ℎ𝑡(𝑖𝑖𝑡, 𝑘𝑖𝑡),  

where ℎ𝑡 is now potentially observable and acts as a 

proxy for 𝜔𝑖𝑡. Furthermore, it is assumed that unob-

served productivity follows a first-order Markov pro-

cess: 

𝜔𝑖𝑡 = 𝐸[𝜔𝑖𝑡|𝜔𝑖𝑡−1] + 𝜉𝑖𝑡, (7) 

where 𝜉𝑖𝑡 is an innovation (a type VII factor) uncorre-

lated with 𝑘𝑖𝑡, but possibly correlated with the other 

factors in the production function. Because 𝑘𝑖𝑡 is a 

type II factor, the moment condition 𝐸[ 𝑘𝑖𝑡𝜉𝑖𝑡] = 0 

can be used to identify 𝛼𝐾. 

Given this setup, estimation proceeds in two 

stages. The basic idea is to jointly control for the in-

fluence of k and ω in the first stage and to recover the 

true coefficient of k as well as ω in the second. In an 

agricultural application, KAZUKAUSKAS et al. (2010) 

found for Irish dairy farms that the materials coeffi-

cient estimated with an OP procedure was lower than 

the OLS result. One problem that arises from using 

investment as a proxy is zero observations for certain 

years and firms. LEVINSOHN and PETRIN (2003) there-

fore suggested materials instead of investment as a 

proxy of 𝜔𝑖𝑡 in the previous algorithm.  

If the control function fully captures the influence 

of 𝜔𝑖𝑡, it solves the endogeneity problem and provides 

a useful alternative to the fixed effects approaches 

described before. However, in agriculture, the as-

sumptions on monotonicity and dynamic evolution of 

the productivity shock must be considered with cau-

tion. A key question is what exactly 𝜔𝑖𝑡 is represent-

ing and whether investment or material use are good 

proxies for it. If 𝜔𝑖𝑡 stands for annually fluctuating, 

unobserved factors (type IV) such as management 

effort or reaction to environmental conditions, there 

may be cases where the “right behaviour” of the 

farmer (i.e., positive 𝜔𝑖𝑡) does not lead to more in-

vestment. The same is true for materials. The produc-

tivity enhancing reaction to environmental shocks in 

crop production may sometimes be less input use (fer-

tilizer, chemicals) rather than more. In all these cases, 

neither investment nor materials will be good proxies 

of 𝜔𝑖𝑡. Furthermore, the “memoryless” first-order 

Markov process appears unconvincing if 𝜔𝑖𝑡 actually 

represents unobserved type V factors which are sub-

ject to adjustment costs. They evolve slowly and will 

typically have implications for the intertemporal op-

timization problem, so that also 𝑘𝑖𝑡 is affected by 

them and (6) is misspecified. Investment may not be a 

good proxy for 𝜔𝑖𝑡 if there are other important deter-

minants of it beyond 𝑘𝑖𝑡. In a farming context, this is 

likely to be the case, because investment decisions are 

usually influenced by long term business strategies 

and/or the availability of a farm successor. 

Another problem with the procedure suggested 

by OP and LP is that it does not solve the collinearity 

problem. As discussed at length by ACKERBERG et al. 

(2015), unless one is willing to make very unintuitive 

assumptions on measurement error or timing, there is 

no data generation process that separately identifies 

the coefficients of the type I factors in either of the 

two approaches. WOOLDRIDGE (2009) suggests a 

simple procedure that borrows the identification strat-

egy from OP and LP and modifies as well as extends 

the moment conditions to resolve the collinearity 
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problem. Hence, this approach is referred to as the 

WOOLDRIDGE/LEVINSOHN/PETRIN (WLP) estimator 

(PETRIN and LEVINSOHN, 2012). This model is usual-

ly estimated within an IV estimation framework  

(PETRIN and LEVINSOHN, 2012).  

In our agricultural application, the intuition of 

this approach may be as follows (cf. LEVINSOHN and 

PETRIN, 2003: 322). Consider 𝜔𝑖𝑡 to represent a farm-

specific stock of management knowledge. Any posi-

tive shift of 𝜔𝑖𝑡 assumedly increases the marginal 

productivity of 𝑚𝑖𝑡 and possibly all other production 

factors. As 𝑚 can be readily adjusted, a profit-

maximising farmer increases the level of 𝑚𝑖𝑡 in re-

sponse to the shift, thus motivating our use of  𝑚 as a 

proxy for 𝜔𝑖𝑡. The same process may also work in the 

other direction, so that farms with negative shocks 

reduce material inputs. If 𝜔 is persistent, the farm-

specific over- or under-application of material inputs 

is likely to be correlated over time, so that past levels 

can be used as proxies for current productivity shifts. 

Consistent with primarily positive shifts is the empiri-

cal observation that, on average, both farm output and 

materials input increase over the years. This is pre-

cisely what our data confirms. 

The assumption of costly factor adjustment is a 

cornerstone of both the dynamic panel data approach 

described in Section 2.5 and the present one. In both 

cases, this assumption provides moment conditions 

necessary for consistent estimation of the parameters. 

The main difference is that the former approach al-

lows time-invariant fixed effects, whereas the latter 

does not. The former imposes a linear structure on the 

dynamic process, while it can be arbitrary in the latter. 

Even so, factor adjustment is assumed to occur in a 

single period in OP and followers, whereas the pro-

cess covers many periods in the dynamic panel data 

models. In the light of agricultural applications, this 

may be one key advantage of the dynamic panel data 

approach.
2
 

2.7 Interim Evaluation of  
Estimation Approaches 

The previous discussion has displayed the variety of 

assumptions invoked for addressing the endogeneity 

and collinearity problems inherent to production func-

tion estimation. In our opinion, the assumptions un-

derlying Within regression and the duality approach 

are fairly strong and implausible for the case of agri-

                                                           
2
  Other subtle differences between the two approaches are 

discussed in ACKERBERG et al. (2015). 

culture. Perhaps not surprisingly, they often have also 

not performed well in estimation practice. This insight 

shifts our attention to the promising new approaches 

using heterogeneous frictions in factor adjustment. 

We regard the presence of adjustment costs as particu-

lar relevant for the production factors that are of key 

interest in agricultural applications. They also provide 

an interesting link to more sophisticated theories  

of business structures in agriculture, which usually 

embody some form of adjustment frictions in agricul-

tural factor use (such as ALLEN and LUECK, 2002, or  

POLLAK, 1985). So far, there are almost no applica-

tions to agricultural data of these new estimators. The 

following sections aim to fill this void. 

3 Data 

The data used in this study comes from the EU’s Farm 

Accountancy Data Network (FADN), which provides 

a stratified farm level data set that holds accountancy 

data for all 28 EU member states. In the present study, 

we only use field crop farms, to justify the assumption 

of a homogenous state of technology across farms. 

The sample of countries is selected to reflect the di-

verse farm sizes and structures in EU agriculture. The 

range is from small-scale family farms in Italy and 

West Germany up to medium-sized commercial farms 

in Denmark, France and the UK (EUROPEAN COM-

MISSION, 2012). West Germany contains the nine 

federal states Baden-Württemberg, Bavaria, Hamburg, 

Hesse, Lower Saxony, North Rhine-Westphalia, 

Rhineland-Palatinate, Saarland and Schleswig-Hol-

stein. It does not include Berlin and Bremen, which 

are not represented in the FADN data. Therefore, we 

produce separate results for the following countries: 

 Denmark (DK),  

 France (FR),  

 Germany West (DEW),  

 Italy (IT) and  

 the United Kingdom (UK). 

For every country in the study, we created a panel 

data set covering the years from 2001 up to 2008. In 

total, 14,801 observations were included in the EU-

wide sample. 

The variables and their measurement are readily 

available in the codebooks provided by FADN (EU-

ROPEAN COMMISSION, 2007, 2008). Output is meas-

ured as the total farm output in euros. Labor is meas-

ured by the time worked in hours by total labor input 

on the farm, including both hired and family labor. 

The total utilized agricultural area is our land input in 
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ha. It includes owned and rented land, and land in 

sharecropping. 

In this study, the material or working capital in-

put is proxied by total intermediate consumption in 

euros. It consists of total specific costs and overheads 

arising from production in the accounting year. 

Among others, it includes feed, fuel, lubricants, water, 

electricity and seed. We do not include fertilizer in  

our materials specification. As land and fertilizer are 

highly correlated in the data sample, they are applied 

in more or less fixed ratios on the average farm, which 

might induce a multicollinearity problem in the esti-

mations.
3
 We approximate fixed capital inputs by 

using the opening valuation of machinery and build-

ings from the FADN data. Table 3 summarizes  

the variable definitions and gives the actual FADN 

codes. 

 

Table 3. Selection of variables 

FADN code Variable description 

Outputs  

SE131 Total output (EUR) 

Inputs  

SE011 Labor input (hours) 

SE025 Total utilized agricultural area (ha) = 

land 

F72 + SE300 +  

SE305 + SE336 

Costs for seed and seedlings + crop 

protection + other crop specific costs 

+ overheads (EUR) = materials 

L.SE450 + 

L.SE455 

Opening valuation of machinery and 

buildings (EUR) = fixed capital 

Note: L. denotes the one-year lag. 

Source: authors, FADN data 

4 Results 

4.1 Overview 

For this study, we estimated nine models per country: 

Output shares, OLS Cobb Douglas, OLS Translog, 

Within Cobb-Douglas, Within Translog, LP Cobb 

Douglas, WLP Cobb Douglas, WLP Translog, BB 

Cobb Douglas. The Within Translog was obtained by 

interacting the groupwise demeaned logs of factors 

and using an appropriate degree of freedom correc-

tion. Other than by simply calling a built-in fixed 

                                                           
3
  Inclusion of fertilizer leads to results that display nega-

tive estimates of land coefficients in conjunction with 

relatively high materials coefficients for several coun-

tries in the sample. See KLOSS (2017: 50-53) for an in-

depth analysis of the role of materials and land. 

effects panel estimation command with the interacted 

variables in logs, this procedure ensures that levels are 

effectively eliminated from the regression. Below we 

present a summary of results. The full results as well 

as an in-depth analysis of the same are given in our 

companion paper PETRICK and KLOSS (2018). 

Table 4 displays a summary evaluation of the es-

timators with regard to the estimated production elas-

ticities and returns to scale. The performance of the 

Translog specifications and the dynamic panel data 

model is given particular attention. Generally, the 

interest was to detect systematic differences across 

estimators and countries and to assess their practical 

implementation. Detailed results tables are presented 

in PETRICK and KLOSS (2018), which includes an 

overview table for each country containing the results 

for the eight models, plus an additional table for each 

country including more in-depth diagnostic results for 

the BB model. 

As a general tendency, factor elasticities were 

found to be low for land and capital, high for materi-

als and somewhere in between for labor (Table 4 and 

Table 5). WLP estimates for the first two of these 

factors are in the range of 0.2 and lower, sometimes 

not significantly different from zero. The production 

elasticity of materials is typically between 0.5 and 0.8. 

Labor elasticities usually fluctuate at around 0.2. 

These magnitudes are broadly in line with OP esti-

mates reported by RIZOV et al. (2013: 549).
4
 

The estimates support the conventional wisdom 

that OLS tends to be upward biased for particularly 

variable factors. In the present data, this primarily 

applies to materials, the OLS estimate of which is 

(except for Denmark) higher than its revenue share. It 

may be taken as evidence for the existence of serially 

correlated, unobservable factors (OLLEY and PAKES, 

1996: 1274). The opposite bias is found for capital in 

the Within estimator, which is typically below the 

revenue share. This tendency is also in line with pre-

vious studies and can be attributed to the low variance 

of capital over time (GRILICHES and HAUSMAN, 1986). 

The LP estimator commonly produces a lower 

elasticity for materials than OLS, the only exception 

being the United Kingdom. In case of the WLP esti-

mator the only exception is France. LP and WLP es-

timates are typically very similar which makes us feel  

                                                           
4
  RIZOV et al. (2013) pool all farm types and they com-

bine capital and land into a single production factor. 

Their first-stage estimation includes subsidy levels and 

other controls. 
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confident of the proxy variable identification strategy. 

These models may thus be taken as plausible alterna-

tives to the received estimators. However, on theoreti-

cal grounds the WLP model further corrects for col-

linearity which gives this estimator an edge over the 

LP model. In addition, empirically the former is occa-

sionally more successful in identifying the capital 

coefficient, i.e. with a higher precision as indicated by 

the standard errors. 

Estimated elasticities of scale fluctuate around 

1.0. Given the previous findings on production elastic-

ities, OLS estimates tend to be higher than Within 

estimates. Overall, the scale elasticity in European 

crop farming appears to be close to one. 

4.2 Validity of the Proxy Variable  

According to the theoretical set-up of the control func-

tion approaches the materials proxy should be increas-

ing in unobserved productivity (𝜔𝑖𝑡). To elaborate on 

this so-called monotonicity condition, we proceed in a 

similar fashion as LEVINSOHN and PETRIN (2003) by 

producing three-dimensional productivity surfaces of 

𝜔𝑖𝑡 = 𝑓(𝑚𝑖𝑡 , 𝑘𝑖𝑡). As 𝜔𝑖𝑡 is by definition unobserved, 

we need to come up with an estimate, �̂�𝑖𝑡. To this 

end, we predict �̂�𝑖𝑡 by using the parameter estimates 

of the production function. Based on data for the three 

dimensions – omega, materials and capital – we inter-

polate and smooth the original data using thin plate 

splines due to DUCHON (1976), a widely used data 

interpolation method for multidimensional data (see 

HASTIE et al., 2009: 162-167) for an overview). The 

processed data can then be used to draw three-

dimensional surface plots and to visually inspect the 

monotonicity condition, as reported in PETRICK and 

KLOSS (2018) for our data. In  Table 5, the results of 

this analysis are summarized which indicates that in 

general, the monotonicity condition holds throughout 

the sample of countries.  

4.3 Functional Form:  
Cobb Douglas vs. Translog 

The results on the Translog specification display re-

markably uniform features across countries: the Within 

Translog elasticities at sample means were typically 

close to the Within Cobb Douglas, and the interaction 

terms of the Translog were often not jointly different 

from zero. The OLS Translog, on the other hand, pro-

duced unreasonable results throughout, e.g. reflected in 

the coexistence of negative production elasticities for 

some factors and elasticities bigger than one for others 

Table 4.  Summary evaluation of estimator performance 

 Denmark France Germany (West) Italy United Kingdom 

Factor  

elasticities  

All OLS below shares; 

materials below  

shares throughout CD, 

insignificant in LP  

and WLP (=0);  

Capital=0 in Within 

Land and labour=0  

in BB; materials above 

shares in OLS,  

LP, WLP, BB;  

capital<0.1 in shares, 

Within, BB 

Materials above shares 

in OLS, LP WLP, BB, 

lower in Within; 

capital≈0 in Within 

and WLP, higher  

in LP&BB 

Land=0 in OLS, LP, 

WLP, <0 in BB; 

materials above shares 

throughout CD; 

capital<0.1 in OLS, 

>0.1 BB, =0 in  

all other CD 

Materials above shares 

in OLS, LP, BB; 

Capital≤0.1 through-

out 

Returns  

to scale 

Shares add up to 2.07; 

OLS, LP, lower but 

still >1; Within,  

WLP, BB close to 1 

OLS>1; close to 1.0 

for the other  

estimators 

1.1 in OLS, <1 in 

Within, BB; close to 

1.0 in LP, WLP 

Shares add up to 1.61; 

OLS≈1.1; Within, LP, 

WLP<0.9; BB=0.5 

OLS, Within, LP≈1.2; 

WLP≈1.1; BB≈1.5 

Performance  

of Translog  

OLS unreasonable; 

Within close to CD; 

WLP unreasonable; 

interactions not sig.  

in Within and WLP  

OLS unreasonable; 

Within close to CD; 

WLP unreasonable; 

Interactions not sig.  

in WLP  

OLS unreasonable; 

Within close to CD; 

WLP unreasonable; 

interactions not sig. in 

Within and WLP  

OLS unreasonable; 

Within in part close  

to CD; WLP unrea-

sonable; interactions 

not sig. in WLP 

OLS unreasonable; 

Within close to CD; 

WLP unreasonable; 

interactions not sig.  

in OLS and WLP 

BLUNDELL/ 

BOND  

estimator 

Specification tests ok; 

levels better instru-

mented than diff.; 

relatively poor  

instrumentation 

OID not passed;  

land, mat, capital, 

output highly persis-

tent; levels better  

instrumented than diff. 

OID not passed; 

labour, land, mat 

highly persistent; 

capital, output explo-

sive; levels better 

instrumented than diff. 

OID not passed; 

labour, capital highly 

persistent; land and 

output explosive; poor 

instrumentation 

Specification tests ok; 

labour, land, capital 

highly persistent; 

materials and output 

explosive; poor  

instrumentation 

Notes: BB: BLUNDELL/BOND, CD: Cobb Douglas, LP: LEVINSOHN/PETRIN, OID: Over-identification test, OLS: Ordinary Least Squares, 

WLP: WOOLDRIDGE/LEVINSOHN/PETRIN 

Source: PETRICK and KLOSS (2018) 
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(at sample means). Similarly unreasonable results are 

observed for the WLP Translog. In this model, not a 

single country displayed interaction terms that were 

jointly significantly different from zero. Additionally, 

we applied the KLEIBERGEN and PAAP (2006) under-

identification test to the WLP Translog model. Failing 

to reject the null hypothesis that the equation is uni-

dentified implies an increased bias in the estimated 

coefficients. The bias is in the same direction as in the 

OLS estimator (BAUM et al., 2007). While we always 

rejected the null at the 5% and even the 1% signifi-

cance level in the Cobb Douglas model, we could not 

do so in the cases of Denmark (p=0.41) and the United 

Kingdom (p=0.62) in the Translog model. 

To sum up, the Translog specification does not 

perform well. Our findings are in line with other re-

cent studies utilizing FADN data with this functional 

form (cf. ZHENGFEI et al., 2006; LATRUFFE and 

NAUGES, 2013). The prime reason for these difficul-

ties is multicollinearity, which is supposedly even 

more severe in the Translog than in the Cobb Douglas, 

as many more parameters have to be estimated. While 

we cannot ultimately decide whether the true data 

generation process followed a Translog technology, 

we can say that farm-level data typically does not 

allow estimating its parameters. This makes the Trans-

log a less credible functional form for applied work. 

 

Table 5.  Agricultural production elasticities in 

comparison 

 Denmark France Germany 

(West) 

Italy United 

Kingdom 

Labor 0.62 0.17 0.22 0.32 0.19 

Land 0.23 0.04 -0.01# -0.01# 0.17 

Materials 0.00# 0.80 0.77 0.51 0.62# 

Capital 0.10# 0.12 0.09 0.02# 0.10# 

Ret. to Scale 0.95 1.13 1.08 0.84 1.09 

Monotonicity + o + + + 

Notes: results for field crop farms in EU countries based on 

WOOLDRIDGE/LEVINSOHN/PETRIN (WLP) estimator. # not signifi-

cantly different from zero at conventional confidence levels. Mon-

tonicity: + holds throughout, o holds partially. 

Source: authors 

4.4 Dynamic Panel Data Estimation 

Our analysis of the BB estimator found labor and land 

to be highly persistent (PETRICK and KLOSS, 2018), 

which makes dynamic panel data estimation a natural 

option. Moreover, we regressed the differences of the 

latest available year on the lagged levels of all availa-

ble previous years and the latest available levels on all 

available lagged differences of previous years. The 

reported p-values and coefficients of determination 

allow an insight into the explanatory power of the 

instrument sets. Generally, the instrument perfor-

mance was better for levels (instrumented by differ-

ences) than for differences (instrumented by levels). 

System GMM approaches which do not only use dif-

ferences but also levels for instrumentation (e.g. 

BLUNDELL and BOND, 1998) are thus warranted. Even 

so, the elasticities of the persistent factors labor, land 

and capital could often not be identified. Parameters 

were very sensitive to the selection of the sample and 

the precise specification of the estimator. Occasional-

ly, dynamic factor evolution apparently followed an 

explosive process, as the AR(1) coefficient was esti-

mated to be bigger than one. On the other hand, the 

estimates for materials appear very reasonable 

throughout, as they were typically somewhere be-

tween the OLS and Within results. It is here where the 

BB estimator can likely claim some superiority.  

5 Conclusions 

Within this study, we show that the assumptions un-

derlying Within regression and the duality approach 

are fairly strong and implausible for the case of agri-

culture. Within approaches neglect the potentially 

important unobserved factors that vary over time. 

Duality relies on short-term profit maximization of 

agents and perfect competition on output and factor 

markets. In agriculture, these conditions are unlikely 

to be met, which may be a reason why these ap-

proaches have not performed well in estimation prac-

tice.  

In light of the comprehensive literature on ad-

justment frictions on rural land, labor and capital mar-

kets, we regard the presence of adjustment costs  

as particular relevant for the production factors that 

are of key interest in agricultural applications. OLLEY 

and PAKES (1996), BLUNDELL and BOND (2000), LEV-

INSOHN and PETRIN (2003) and WOOLDRIDGE (2009) 

all base their identification strategy on adjustment 

frictions in factor allocation, which seems to be an a-

priori plausible approach. The main difference is that 

BB allow time-invariant fixed effects, whereas OP, 

LP and WLP do not. The former impose a linear 

structure on the dynamic process, while it can be arbi-

trary in the latter. Even so, factor adjustment is as-

sumed to occur in a single period in the proxy or con-

trol function approaches, while the process potentially 

covers many periods in the dynamic panel data mod-

els. In agricultural applications, this is a conceptual 
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advantage of the BB approach. Adjustments of land, 

labor and capital are typically of an intertemporal 

nature, which is not appropriately covered by a one-

year lag. Furthermore, OP and LP do not satisfactorily 

address the problem of collinearity in production 

function estimation. These approaches regard labor 

and land as fully flexible production factors for which 

there is no source of identifying variance across ob-

servations (ACKERBERG et al., 2015). However, 

WOOLDRIDGE (2009) proposes a solution to this issue 

by modifying and extending the central identifying 

assumptions of OP and LP. 

In the empirical section, we show that OLS and 

Within display the biases expected from the literature. 

OLS typically overestimated the variable factor mate-

rials, while Within underestimated the relatively fixed 

factor capital. LP produced plausible results and may 

be taken as an easy-to-implement alternative to the 

received estimators. Given the conceptual problems in 

identifying the supposedly flexible inputs labor and 

land, which the other estimators except for BB and 

WLP share, this is only a second-best choice. General-

ly, LP and WLP produced very similar results which 

strengthens our confidence in the proxy approach on 

the whole. However, the theoretical advantage in 

identifying the land and labor coefficients gives the 

latter an edge over the former.  

The combined first-difference and instrumental 

variable approach of the BB estimator goes a long 

way in trying to get rid of all the factors perturbing an 

unbiased estimation of productivity. Its assumptions 

on adjustment costs are theoretically very plausible 

and could be empirically supported for labor, land and 

capital. However, there is evidence that in agriculture 

this approach overshoots the mark. Adjustment costs 

are so high and factor evolution is so persistent that, 

despite using the systems GMM approach of BLUN-

DELL and BOND (1998), there is often too little vari-

ance left for identification. It is only with regard to 

materials that this estimator appeared to produce rea-

sonable estimates. 

Extending the received Cobb Douglas specifica-

tion to a Translog generally did not generate meaning-

ful results. Either the results were obviously implausi-

ble (OLS and WLP) or little different from Cobb 

Douglas (Within). These results are supposedly a di-

rect consequence of multicollinearity. Hence, the more 

parsimonious parameterization of the Cobb Douglas 

remains a pragmatic, empirically well-supported alter-

native. We regard the analysis of alternative functional 

forms in conjunction with FADN data as an interesting 

starting point for future research. For instance, 

ZHENGFEI et al. (2006) proposed augmented Translog 

specifications that incorporate agronomic principles. 

However, so far, in applied empirical work there has 

been a trade-off between more flexible functional 

forms for production functions and methodological 

sophistication with regards to estimation methods.  

Our estimates show a consistent picture of very 

low production elasticities for labor, land and fixed 

capital, whereas the elasticity of materials is around 

0.7 throughout indicating that improving the availabil-

ity of working capital is the most promising way to 

increasing agricultural productivity. This finding is in 

contrast to recent estimates by MUNDLAK et al. 

(2012), which report significant returns to land and 

fixed capital in a cross-country sample of developing 

and developed countries. However, our results are 

widely consistent with the OP estimates provided by 

RIZOV et al. (2013) on EU countries. Compared to 

other world regions, field crop technologies in the EU 

are characterized by a strong responsiveness to varia-

ble inputs such as fuel, fertilizer and chemicals. In a 

policy perspective, attempts to increase agricultural 

productivity in the EU in the short run, i.e. with given 

technology, should focus on this factor. Whether 

farmers actually exhaust the returns to such inputs 

should be analyzed in subsequent work, for example 

by calculating shadow prices of production factors 

based on the estimates provided in this article.  

Summing up the methodological insights of this 

analysis, the recently suggested approaches to the 

estimation of production functions provide attractive 

conceptual improvements over the received Within 

and duality models. Using adjustment costs for identi-

fication of factor use seems particularly plausible in a 

sector like agriculture, in which long-lasting adjust-

ment frictions in land, labor and capital have been 

recognized for a long time. Even so, empirical imple-

mentation of the conceptual sophistications built in 

these estimators does not always live up to expecta-

tions. This is particularly true for the dynamic panel 

estimator suggested by BLUNDELL and BOND (2000), 

which mostly failed to identify reasonable elasticities 

for the (quasi-) fixed factors. Less demanding proxy 

approaches such as due to LEVINSOHN and PETRIN 

(2003) and WOOLDRIDGE (2009) represent an interest-

ing alternative for agricultural applications. 
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