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Abstract 

The main aim of this study is to measure the technical 

efficiency and decompose total factor productivity 

(TFP) growth of Polish crop farms. The novelty of our 

contribution is threefold. First of all, our work con-

tributes to research on agricultural performance of 

Central and Eastern European countries in the post-

European Union accession period. Secondly, com-

pared to previous studies, our study expands them by 

decomposition of total factor productivity growth for 

a specific sector based on a very extensive dataset, 

thus providing a more in-depth analysis of factors 

driving productivity growth. Thirdly, we have thor-

oughly explored the same data set by several different 

models, showing consequences of choosing a particu-

lar model. The empirical analysis is based on a bal-

anced panel of farms, from 2004 to 2011, taken from 

the Farm Accountancy Data Network. 

Findings show that the average technical effi-

ciency was only 63%. The elasticity of production was 

highest with respect to materials and lowest with re-

spect to area. The capital elasticity was statistically 

non-significant. We point out that this sector is char-

acterized by increasing returns to scale, with esti-

mates ranging from 1.05 to 1.3 for the majority of 

observations. Furthermore, the results show that TFP 

was slightly decreasing (on average by 0.067% per 

annum) over the entire period. 
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1 Introduction 

The transition from centrally planned economy to 

market economy in the Central and Eastern European 

countries (CEEc) provoked many analyses of technical 

efficiency of the agricultural sector in these countries. 

A summary of the results of those studies is presented 

in GORTON and DAVIDOVA (2004). More recent find-

ings can be found in BOJNEC and LATRUFFE (2013). 

However, a more complete assessment of the perfor-

mance of agricultural sectors can be made basing on 

the total factor productivity (TFP) index. Generally, in 

the literature there are mainly studies on cross-country 

comparisons, e.g. BALL et al. (2001), BRÜMMER et al. 

(2002), TONINI and JONGENEEL (2006), BALL et al. 

(2010), SWINNEN and VRANKEN (2010), TONINI 

(2012), LATRUFFE et al. (2012), ČECHURA et al. (2014) 

and BARÁTH and FERTŐ (2017). The farm-level  

studies for a single country from Central and Eastern 

Europe are less common especially ones conducted in 

the post-European Union (EU) accession period, an 

exception is ČECHURA (2012). 

We argue that a micro-level analysis gives the 

most in-depth analysis of the sector. Therefore, in the 

present study we have focused on one country and one 

sector. In particular, we have focused on Polish crop 

farms, since Poland plays an important role in the EU 

cereals market, being the third largest producer. Con-

cerning the particular cereals, Poland was the fourth 

largest producer of wheat, second largest producer of 

rye, and fifth largest producer of barley in the EU in 

2011 (CSO, 2012). Moreover, Poland was the second 

largest producer of potatoes in the EU. 

Since the previous studies on Polish crop farms 

such as LATRUFFE et al. (2008a) were conducted in 

the pre-EU accession period, it is a crucial empirical 

task (considering the role of Polish crop production in 

the EU) to discover the rate and sources of productivi-

ty growth of Polish crop farms in the post-EU acces-

sion period. 

The novelty of our contribution is threefold. First 

of all, our work contributes to research in agricultural 

performance of CEEc in the post-EU accession peri-

od. Secondly, compared to previous studies, our study 

expands them by decomposition of total factor 

productivity growth for a specific sector based on a 

very extensive dataset, thus providing a more in-depth 

analysis of factors driving productivity growth. In 

particular, we were able to distinguish farm profiles 

according to economic size and land size. This ena-

bled us to indicate which profiles had the highest TFP 

growth, thus indicating which farms were most likely 

to develop further, and which were rather going to exit 

the sector. Thirdly, we have thoroughly explored the 

same data set by several different models, showing 

consequences of choosing a particular model. 
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The remainder of this paper is structured as fol-

lows. In Section 2 we present methods used to esti-

mate the stochastic frontier model. In Section 3 we 

review the methods used to decompose productivity 

growth into its components. In Section 4 the data are 

described, and the empirical results are presented in 

Section 5. The paper concludes with a summary of the 

main findings. 

2 Econometric Model 

To measure farm-specific technical efficiency, we use 

stochastic frontier models, which were simultaneously 

introduced by AIGNER et al. (1977) and MEEUSEN and 

VAN DEN BROECK (1977). 

The general stochastic frontier production func-

tion for farm i (i=1,…,N) in period t (t=1,…,T) can be 

formulated as follows: 

𝑦𝑖𝑡 = ℎ(𝑥𝑖𝑡 , β) + ν𝑖𝑡 − 𝑢𝑖𝑡 (1) 

where yit is the natural log of the observed output, h is 

a known production function (after logarithmic trans-

formation), xit is the vector of log of inputs used by the 

farm, β is a vector of k parameters, and vit is a random 

error term with a mean of zero and constant variance 

𝜎𝜈
2, representing random shocks, 𝜈𝑖𝑡~𝑁(0, 𝜎𝜈

2). Com-

ponent uit≥0 is referred to as inefficiency, and so the 

output-oriented technical efficiency score is calculated 

as 𝑇𝐸𝑖𝑡 = 𝑒𝑥𝑝(−𝑢𝑖𝑡). 
The two most popular formulations that describe 

the time variation of inefficiency take the following 

form: 

𝑢𝑖𝑡 = 𝑓(𝑡) ⋅ 𝑢𝑖, (2) 

where ui is non-negative truncations of the 𝑁(𝜇, 𝜎𝑢
2) 

distribution (BATTESE and COELLI, 1992). They differ 

in the form of 𝑓(𝑡), which determines how technical 

inefficiency term varies over time. KUMBHAKAR 

(1990) proposed a parametric sigmoid function of 

time 𝑓(𝑡) =  (1 + exp(𝛿1𝑡 + 𝛿2𝑡2))−1, while in 

BATTESE and COELLI (1992) the parameterization of 

the function of time was formulated as: 

𝑓(𝑡) = 𝑒𝑥𝑝[−𝜂(𝑡 − 𝑇)] (3) 

Both specifications have some limitations that the 

ranking of the firms does not change in successive 

periods. The firm classified first will be first also  

in the last period of the analysis. The generalisation  

of BATTESE and COELLI (1992) model that allows  

the temporal pattern of inefficiency effects to vary 

across firms was proposed by CUESTA (2000). A  

thorough review of recent advances in the stochastic 

frontier analysis is presented by GREENE (2008), 

KUMBHAKAR and TSIONAS (2011) as well as PARME-

TER and KUMBHAKAR (2014). 

In the present study, we have utilized the time-

varying inefficiency model introduced by BATTESE 

and COELLI (1992). They proposed estimating the 

model in a random effects framework using the max-

imum likelihood estimator. The log-likelihood func-

tion and its partial derivatives are provided in their 

paper. We used the truncated normal and half-normal 

models, described in detail by BATTESE and COELLI 

(1992), which we estimated using COELLI and  

HENNINGSEN (2013) package in R1. Thus the likeli-

hood function for the reference model is parameter-

ized by 𝜎𝑆
2 = 𝜎𝜈

2 + 𝜎𝑢
2 and 𝛾 = 𝜎𝑢

2/𝜎𝑆
2. In the half-

normal model and cross-sectional data,  is a useful 

indicator of the influence of the inefficiency compo-

nent in the overall variance of the composed error 

term (𝜀𝑖 = 𝜈𝑖 − 𝑢𝑖) that is the difference between the 

observed output and the predicted frontier output 

(GREENE, 2008). Then, as  tends to 0, the symmetric 

error dominates the one-sided component in the de-

termination of εi. In the truncated normal model, these 

considerations about the meaning of  are limited due 

to an additional location parameter () of the ineffi-

ciency distribution. 

Generally, the estimates of inefficiency are rea-

sonably robust to model specification. According to 

GREENE (2008), since all results are application-

specific, there is no analytical evidence as to what 

extent distribution for inefficiency term affects the 

results. In the present study, we consider two most 

commonly used distributions for the inefficiency term: 

truncated normal and its special case, i.e. half-normal. 

Moreover, we consider time-varying (uit) and time-

invariant specifications for the inefficiency (uit = ui  

for every t). As a result, the frontier function, which  

is defined by Equations (1), (3) and (4), is estimated 

for four models. The most general is the first model  

in which the inefficiency terms have time-varying 

structure and have truncated normal distribution (i.e.  

 is an unknown, free parameter). Model 2 is the 

time-invariant version of the above model ( = 0). 

Model 3 is the special case of Model 1; in it, the  

uit has half-normal distribution ( = 0). Model 4 is  

a special version of Model 3 with the assumption  

that efficiency is constant over time ( = 0 and  = 0). 

                                                           
1  Additionally, we use own source code to calculate the 

production function characteristics. 
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Initially, we assume that deterministic part of all  

models is formulated as in (4). An additional model 

(M5) is obtained by imposing restrictions on the  

parameter space in model M1, i.e. 0, trendj  for 

j=1,...,4 in (4). Consequently, model M5 does not 

allow the parameters to vary over time. Most signifi-

cantly, though, our model estimation has shown  

that both models M1 and M5 fit data very well, espe-

cially the first one (M1). More details can be found in 

Table 2 in Section 5. 

The most popular functional form of the produc-

tion frontier is a translog which belongs to the family 

of flexible functional forms (CHRISTENSEN et al., 

1973). These functional forms are widely used in ap-

plied econometrics, including production and cost 

analysis. Translog is a second-order local approxima-

tion of any twice-differentiable function, and it is im-

portant that it satisfies the Diewert’s minimum flexi-

bility requirement for flexible forms. In this study, the 

deterministic kernel of the stochastic production fron-

tier is given in the following translog form: 

ℎ(𝑥𝑖𝑡; 𝛽) = 𝛽0 + ∑ 𝛽𝑗
(𝑡)

⋅ 𝑥𝑖𝑡,𝑗 +𝐽
𝑗=1

∑ ∑ 𝛽𝑗,𝑔 ⋅ 𝑥𝑖𝑡,𝑗 ⋅ 𝑥𝑖𝑡,𝑔 + 𝛽𝑡𝑟𝑒𝑛𝑑 ⋅ 𝑡,𝐽
𝑔≥𝑗

𝐽
𝑗=1   

𝛽𝑗
(𝑡)

= 𝛽𝑗 + 𝛽𝑗,𝑡𝑟𝑒𝑛𝑑 ⋅ 𝑡  𝑓𝑜𝑟  𝑗 = 1, … , 𝐾. (4) 

The translog form (4) with a linear trend in the param-

eters was used, among others, by COELLI et al. (2005) 

and KELLERMANN et al. (2011). The advantage of this 

form is that the elasticities with respect to factors and 

economies of scale may change over time. In the liter-

ature, the generalisation of this concept to a quadratic 

trend in the parameters was also considered by, 

among others, BATTESE and BROCA (1997) and KOOP 

et al. (1999, 2000). 

In the empirical study presented below, produc-

tion inputs are aggregated into four categories (J=4). 

To obtain clear interpretation of the parameters in (4), 

all variables were mean-corrected prior to estimation. 

Therefore, the first-order parameters in the translog 

function are interpreted as the output elasticities with 

respect to the inputs at the sample means (including 

time trend variable). 

3 Measuring TFP Growth 

The estimated stochastic production function with  

the time varying inefficiency can be easily used to 

measure Total Factor Productivity (TFP). The TFP 

index measures the change in total output relative to 

changes in the use of all inputs. The commonly used 

productivity index is the so-called Malmquist index 

introduced by CAVES et al. (1982). The first paramet-

ric decomposition of TFP change into technical effi-

ciency change and technical change was presented by 

NISHIMIZU and PAGE (1982). They derived their TFP 

indices using derivatives. FÄRE et al. (1994) demon-

strated that the Malmquist index can be obtained di-

rectly as the ratio of two distance functions in non-

parametric framework using Data Envelopment Anal-

ysis. In their study, productivity index is decomposed 

into three components: technical efficiency change, 

technical change and scale efficiency change. The 

application of explicit distance measures was later 

adopted in parametric stochastic frontier approach by 

FUENTES et al. (2001) and OREA (2002). 

In the present study, TFP growth is measured ac-

cording to the method proposed by OREA (2002), who 

decomposed the TFP index into three components: 

Technical Efficiency Change (EC), Technical Change 

(TC) and Scale Change (SC). The Malmquist index 

used in this study is based on single output production 

technology (details of this case can be found in 

COELLI et al., 2005: 300-302). Other (generalized) 

approach was proposed by KOOP et al. (1999). The 

application of the extended latter approach to measure 

the productivity change in Polish dairy farms was 

presented in MAKIEŁA et al. (2017). 

With reference to the approach presented by 

OREA (2002), the efficiency change (EC) captures the 

changes in technical efficiency from one period to the 

next. It is simply calculated from the technical effi-

ciency terms obtained from the model, using the fol-

lowing rate Equation: 

𝐸𝐶𝑖,𝑡 𝑡⁄ +1 = 𝑒𝑥𝑝(𝑢𝑖,𝑡 − 𝑢𝑖,𝑡+1) − 1 =
𝑇𝐸𝑖,𝑡+1

𝑇𝐸𝑖,𝑡
− 1 (5) 

The technical change component characterizes the 

shift in best-practice technologies. It is derived from 

the geometric mean of the partial logarithmic deriva-

tives of the production function with respect to time 

between adjacent periods t and t+1. Due to the fact 

that all economic variables are conveniently expressed 

in a logarithmic scale, we can use exponential trans-

formation to compute an indicator of relative changes. 

In consequence, the rate of technical change is given by: 

𝑇𝐶𝑖,𝑡 𝑡⁄ +1 = 𝑒𝑥𝑝 [
1

2
(

𝜕𝑦𝑖,𝑡+1

𝜕𝑡
+

𝜕𝑦𝑖,𝑡

𝜕𝑡
)] − 1 (6) 

In the case of translog production function given by (4), 

the partial derivative with respect to time is as follows:  
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𝜕𝑦𝑖,𝑡

𝜕𝑡
= 𝛽𝑡𝑟𝑒𝑛𝑑 + ∑ 𝛽𝑗,𝑡𝑟𝑒𝑛𝑑 ⋅ 𝑥𝑖𝑡,𝑗

𝐽
𝑗=1  (7) 

Scale change measures the contribution of scale econ-

omies to productivity growth. The scale change (SC) 

component is calculated by aggregating inputs using 

elasticity shares (COELLI et al., 2005: 302): 

𝑆𝐶𝑖,𝑡∕𝑡+1 = exp [
1

2
∑ 𝐶𝑖,𝑡 𝑡⁄ +1,j (𝑥𝑖,𝑡+1,𝑗 −

𝐽
𝑗=1

𝑥𝑖,𝑡,𝑗)] − 1  (8) 

where: 

𝐶𝑖,𝑡 𝑡⁄ +1,𝑗 = 𝐸𝑙𝑎𝑠𝑡𝑖,𝑡,𝑗 (1 −
1

𝑅𝑇𝑆𝑖,𝑡
) +

𝐸𝑙𝑎𝑠𝑡𝑖,𝑡+1,𝑗 (1 −
1

𝑅𝑇𝑆𝑖,𝑡+1
)  (9) 

In the case of production function given by Equation 

(4), the elasticity with respect to the input j is given by: 

𝐸𝑙𝑎𝑠𝑡𝑖,𝑡,𝑗 =
𝜕𝑦𝑖𝑡

𝜕𝑥𝑖𝑡,𝑗
= 𝛽𝑗 + 2𝛽𝑗,𝑗 ⋅ 𝑥𝑖𝑡,𝑗 +

         ∑ 𝛽ℎ,𝑗 ⋅ 𝑥𝑖𝑡,ℎ + 𝛽𝑗,𝑡𝑟𝑒𝑛𝑑 ⋅ 𝑡𝐻
ℎ≠𝑗  (10) 

and, in consequence, the returns to scale coefficient is 

given by 

𝑅𝑇𝑆𝑖,𝑡 = ∑ 𝐸𝑙𝑎𝑠𝑡𝑖,𝑡,𝑗
𝐽
𝑗=1  (11) 

As it can be easily seen, the decomposition of SC 

presented above in Equation (8) allows to compare the 

technology of a farm against a benchmark technology 

satisfying constant returns to scale. It means that, in 

both periods, for a unit (farm) operating under con-

stant returns to scale, SC rate is zero if each change in 

inputs satisfies this condition (RTS=1). It is easy to 

formulate other conclusions in the case of proportion-

al change in inputs and established economies of scale 

in production.  

The scale change rate is positive if, for example, 

a unit characterized by RTSt>1 increases (in period t) 

the scale of production through a proportional in-

crease in inputs. Then the coefficient of returns to 

scale will decrease, i.e. RTSt+1 < RTSt, but if RTSt+1 is 

still greater than 1, thus SC indicator is positive. An 

analogous case occurs for a unit characterized by 

0<RTSt<RTSt+1<1 when it is operating still under di-

minishing returns to scale in both periods and inputs 

are reduced proportionately. A negative value of SC is 

when RTS>1 and a farm reduces its activity (inputs 

are decreasing) or alternatively, if RTS<1 and the farm 

expands its activity (inputs are increasing), simultane-

ously. In other cases, it is not easy to draw clear con-

clusions about a change in SC. 

4 Data on Polish Crop Farms 

The dataset used for the analysis is taken from the 

Polish Farm Accountancy Data Network (FADN). It 

covers farms whose main source of revenue in the 

analyzed period was field crop production. The pre-

cise definition of the variables in the production func-

tion is based on other studies on the field crop sector 

in which FADN data were used (see ZHU and LAN-

SINK, 2010; LATRUFFE et al., 2004). Therefore, the 

output (Q) is specified as deflated total net farm reve-

nues from sales excluding the value of feed, seeds and 

plants produced within the farm. Agricultural produc-

tion price indices (i.e. the market procurement prices 

of crop and animal provided by Central Statistical 

Office of Poland) are used as deflators. The four fac-

tors of production are defined as follows: 

1. Physical capital (K) is measured in terms of de-

flated book value. It includes fixed capital such 

as buildings and fixed equipment, as well as ma-

chines and irrigation equipment. The aggregated 

measure of this input was deflated by the price 

index for agricultural machinery and equipment, 

and building construction.  

2. Total labour (L) is measured in hours. This 

measure includes both hired and family labour 

declared by the farmer during the interview. 

3. Total utilized agricultural area (A, in hectares) 

refers to owned and rented land. 

4. Materials (M) consist of several subcategories: 

purchased feed, seeds and plants, fertilizers, crop 

protection, crop and livestock specific costs, en-

ergy and services. Originally, these subcategories 

are measured as the cost of resources used in 

farm production. In order to deflate the total re-

ported expenditure on materials, we used price 

indices provided by the Central Statistical Office 

for each subcategory. The aggregate measure of 

materials is calculated by deflating total cost of 

all items with a share-weighted average price in-

dex constructed using the expenditure share for 

all the components. Furthermore, we excluded 

the value of seeds and feed produced within the 

farm from this category to avoid double measur-

ing these costs. 

The stochastic frontier models of the Polish farms 

specialized in field crops were estimated using the 

yearly data set covering a sample of 660 farms be-

tween 2004 and 2011. The summary statistics for 

farms in the sample are presented in the Table 1. The
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average area of land per farm is 43 hectares. However, 

since FADN data are biased toward larger farms, the 

average area per farm is in fact smaller. It amounted 

to 8.4 hectares in 2011 (CSO, 2017). To conclude, it 

means that Polish farms are small, especially in com-

parison to those from Western Europe. ZHU and LAN-

SINK (2010) reported that the average land area per 

owner is 163 ha in German, 71 ha in the Netherlands, 

115 ha in Sweden, and 142.9 ha in France (LATRUFFE 

et al., 2012). Crop farms in CEEc are also much larger 

than in Poland, for instance in the Czech Republic the 

average utilized agricultural area is 144 ha (LATRUFFE 

et al., 2008b), while in Hungary it is 226.4 ha 

(LATRUFFE et al., 2012). Slovenian farms are similar 

in size to Polish farms, with an average land size of 

20 ha (BOJNEC and LATRUFFE, 2013). 

According to the data from the farm accounts, we 

could establish that the average yearly income from 

selling crops was 2.959 PLN per hectare approximately  

696 euros per ha. Moreover, the average labour 

productivity of Polish crop farms was 43.2 PLN (10.2  

euros) per hour. It is noteworthy that in 2004 GDP per 

hour worked was 30.2 euros in the present European 

Union member states (28 countries), and only 7.2 

euros in Poland, whereas in 2011 this indicator 

reached 35 and 12 euros in these regions, respectively 

(see PORDATA, 2017). Moreover, the latter indicator 

obtained from the sample data is convergent with a 

measure of an economy competitiveness published in 

official statistics publications. Furthermore, it also 

means that labour productivity in Poland is still very 

low compared to the EU average and this also applies 

to agriculture. 

5 Estimation and Testing of  
Stochastic Frontier Models 

Table 2 shows ML estimation results for the parame-

ters of the stochastic components of the stochastic 

frontier production function (1). Five models are  

evaluated in two ways: by comparing across models  

to determine which ones best fit the data in terms  

of the likelihood function, and by calculating Akaike’s 

Table 1.  Descriptive statistics for variables in the sample 

Variable* Mean** 
Percentile 

25th 50th 75th 

Output (‘000 PLN) 122 63 118 233 

Capital (‘000 PLN) 232 124 232 431 

Labour (in hours) 4,056 2,900 3,938 5,214 

Materials (‘000 PLN) 84 42 78 150 

Land area (in ha) 43 21 40 83 

*Figures in PLN were deflated (with base year 2004). 

**Descriptive statistics for output and input variables were calculated on the logarithmic scale and then back transformed to the original scale. 

Source: authors’ calculations 

Table 2.  Estimates of disturbance distribution parameters (error term and inefficiency component) 

 Model* 

Parameter M1 M2 M3 M4 M5 

 -0.042 (0.007) - -0.049 (0.008) - -0.044 (0.006) 

 0.543 (0.092) 0.466 (0.055) - - 0.551 (0.14) 

2

S  0.133 (0.014) 0.114 (0.007) 0.265 (0.018) 0.208 (0.011) 0.135 (0.016) 

 0.555 (0.041) 0.476 (0.031) 0.773 (0.017) 0.707 (0.017) 0.562 (0.043) 

2

u  0.074 (0.013) 0.054 (0.007) 0.205 (0.019) 0.147 (0.011) 0.080 (0.015) 

2

v  0.059 (0.001) 0.060 (0.001) 0.060 (0.001) 0.061 (0.001) 0.059 (0.001) 

Average TE 0.632 0.634 0.752 0.750 0.630 

lnL -708.1 -724.8 -714.1 -734.1 -715.8 

*M1 - truncated normal model with time-varying efficiency, M2 - truncated normal model with time-invariant efficiency, M3 - half-

normal model with time-varying efficiency, M4 - half-normal model with time-invariant efficiency, M5 - simplified version of model M1 

without a time trend in the parameters (j,trend = 0 for every j). 

Source: authors’ calculations 
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Information Criterion (AIC) for each model; see Table 

3. Therefore, the choice of the best model is made by 

testing statistically the reduction in log likelihood 

between five models. We compare relative strength of 

the models using a likelihood ratio (LR) test. For ex-

ample, when testing M1 and M5 we find that the LR 

test statistic equals 15.5, and so exceeds the critical 

value at not less than the 3.7·10−3 level of signifi-

cance. This shows that the differences between mod-

els M1 and M2, M3 or M4 are significant at the 1% 

level. Therefore, the most general model M1 is the 

preferred one. It seems to prove that one additional 

parameter  is important in explaining the similarities 

and differences between the considered models. 

These results are confirmed by AIC, which is a 

criterion for selecting among both nested and non-

nested models. It also shows that, out of the remaining 

four models tested, the non-nested model M5 provides 

a better fit than the three others and all are considered 

better than the half-normal model with time-invariant 

efficiency (M4). Comparison of model M5 against 

models M2 and M4 shows that the linear trend in the 

parameters is generally less preferred than the time 

varying efficiency and truncated normal distribution of 

the inefficiency term. 

Additionally, we have also considered Cobb-

Douglas version of model M5, restricting some pa-

rameters in , i.e. j,g = 0 for every g and j. The re-

stricted log-likelihood equals −777.82, and the AIC 

value is 1575.6. Therefore, this linear homogeneity 

restriction on translog is strongly rejected by the data.  

Regarding the estimation of the error components 

(including the inefficiency term), it can be seen that 

the results from Table 2 indicate that parameter  is 

strongly statistically significant in all models consid-

ered. Therefore, the presence of technical inefficiency 

leads to a decrease in crop production, which in turn 

requires fewer inputs to be used.  

The results of efficiency estimates presented in 

Table 2 require further explanation. First of all, it 

should be noted that the technical efficiency scores are 

different across models. Secondly, it appears that the 

estimated efficiency scores obtained on the truncated 

normal frontier models (M1, M2, M5) are clearly 

smaller than those based on the half-normal models 

(M3 and M4). It is noteworthy that the truncated dis-

tribution of time-invariant firm effects ui is character-

ized by two parameters. In the former models, the 

average technical efficiency estimate over the eight-

year period is approximately only 63%, while in the 

latter models (M3 and M4) it is about 75%. These 

findings contradict the results obtained for example by 

GREENE (2008), who showed that inefficiency esti-

mates are robust to model specification. Consequent-

ly, it is vital to explain the most probable cause of 

such a result. Further examination of the results sug-

gests that the form of the production function and the 

assumption of time-varying or time-invariant efficien-

cy do not affect the differences in efficiency scores. 

Therefore, the source of differences in efficiency es-

timates between the considered models may be the 

type of distribution chosen for the inefficiency error. 

This explanation is supported by the results of RITTER 

and SIMAR (1997), who found that free-shaped mod-

els (such as truncated normal or gamma) may lead to 

an imprecise estimate of shape parameter and a loss of 

precision regarding quantities of interest, e.g. the indi-

vidual inefficiencies. It must be noted that in the trun-

cated normal model for  > 0 the shape of density 

function of the inefficiency term is different from that 

in the half-normal case ( = 0). Since the estimates of 

parameter  are very similar in both models (M1 and 

M3), the features of the distribution of ui are easier to 

compare between these models. In model M1, the 

estimate of  equals 0.543 (0.092), then it is relative-

ly much larger than zero. As a result, it suggests that 

the raised estimates of inefficiency may be affected by 

the high value of . It is noteworthy that, considering 

a truncated normal distribution with a high estimate,  

makes the shapes of densities vit and uit hardly distin-

Table 3.  The likelihood-ratio test for model selection 

Model 
Number of 

parameters 

Degree of  

freedom 
LR test statistic p-value 

Akaike’s  

criterion 

Rank by  

AIC 

M1 24 - - - 1464.1 1 

M2 23 1 33.4 7.4·10−9 1495.6 4 

M3 23 1 12.1 5·10−4 1474.2 3 

M4 22 2 52.0 5·10−12 1512.1 5 

M5: M1  

with 𝛽𝑗,𝑡𝑟𝑒𝑛𝑑 = 0 
20 4 15.5 3.7·10−3 1471.7 2 

Source: authors’ calculations  
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guishable. Consequently, in this empirical study the 

random component, ui, may capture partly statistical 

noise. By comparing the results of the estimation de-

scribed in Table 2, we find that estimated variance of 

disturbance term, vit, is almost identical in all models. 

Moreover, the high estimate of  causes the validity of 

model M1 in terms of the log-likelihood value. These 

results may suggest that ui is poorly identifiable due to 

relations between vit and uit. Therefore, as pointed out 

by RITTER and SIMAR (1997), the usage of relatively 

simple distributions, such as half-normal or exponen-

tial is more preferred than more flexible distributions 

such as truncated normal or gamma, because they 

allow to avoid identification problems. They also in-

dicate that the ranking of firms is not affected by dis-

tribution choice. Our results support that finding 

because the linear correlation of the effi-

ciency estimates based on M1 and M3 

are 0.98 for every period. Spearman rank 

correlation coefficient equals 0.99, 

which suggests that the efficiency rank-

ings would be quite similar in these 

models. This finding is also in line with 

the results of KUMBHAKAR and LOVELL 

(2000: 90) who reported the highest 

correlation coefficient between half-

normal and truncated normal efficiency 

estimates. 

Moreover, the estimated expecta-

tion value (mean) of ui is equal to 0.558 

(with variance equal to 0.065) in M1 and 

0.362 (with variance 0.075) in M3 (see 

formulas A5 and A6 in BATTESE and COELLI, 1992). 

It is quite apparent that in model M1 distribution for 

the inefficiency term is shifted to the right compared 

to the latter. Therefore, it explains the significant dif-

ferences in efficiency scores obtained from the two 

models, and thus clarifies the fact that the estimated 

inefficiencies suggest that the restricted model M3 

produces much smaller values for the inefficiencies 

than the more general truncated distribution. 

Since inefficiency is inherently unobservable, 

there is a substantial difficulty in identifying it in em-

pirical studies. Therefore, estimates of inefficiency 

must be derived indirectly. It seems that the choice of 

the distribution for the unobserved inefficiency poses 

an ongoing challenge in the classical literature. VAN 

DEN BROECK et al. (1994) showed that a Bayesian 

stochastic frontier model is theoretically and practical-

ly useful, and feasible. They pointed that the difficult 

choice of a particular sampling model for the ineffi-

ciency error term could be avoided by mixing over 

different models, reflecting the spectrum of distribu-

tions proposed in the literature. This study considered 

several prior distributions for inefficiency including 

half-normal and truncated normal, exponential, and 

the Erlang distributions. 

Table 4 shows the variation of technical efficien-

cy (TE) scores over time in models with time-varying 

efficiency. The estimate of  is always significantly 

greater than zero, and hence the average TE score is 

decreasing over time. In particular, in model M1 it 

declined from its peak of 0.67 in 2004 to less than 

0.59 eight years later. For comparison, LATRUFFE et 

al. (2004) reported a similar average technical effi-

ciency (0.73) for Polish crop farms in 2000, but they 

considered a model for cross-sectional data. 

6 Modelling Production –  
Empirical Results 

Table 5 gives information about the production func-

tion characteristics of a typical crop farm (with aver-

age values of logs of the inputs). It is interesting to 

note that all estimated elasticities except the first one 

are highly statistically significant at the 1% level and 

are positive as expected. The elasticity of production 

with respect to capital turned out to be statistically 

non-significant and quite small in our models, i.e. it 

was close to zero and slightly negative, but only in 

models M1 and M3. The results of the estimation 

indicate that the basic regularity conditions of the 

underlying production frontier are satisfied. Further 

examination shows that about half (52%) of the farm 

capital elasticities (in the sample) is slightly below 

zero. In other cases, the elasticities invariably have the 

expected signs. These results show that the highest is 

Table 4.  Average farm-level technical efficiency (TE) estimates  

Year 

M1 (truncated with 

time-varying efficiency 

M3 (i.e. M1  

with =0) 

M5 (M1  

with j.trend=0) 

2004 0.67 0.78 0.66 

2005 0.66 0.77 0.65 

2006 0.65 0.77 0.64 

2007 0.64 0.76 0.63 

2008 0.63 0.75 0.62 

2009 0.62 0.74 0.60 

2010 0.60 0.73 0.59 

2011 0.59 0.72 0.58 

Average 0.63 0.75 0.62 

Source: authors’ calculations  
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the elasticity of production with respect to materials, 

while the lowest are the elasticities with respect to 

area and capital. Furthermore, during the period 2004-

2011, technical progress in crop production was sig-

nificant only in models M1 and M5. These results are 

in line with findings of ČECHURA et al. (2014) who 

also found that crop farms in the European Union 

show the highest elasticity for materials, and the low-

est for capital. However, ČECHURA et al. (2014) found 

technical regress for Polish crop farms. The low capi-

tal elasticity can be explained according to ČECHURA 

et al. (2014) by limited access to credit and usage of 

old machinery by farmers. This can be the case of 

Poland because, as indicated by CIAIAN et al. (2011), 

Polish farms are credit constrained. The second cause 

of low elasticity of capital is also possible since, as 

LORENCOWICZ and UZIAK (2015) pointed out, the 

average age of a tractor is more than 23 years. Fur-

thermore, they noted that owners of small farms do 

not invest in new machines, using their machines even 

for 40 years.  

In the period under investigation, a typical Polish 

crop farm was characterized by increasing returns to 

scale, which is approximately 1.16 (±0.01). Further 

examination indicates that only 2.9% of the farms had 

decreasing returns to scale. Therefore, almost all units 

had non-diminishing returns to scale and even 49% 

operated under increasing returns to scale greater than 

1.16. This result is in line with that of LATRUFFE et al. 

(2005), who reported that 86% of crop farms had an 

increasing RTS in 2000. We found that 87% of obser-

vations were characterized by increasing returns to 

scale ranging from 1.05 to 1.3. Less than 3% of them 

had RTS greater than 1.3. This high value of RTS can 

be explained by relatively small size of Polish farms. 

ČECHURA et al. (2014) formulated the same conclu-

sion for crop farms in Austria, Germany, Denmark, 

France, the United Kingdom, Ireland, the Netherlands, 

Poland and Slovakia.  

It is noteworthy that estimates of returns to scale 

evidently vary across units, making the Cobb-Douglas 

model inadequate to describe crop production in Po-

land. The hypothesis of constant returns to scale is 

rejected as well. 

Table 6 shows that elasticities with respect to la-

bour and area are approximately constant in the period 

2004-2011. It can be seen that the only noticeable 

change concerns elasticities with respect to two in-

puts: capital and materials. The average elasticity with 

respect to capital was decreasing, while material 

Table 5.  Production elasticity estimates and returns to scale (RTS) at sample mean for inputs*  

(standard errors in parentheses) 

Elasticity   Model   

w.r.t. M1 M2 M3 M4 M5 

Capital -0.001 (0.012) 0.004 (0.013) -0.001 (0.012) 0.001 (0.012) 0.012 (0.013) 

Labour 0.273 (0.015) 0.275 (0.014) 0.286 (0.014) 0.286 (0.014) 0.277 (0.014) 

Materials 0.679 (0.018) 0.683 (0.017) 0.664 (0.017) 0.665 (0.017) 0.668 (0.017) 

Area 0.206 (0.015) 0.199 (0.014) 0.195 (0.014) 0.191 (0.014) 0.206 (0.017) 

RTS 1.157 (0.014) 1.160 (0.014) 1.144 (0.014) 1.143 (0.014) 1.163 (0.017) 

Time 0.017 (0.004) -0.005 (0.003) 0.001 (0.003) -0.006 (0.003) 0.018 (0.005) 

*Inputs equal to the arithmetic mean of the data on a logarithmic scale. 

Source: authors’ calculations 

 

 

Table 6.  Average estimated elasticity of production for the yearly period (model M1) 

   Elasticity    

Year Capital Labour Materials Area Time* RTS 

2004 0.036 0.277 0.648 0.197 0.016 1.158 

2005 0.026 0.279 0.653 0.202 0.016 1.160 

2006 0.015 0.276 0.666 0.201 0.017 1.158 

2007 0.006 0.273 0.672 0.204 0.018 1.156 

2008 -0.006 0.269 0.683 0.209 0.018 1.155 

2009 -0.020 0.269 0.695 0.212 0.017 1.156 

2010 -0.029 0.273 0.702 0.211 0.018 1.157 

2011 -0.040 0.269 0.714 0.212 0.018 1.154 

Average -0.001 0.273 0.679 0.206 0.017* 1.157 

* Time trend elasticity is calculated as a geometric mean. 

Source: authors’ calculations 
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elasticity was increasing in the investigated period. 

This result is consistent with the test results concern-

ing the evaluation of model fit, which shows that the 

model with time-varying elasticities is more preferred 

than the model with time-invariant elasticities (M5). 

In addition, in each period, increasing returns to scale 

were observed for almost all of the farms. 

Table 7 reports the annual decomposition of TFP 

growth together with an overall yearly average and 

seven sub-period averages for the crop farms. The 

components of productivity growth are measured in 

percentages, i.e. Equations (5), (6) and (8) are multi-

plied by 100%. The results show a decrease in total 

factor productivity rather than positive TFP growth 

rates. Over the entire period, negative growth was 

more common than positive one. As a result, it can be 

seen that TFP was slightly decreasing (on average by 

0.067% per annum) over eight years. Therefore, this 

value was close to zero, so the negative growth of 

productivity was very weak. This is primarily attribut-

able to strong negative technical efficiency change, 

which is not compensated by positive technical 

change and scale effect in every period. 

The result of further analysis shows that technical 

change (TC) was positive over the entire period, while 

technical efficiency change was negative over the 

entire period. The average annual growth rate of pro-

duction due to the technical change is increasing over 

time and, on average, equals about 1.7% annually. 

Similarly, ZHU and LANSINK (2010) reported an in-

creasing positive technical change from 1995 for crop 

farms in Sweden (which joined EU in 1996). 

Productivity growth rate due to the change in ef-

ficiency score equals minus 2%. The decreasing tech-

nical efficiency change can be partially explained by 

the impact of Common Agricultural Policy subsidies, 

which were shown in many studies to negatively af-

fect technical efficiency (see ZHU and LANSINK (2010), 

MARZEC and PISULEWSKI (2017)). 

The presented results concerning the decomposi-

tion of TFP show, similarly as LATRUFFE et al. 

(2008a) findings for the pre-accession period, a de-

cline in productivity growth. However, in that study 

the decline of productivity was mainly caused by neg-

ative technical change, while in our study it is at-

tributed to negative technical efficiency change. 

Moreover, the conducted micro-level analysis re-

veals a different picture of Polish crop farm sector 

than from international comparisons. In particular, our 

finding contradicts the results obtained by ČECHURA 

et al. (2014), who showed an increase in TFP for 

Polish crop farms in the post-EU accession period 

(average TFP rate equals to 0.28%). However, the 

different result might be caused by the different meth-

odologies of TFP measurement. Furthermore, the 

obtained results show the opposite development of the 

farms on micro-data level than in the other CEE coun-

tries; e.g. ČECHURA (2012) reported a TFP growth for 

plant production sector in the Czech Republic in the 

2004-2007 period. 

In the present study, we also conducted a pro-

found analysis to explain the TFP decrease, dividing 

the considered farms according to economic size (ES) 

and utilized agricultural area (UAA). Size groups with 

respect to income level (i.e. output of crops and crop 

products) are defined as: small (2 ES<25 thousand 

euros), medium and large (100 thousand euros). 

Table 8 shows that small farms have a negative 

TFP growth rate and large farms are characterized by 

positive TFP. The results of the in-depth analysis 

show that the source of these differences in TFP is, 

above all, the higher technical efficiency (TE) of larg-

er units. During the period considered, the mean TE 

score was 0.69 for large farms, 0.67 for medium, and 

only 0.59 for small units. Thus, there were clear eco-

nomic differences between two extreme groups. In 

2011, the large farms accounted for only 11% of the 

surveyed units, while the share of the small ones was 

Table 7.  Decomposition of TFP growth in Polish crop farms (in percentages, model M1) 

Years Efficiency Change Technical Change Scale Change TFP growth 

2004/2005 -1.753 1.638 0.101 -0.015 

2005/2006 -1.827 1.674 0.307 0.153 

2006/2007 -1.904 1.737 0.214 0.047 

2007/2008 -1.984 1.785 0.053 -0.146 

2008/2009 -2.068 1.770 0.041 -0.257 

2009/2010 -2.155 1.764 0.426 0.035 

2010/2011 -2.245 1.809 0.153 -0.282 

Average -1.991 1.739 0.185 -0.067 

Source: authors’ calculations 
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40%. Consequently, 60% of the farms had positive 

productivity growth in 2004-2011. 

Table 9 reports the results based on the second 

grouping scheme. The farms were divided into four 

groups according to utilized agricultural area. The 

differences in TFP growth between these groups were 

smaller than between groups stratified according to 

ES. This is partly due to the fact that we considered 

the most detailed grouping of the units. However, the 

nature of dependence is qualitatively the same. Simi-

lar results were obtained by LATRUFFE et al. (2008a), 

who showed that best-performing are farms with the 

largest average land size. 

7 Conclusions 

In the present study we have considered a number of 

competing model specifications, among which there 

are the truncated normal model with time-varying 

efficiency and its simpler variants. The latter are ob-

tained by imposing restrictions on the structure of the 

reference model. Likelihood ratio test and Akaike’s 

information criterion indicate that the most general 

model is the preferred one. Subsequently, we obtain 

the mean efficiency for each considered model, dis-

covering that it differed significantly between the 

models. Substantial differences were especially ap-

parent between truncated normal and half-normal 

model specifications. While the former indicates a 

mean technical efficiency of 63%, the latter suggests 

that the mean technical efficiency is higher, i.e. 75%. 

At the same time, efficiency scores in both models 

were decreasing over time during the eight-year study 

period. From the agricultural policy point of view it 

implies that organization of production requires con-

siderable improvement. However, discovering the 

exact cause of decreasing technical efficiency scores 

requires in-depth analysis in the future. Further exam-

ination of the results reveals a high Spearman rank 

correlation coefficient between technical efficiency 

scores in both models. Therefore, the rankings of 

farms are very similar or even identical in both cases. 

From these results, we can draw the following conclu-

sion. Due to identification problems, application of 

relatively simple distributions, such as half-normal or 

exponential, is more preferred than more flexible dis-

tributions, such as truncated normal or gamma, espe-

cially since the ranking of farms is unaffected by dis-

tribution choice. 

Concerning the properties of production technol-

ogies, it should be noted that low production elasticity 

with respect to capital can be caused by limited access 

to credit and by the use of old machinery by farmers. 

Moreover, the returns to scale remain largely un-

changed over the eight-year period of the analysis. 

The mean of the estimates equals approximately 1.16, 

so the hypothesis of increasing returns to scale cannot 

be rejected based on the obtained results. 

Furthermore, we decomposed the productivity 

growth, basing on results derived from truncated 

Table 8.  TFP growth in Polish crop farms of  

different economic size  

(in percentages, model M1) 

 Economic size (ES, in thousand euros) 

Years 2 ES <25  25 ES  <100  ES  100 

2004/2005 -0.60 0.32 1.04 

2005/2006 -0.14 0.40 0.51 

2006/2007 -0.31 0.29 0.78 

2007/2008 -0.74 0.20 0.76 

2008/2009 -0.90 0.27 0.61 

2009/2010 -0.37 0.40 0.34 

2010/2011 -0.98 0.13 0.38 

Average -0.58 0.29 0.63 

Source: authors’ calculations 

Table 9.  TFP growth in Polish crop farms of different utilized agricultural area  

(in percentages, model M1) 

 Utilized agricultural area (UAA in ha) 

Years 0  UAA < 20 20  UAA < 50 50  UAA < 100 UAA  100 

2004/2005 -0.04 -0.03 -0.17 0.28 

2005/2006 0.42 -0.05 0.16 0.20 

2006/2007 -0.66 0.22 0.18 0.50 

2007/2008 -0.04 -0.41 -0.09 0.20 

2008/2009 -0.02 -0.61 -0.30 0.18 

2009/2010 -0.16 0.12 0.10 0.03 

2010/2011 -1.03 -0.18 -0.11 0.13 

Average -0.22 -0.13 -0.03 0.22 

Source: authors’ calculations 
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normal with time-varying efficiency model. The re-

sults show a decrease in total factor productivity for 

crop farms in Poland. Taking into account that Polish 

agriculture receives substantial support under Common 

Agricultural Policy, the falling productivity is a sur-

prising finding. The decomposition of total factor 

productivity reveals that the main factor contributing 

to this effect is strong negative technical efficiency 

change, which is not offset even by strong and positive 

technical change and positive but small scale change. 

On one hand, the positive technical change and scale 

change suggest that in the investigated period Polish 

crop farms acquired new technologies and adjusted 

their size to the most productive. On the other hand, 

the use of inputs in the crop farms is under optimal, 

significantly affecting the TFP index. This is an unde-

sirable phenomenon since it hampers the development 

of competitiveness of Polish farms. 

The thorough analysis of differences in total fac-

tor productivity among distinguished economic size 

groups revealed that medium and large farms are more 

technically efficient than small farms and recorded a 

higher productivity growth. Therefore, the existence 

of small farms, which is connected with the highly 

fragmented structure of Polish agriculture, seems to 

have no positive effect on productivity growth in Po-

land. Furthermore, grouping farms according to uti-

lized agricultural area resulted in similar conclusions. 

In summary, both criteria, according to which the 

farms were divided, are found to lead to convergent 

conclusions. The development of large and medium 

farms is well-founded from the point of view of eco-

nomic benefits, especially as we found earlier that 

these units have increasing returns to scale.  

This analysis might lead to the conclusion that 

productivity improvement in crop production is more 

dependent on larger farms than the smaller ones. The 

above empirical evidence seems to be important from 

the decision-makers' point of view if it is to influence 

the path of agricultural development in Poland. The 

economic transformation process leads to higher labor 

costs, which in turn drives most small farms out of 

business (HAZELL, 2005). Therefore, from the agricul-

tural policy perspective, the challenge is to enhance 

productivity of small farms in Poland. However, dis-

covering exact factors that increase survival probabil-

ity of small farms needs further research based on 

different econometric models and data than those used 

in the present study. 

The results presented above seem to be interest-

ing from a practical point of view, but they were ob-

tained from the well-known models. Our current study 

is based on the concept of production function, so it 

has many limitations, e.g. there is only one product as 

output and all production inputs are treated as fixed. 

Applications of a cost function-based analysis of 

productivity and efficiency will be the subject of next 

research. Another important problem is unobserved 

heterogeneity across farms, which is very large in 

Poland because they are characterized by a high farm 

land fragmentation rate. Therefore, future research 

requires more advanced approaches (e.g. BARÁTH et 

al., 2018). In panel data analysis, unobserved hetero-

geneity can be statistically modelled by mixture (or 

mixed) models. A way to take into account the heter-

ogeneity is to use Bayesian hierarchical models. 
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