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Abstract 
It has often been noted that the “null-hypothesis-
significance-testing” (NHST) framework is an incon-
sistent hybrid of Neyman-Pearson’s “hypothesis test-
ing” and Fisher’s “significance testing” that almost 
inevitably causes misinterpretations. To facilitate a 
realistic assessment of the potential and the limits of 
statistical inference, we briefly recall widespread 
inferential errors and outline the two original ap-
proaches of these famous statisticians. Based on the 
understanding of their irreconcilable perspectives, we 
propose “going back to the roots” and using the ini-
tial evidence in the data in terms of the size and the 
uncertainty of the estimate for the purpose of statisti-
cal inference. Finally, we make six propositions that 
hopefully contribute to improving the quality of infer-
ences in future research. 
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HURLBERT and LOMBARDI (2009: 318):  
“[…] we all would like a quick, objective and automatic way to 
evaluate our results, but there is none that also meets the addi-
tional requirement of logical and ‘useful’. We must simply apply 
the same sort of nuanced thinking and nuanced language we use 
in other contexts involving gradations in the strength of evidence.” 

1 Introduction 
Following a longstanding debate concerned with in-
ferential errors, the American Statistical Association 
(ASA) issued an unprecedented methodological warn-
ing in 2016 that stressed that the p-value can neither 
be used to determine whether a hypothesis is true nor 
whether a finding is important (WASSERSTEIN and 
LAZAR, 2016). Three years later, The American Statis-
tician published a special issue “Statistical Inference  

in the 21st Century: A World Beyond p < 0.05.” 
Summing up the reform suggestions, the issue’s edi-
tors state that it is time to abandon statistical signifi-
cance testing (WASSERSTEIN et al., 2019). Almost 
simultaneously, a widely supported p-value petition to 
“Retire statistical significance” was published in Na-
ture (AMRHEIN et al., 2019). In the same year, the 
NATIONAL ACADEMIES OF SCIENCES (2019) took up 
the criticisms in its “Consensus Report on Reproduci-
bility and Replicability in Science”. 

Inferential errors in the form of overconfident 
conclusions following statistical significance declara-
tions are a major problem in the social sciences. This 
includes agricultural economists who, as other empiri-
cally working scientists, believe that data can be used 
to gain information regarding scientific propositions 
(hypotheses) about the real world. We often engage 
ourselves in the scientific exercise of generalization 
and want to draw conclusions from the particular (e.g. 
a sample) to the general (a real-world state of inter-
est). We denote this as “inductive reasoning” through-
out this paper.1 For example, we might analyze data 

                                                           
1  There is often prior knowledge that enables researchers 

to formulate hypotheses. A prior hypothesis may either 
be a vague directional hypothesis or a more concrete 
proposition regarding the magnitude of an effect. Start-
ing off with a proposition regarding a real-world state or 
relationship of interest is often considered to be the “de-
ductive” because we conclude something from “theory.” 
Being aimed at the accumulation of knowledge and the 
refinement (and, if necessary, the adaptation) of theory, 
the process of research consists of a sequence of deduc-
tive and inductive steps. After the formulation of a hy-
pothesis that reflects the state of knowledge at a given 
point in time, we probe its prediction with our data from 
which we obtain an effect size estimate associated with 
a certain uncertainty. Estimation is inherently inductive 
because we ask the question of what we can learn from 
the particular (the sample) regarding the general (the  
real-world state or relationship of interest). At the same 
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because we want to find out whether or by how much 
different levels of exposure to the herbicide Glypho-
sate increase the probability of cancer, or how various 
plant protection agents affect earthworm populations. 
In the attempt of arriving at a rational inductive belief 
regarding a real-world state or relationship of interest, 
we should be aware of the fundamental limitation of 
inductive reasoning that we cannot obtain certain 
knowledge from a particular set of data such as a ran-
dom sample. Hence, we must embrace any remaining 
uncertainty and be cautious in our judgment of what we 
should most reasonably believe. Nonetheless, we are 
regularly interested in obtaining epistemic probabili-
ties for scientific propositions. That is, we want to talk, 
for example, about the probability that the null hy-
pothesis or some other hypothesis is true. Epistemic 
probabilities reflect the degree of rational belief that 
we can and should have given all prior knowledge (e.g. 
from previous studies) and the incremental informa-
tion that was extracted from a particular study’s data.  

Unfortunately, the prevalent “null hypothesis sig-
nificance testing” (NHST) framework of statistical 
inference does not help answer the question of interest. 
This is largely because NHST is an inconsistent amal-
gamation between the “hypothesis testing” approach of 
NEYMAN and PEARSON (1933a, 1933b), on the one 
hand, and the “significance testing” approach of  
FISHER (1925), on the other (cf. LEHMANN, 1993; 
ZILIAK and MCCLOSKEY, 2008; HURLBERT and LOM-
BARDI, 2009; KENNEDY-SHAFFER, 2019). In a seminal 
paper titled “Mindless Statistics,” GIGERENZER (2004) 
investigates the two original approaches and describes 
the cognitive biases that result from statistical practices 
based on their inconsistent hybrid NHST. In line  
with ZILIAK and MCCLOSKEY (2008), he calls them 
“statistical rituals” and claims that they have largely 
eliminated critical thinking in the social sciences.  
Gigerenzer deplores collective delusions and widely 
internalized flawed practices that are believed to  
facilitate automatic inferences (see also GIGERENZER, 
2018). In line with this assessment, a large body of 
literature (cf. e.g., HALLER and KRAUSS, 2002; 
GIGERENZER et al., 2004; KRÄMER, 2011) decries that 
misconceptions and misapplications have been en-
trenched and passed on for decades through inadequate 
teaching and even best-selling statistics textbooks. 

                                                                                                 
time, we ask whether the evidence in the data is con-
sistent with the original proposition or whether we 
should change this proposition in the light of the new 
evidence. And then, the sequence of deductive and in-
ductive steps starts again.  

Inferential errors associated with NHST seem to 
be caused to a large extent by a lacking familiarity 
with the differing but irreconcilable original perspec-
tives: Fisher focuses on inductive reasoning and on 
forming rational scientific beliefs from a given set of 
data. In contrast, statistical decision theory according 
to Neyman and Pearson aims at providing behavioral 
rules across repeated decisions under consideration of 
error costs. We believe that getting acquainted with 
the basic arguments of these very different perspec-
tives will clarify the potential and the limits of statisti-
cal inference.2 This paper therefore looks back in his-
tory, scrutinizes the two original approaches, and 
shows that the NHST-framework is an ill-understood 
amalgamation that virtually invites inferential mis-
conceptions. The paper is thus part of the vast body of 
critical literature regarding NHST that has been ac-
cumulating for many decades. But above all, it is mo-
tivated by the fact that misinterpretations of NHST 
continue to be an alarmingly “normal” practice de-
spite the publicly disclosed errors. With a few excep-
tions, including the prominent publications by ZILIAK 
and MCCLOSKEY (2008) and KRÄMER (2011), the 
acknowledgement of the problems associated with 
NHST seems to be low in economics including agri-
cultural economics. Therefore, we believe that agri-
cultural economists as relevant audience of this jour-
nal will benefit from this historical methodological 
perspective.  

After briefly recalling the problems associated 
with p-values and NHST in Section 2, we provide a 
primer of the two approaches in Section 3. Based on 
the understanding of the fundamental differences be-
tween Neyman-Pearson’s and Fisher’s perspective, we 
argue in Section 4 that moving forward in the field of 
statistical inference actually requires going back to the 
roots and using the standard error as measure of the 

                                                           
2  This paper focuses on the inferential meaning that data-

derived statistics can have if there was a probabilistic 
data generation process such as independent random 
sampling. It is beyond this paper’s scope to discuss vio-
lations of this fundamental precondition of statistical in-
ference and resulting problems such as sample selection 
bias. (cf. e.g., HIRSCHAUER et al., 2020b, or ROSENTHAL 
and ROSNOW, 2009). Unless adequately corrected for, 
selection bias precludes statistical inference because 
sample members may be systematically different from 
other members of the population, and because standard 
errors cannot be correctly estimated. Convenience sam-
ples do not meet the precondition of statistical infer-
ence. Given their widespread use, the violation of essen-
tial assumptions is therefore a major issue in practical 
research.  
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uncertainty of sample-based estimates. We finally 
conclude with six propositions that are hopefully use-
ful for the revision of journal guidelines aimed at im-
proving statistical inferences in empirical research in 
the social sciences and agricultural economics (Sec-
tion 5).  

2 A Brief Look at Inferential Errors  
To avoid misinterpretations of the p-value, one must 
realize five fundamental facts (HIRSCHAUER et al., 
2018, 2019): first, the use of p-values is concerned 
with the uncertainty of estimates resulting from ran-
dom error as expressed through the standard error, 
which is the statistical label attached to the standard 
deviation of the sampling distribution. Using p-values 
presupposes a probabilistic data generation mecha-
nism such as random sampling.3 Second, estimates  
of quantities such as effect sizes (no causal implica-
tion intended), standard errors, and finally p-values 
can exhibit considerable sample-to-sample variability. 
Ignoring this variability will cause an overestimation 
of the p-value’s per se limited inferential content. 
Third, unbiased estimators estimate correctly on aver-
age. Therefore, we need all estimates from statistical 
replications – irrespective of their p-values and their 
being large or small – to obtain an appropriate idea of 
the size of a population quantity.4 Forth, it is a serious 

                                                           
3  While randomization represents another probabilistic 

data generation mechanism that facilitates the use of p-
values, we focus on observational data and skip the dis-
cussion of causal inference in randomized controlled 
trials (cf. e.g., HIRSCHAUER et al., 2020a).  

4  TRAFIMOW et al. (2018) note that it is the abnormally 
large sample effect sizes that produce “highly signifi-
cant” p-values. Considering only significant findings 
(i.e. one tail of the sampling distribution) would neces-
sarily introduce bias. This has implications for what we 
have to understand by replicability. A meaningful defi-
nition needs to consider that each properly implemented 
study provides an incremental piece of evidence. Con-
sequently, meta-analysis would need to obtain the 
weighted average of all estimates from replications, 
possibly even ones with opposite signs, to obtain the 
“best” summary of the accumulated evidence. But in the 
replication debate, a study with a “significant” finding 
followed-up by a study with a very high p-value or even 
an opposite sign of the estimate is often perceived as a 
replication failure. This applies even though popular 
replication projects such as CAMERER et al. (2016, 
2018) use not only the statistical significance criterion 
but also other criteria to assess the replicability of origi-
nal studies. 

mistake to believe that a p-value of let’s say 0.05 indi-
cates that the probability of the null is 5 %. This is 
logically impossible since p-values are computed un-
der the assumption that the null is true.5 Fifth, a p-
value indicates how (in)compatible a set of data (ran-
dom sample) is with a specified statistical model in-
cluding the null hypothesis, but p-values are not the 
epistemic probabilities that reflect the degree of ra-
tional belief regarding scientific hypotheses that we 
can have given the available evidence.  

Being inherently based on the assumption that 
the null is true, p-values cannot be used to test hy-
potheses in terms of determining whether a null hy-
pothesis or an alternative proposition is true (cf. WAS-
SERSTEIN and LAZAR, 2016). It is even logically im-
possible to derive probabilities for hypotheses from 
the p-value without prior knowledge. In any ordinary 
sense of the word, a p-value can therefore neither 
“test” nor “confirm” a hypothesis. This holds even 
though the delusive terminology of the NHST frame-
work does label findings as either “positive” (statisti-
cally significant) or “negative” (statistically non-
significant) and indeed speaks of “hypothesis testing” 
and “confirmatory analysis.”  

After decades of critical debate and several years 
of high-level institutional attempts to reform statistical 
practice, we know that p-values and statistical signifi-
cance tests have much less inferential content than 
what has been widely believed in the past. Whether or 
not statistical significance testing is reasonable and 
helpful at all is now prominently disputed in the litera-
ture. When researchers continue to use p-values and 
statistical significance tests as inferential tools, they 
should justify their approach and answer critical ques-
tions such as “Has there been a probabilistic process 
of data generation?” or “Which inductive inferences 
can be drawn from the result of a statistical signifi-
cance test?” Irrespective of the auxiliary tools that are 
used to help make inferences, researchers should first 
describe the empirical evidence they found in their 
specific data set and then, in a separate step, tackle 
inference and the question of validity. When assessing 
the validity of findings, we should first specify the 
“inferential leap” that we want to make (To which 
                                                           
5  COHEN (1994: 997) coined the term “inverse probability 

error” for this fallacy and noted: “[a p-value] does not tell 
us what we want to know, and we so much want to know 
what we want to know that, out of desperation, we never-
theless believe that it does! What we want to know is 
‘given these data, what is the probability that H0 is true?’ 
But […], what it tells us is ‘given that H0 is true, what 
is the probability of these (or more extreme) data?’” 
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real-world population and context do we want to gen-
eralize?). We should then state our inferences (What 
do we claim to have learned from the analyzed set of 
data?) and explain how we arrived at these inferences. 
In general, the validity of findings increases the 
smaller the inferential leap from the idiosyncrasies of 
a particular data set to the social group and real-life 
setting of interest. 

We may sum up that, contrary to beliefs that are 
often associated with the conventional routine of sta-
tistical significance declarations, inductive inferences 
do not flow from data automatically. Sample quanti-
ties such as standard errors, p-values (and confidence 
intervals for that matter) are summary statistics of 
certain properties of the particular set of data under 
study. If these statistics are correctly interpreted and if 
their probabilistic application requirements (in partic-
ular, random sampling) are met, they may help make 
inferences, but they remain auxiliary tools and cannot 
substitute scientific reasoning. 

3 Confusion of 𝜶𝜶-Levels and 𝒑𝒑-
Value Thresholds as a Source of 
Misunderstandings 

Even when we succeed in identifying the most ration-
al inductive belief given the available evidence, advis-
able courses of action cannot automatically be derived 
from such beliefs. As BERRY (2017: 895) pointedly 
noted: “[…] believing or advertising something as 
true and acting as though it is true are very different 
kettles of fish.” That is, we need to distinguish two 
different intellectual tasks: judging what we should 
most reasonably believe regarding a real-world state 
of interest as opposed to judging what we should most 
reasonably do after additionally considering the costs 
of wrong decisions. For the sake of clarification, let us 
look at the Glyphosate example: even when we suc-
ceed in forming the most rational but still uncertain 
belief regarding the health impact of Glyphosate ex-
posure given all available evidence, we run the risk of 
giving bad advice if we neglect the costs that different 
decisions – banning or not banning Glyphosate – en-
tail when in the end they turn out to be wrong. Since 
the amalgamation of Fisher’s approach and Neyman-
Pearson’s approach into the hybrid NHST ignores the 
crucial distinction between the above-mentioned two 
“kettles of fish,” we now look into the two original 
approaches. 

3.1 Statistical Decision Theory and the 
𝜶𝜶-Level in Hypothesis Testing 

In statistical decision theory according to Neyman and 
Pearson, the world (“parameter space”) is divided into 
two mutually exclusive states – represented by the 
null and the alternative hypothesis. In addition, a con-
stant choice structure across many repeated decisions 
is assumed. This has several implications:  
1.  One must not only specify a null hypothesis 𝐻𝐻0 

(implying that the alternative hypothesis is a 
vague “non-null” proposition) but also a concrete 
alternative hypothesis 𝐻𝐻𝐴𝐴. Moreover, 𝐻𝐻0 and 𝐻𝐻𝐴𝐴 
together have to represent all possible states of 
the world. 

2.  A choice has to be made between these two hy-
potheses based on a statistical test. This test repre-
sents the decision rule (“rule of behavior”) for de-
cisions that are made many times – each based on 
a new random sample obtained from an identical 
sampling design (e.g. in industrial quality control).  

3.  For each random sample, a test score (e.g. a z- or 
t-value) is computed based on the effect size and 
the standard error (estimated variability of the 
sampling distribution). 

4.  A test result that induces the decision associated 
with 𝐻𝐻𝐴𝐴 (=rejection of 𝐻𝐻0) or the decision associ-
ated with 𝐻𝐻0 (=non-rejection of 𝐻𝐻0) is not linked 
to an inductive belief that either 𝐻𝐻𝐴𝐴 or 𝐻𝐻0 is true 
or more likely in a particular instance. Instead, 
accepting a hypothesis means to act as if it were 
true in the light of the consequences associated 
with either choice.  

5.  Different choices are fraught with different types 
of errors: type I errors arise if one acts as if 𝐻𝐻𝐴𝐴 
were true when in fact 𝐻𝐻0 is true (false rejection 
of 𝐻𝐻0). In contrast, type II errors arise if one acts 
as if 𝐻𝐻0 were true when in fact 𝐻𝐻𝐴𝐴 is true (false 
non-rejection of 𝐻𝐻0).  

6.  The rule of behavior is based on an a priori fixed 
level of the type I error rate (false positive rate), 
which is usually designated by 𝛼𝛼. When the test 
results in 𝑝𝑝 ≤ 𝛼𝛼, one is to act as if 𝐻𝐻𝐴𝐴 were true 
(“accept 𝐻𝐻𝐴𝐴”). When the test results in 𝑝𝑝 > 𝛼𝛼, 
one is act as if 𝐻𝐻0 were true (“accept 𝐻𝐻0”). 

7.  Since the test is a “rule of behavior” aimed at 
guiding decisions that are made many times un-
der constant conditions, the particular value of 𝑝𝑝 
in a particular test is completely irrelevant. The 
only relevant information is whether 𝑝𝑝 falls into 
the rejection region or not.  
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8.  In subsequent samples and tests, p-values will be 
different. A p-value found in a particular sample 
is therefore not the type I error rate over many 
replications. But consistently following the rule 
of rejecting 𝐻𝐻0 when 𝑝𝑝 ≤ 𝛼𝛼 guarantees that, in 
the long run, the type I error rate will be 𝛼𝛼. This 
also follows from the fact that the p-value is uni-
formly distributed under the null. 

9.  Decreasing the test’s type I error rate 𝛼𝛼 will de-
crease its power  1 − 𝛽𝛽, i.e., the long-term rate of 
acting as if 𝐻𝐻𝐴𝐴 were true when it is true (true pos-
itive rate).6 Consequently, there is a tradeoff 
when setting the level of 𝛼𝛼: decreasing the type I 
error rate 𝛼𝛼 (false positive rate) across repeated 
decisions will increase the type II error rate 𝛽𝛽 
(false negative rate) across these decisions. 

10.  While using 𝛼𝛼 = 0.05 is often seen as a general 
default, Neyman and Pearson explicitly warned 
against a standard level for all decision contexts. 
Importantly, the magnitude of type I and type II 
error costs in a particular context must be consid-
ered when setting the level of 𝛼𝛼. 

Statistical decision theory in the Neyman-Pearson 
tradition rejects the idea of making inductive infer-
ences about some real-world state of interest. Instead, 
statistical decision theory uses “hypothesis testing”  
to identify rules of behavior in the light of a “loss 
function” that considers the magnitude of, and the 
relationship between, type I and type II error costs.  
NEYMAN and PEARSON (1933a: 296; 1933b: 497) 
note that it “must be left to the investigator” to set an 
appropriate 𝛼𝛼 that strikes the balance between the two 
types of errors “to meet the type of the problem before 
us.” Along the same lines, ZILIAK and MCCLOSKEY 
(2008: 8-9) note that “without a loss function a test of 
statistical significance is meaningless […].” Many 
vivid examples have been used to underpin the im-
portance of considering type I and type II error costs 
when determining the decision rule 𝛼𝛼. A recent exam-
ple is HARVEY (2017: 1408) who uses the comparison 
between “a jet engine failing” vs. “a water heating 
failing” to illustrate how different the problems before 
us can be: “In the case of the jet engine, we are will-
ing to accept a lot of false positives (incorrectly label 

                                                           
6  Power is the zeroth order lower partial moment of the p-

value distribution over replications under the alternative 
hypothesis 𝐻𝐻𝐴𝐴 for the value of the test statistic associat-
ed with a particular 𝛼𝛼. This partial moment is sufficient 
in a dichotomous rejection/non-rejection context, i.e. 
power quantifies the repeatability of 𝑝𝑝 ≤ 𝛼𝛼 when 𝐻𝐻𝐴𝐴 is 
true. 

a part defective) to minimize chances of false nega-
tives (miss detecting a defective part), so α is set to a 
higher level. The particular situation therefore dictates 
not only how low α will be set but also the Type II 
error rate.”  

While being labeled „statistical decision theory“, 
it must be noted that the approach by Neyman and 
Pearson remains a conditional-probability concept:  
𝛼𝛼 is the long-term type I error rate when 𝐻𝐻0 is true 
(𝑃𝑃(𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 𝐼𝐼 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝐻𝐻0)), and the corresponding 𝛽𝛽 is the 
long-term type II error rate when 𝐻𝐻𝐴𝐴 is true 
(𝑃𝑃(𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 𝐼𝐼𝐼𝐼 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝐻𝐻𝐴𝐴)). Since no scientific propositions 
regarding the probabilities of 𝐻𝐻0 or 𝐻𝐻𝐴𝐴 are provided, 
an important piece of information is missing that is 
indispensable when we want to obtain a normative 
rule from a decision theoretic point of view. For illus-
tration sake, let’s assume that we test the jet engine 
10,000 times and that, after setting the type I error rate 
to 𝛼𝛼 = 0.05, the type II error rate is 𝛽𝛽 = 0.2. Imagine 
that the costs of making a type I or a type II error are 
known to be 1,000 € and 10,000 €, respectively. Imag-
ine also that, from prior evidence, we expect to see a 
defective part very often and correspondingly assume 
probabilities 𝑃𝑃(𝐻𝐻0 = 𝑛𝑛𝑒𝑒 𝑑𝑑𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡 𝑝𝑝𝑝𝑝𝑒𝑒𝑡𝑡) = 0.01 and 
𝑃𝑃(𝐻𝐻𝐴𝐴 = 𝑑𝑑𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡 𝑝𝑝𝑝𝑝𝑒𝑒𝑡𝑡) = 0.99. In this case, we 
would incorrectly label a part defective in only 5 of 
the 10,000 test instances. The costs of these 5 false 
alarms would amount to a total of 5,000 €. At the 
same time, we would miss detecting a defective part 
in 1,980 of the 10,000 test instances. Incurred costs 
would total 19.8 mill. €. In this context, it would ob-
viously be rational to use a decision rule 𝛼𝛼 much larg-
er than 0.05 in order to reduce 𝛽𝛽 and thus the costs of 
missing defective parts. Things are very different if, 
based on prior evidence, it is reasonable to assume 
𝑃𝑃(𝐻𝐻0) = 0.99. In this case, we can expect to make 
495 type I errors and 20 type II errors over the 10,000 
tests. That is, the costs of false alarms would total 
495,000 € and the costs of missing a detective part 
would total 200,000 €. We should consequently lower 
the decision rule 𝛼𝛼 and accept an increase of 𝛽𝛽 from a 
long-term cost perspective. This illustrates that a deci-
sion rule that minimizes expected costs needs to take 
into account how often we can expect to commit 
which type of error in the long run of testing.7 Besides 

                                                           
7  For the sake of easy traceability, our numerical illustra-

tion of the “jet engine” vs. “water heating” example is 
based on the assumption of a given sample size. In this 
case, considering how lowering 𝛼𝛼 (and thus type I error 
costs) increases 𝛽𝛽 (and thus type II error costs) suffices 
to minimize long-term costs. In contrast, including the 
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the conditional type I and type II error rates, this de-
pends on the prior probabilities of the null and the 
alternative hypothesis, a concept beyond the condi-
tional probability approach by Neyman-Pearson.8 

HURLBERT and LOMBARDI (2009: 311) claim 
that “[t]he original Neyman-Pearson framework has 
no utility outside quality control type applications.” In 
the light of the jet engine example above, we might 
add that even in this context, its utility is limited from 
a decision-theoretic point of view – unless prior prob-
abilities are implicitly considered when setting the 
decision rule 𝛼𝛼. Regardless of this, basic and applied 
empirical research is usually not aimed at providing 
practical decision support in terms of assessing the 
costs, benefits, and risks associated with particular 
choices in particular decision environments. Rather, 
its objective is to gain (incremental) knowledge re-
garding a real-world feature by studying a particular 
set of data and weighing the evidence. Thresholds and 
dichotomies are not only superfluous but seriously 
misleading in such contexts.  

3.2 Inductive Reasoning and the p-Value 
in Statistical Significance Testing  

NHST, i.e., using p-values accompanied by ostensibly 
self-explaining significance declarations that advertise 
something as true/existent or not, is still the statistical 
methodology in dominant use in econometric studies. 
Even though NHST has borrowed the term “hypothe-
sis testing” from statistical decision theory, it is closer 
in spirit to Fisher’s view that the p-value represents  
a helpful tool in the difficult exercise of making in-
ductive inferences; and most econometricians would 
probably agree with FISHER’s (1935: 39) statement of 
what this exercise is about: “[…] everyone who does 
habitually attempt the difficult task of making sense of 
figures is, in fact, essaying a logical process of the 
kind we call inductive, in that he is attempting to draw 
inferences from the particular to the general.” In other 
                                                                                                 

sample size into the set of decision variables requires 
considering additionally that a costly increase of sample 
size 𝑛𝑛 will ceteris paribus decrease 𝛽𝛽 (and thus type II 
error costs). Another label for this would be to say that an 
increase of sample size increases power. In this more 
complex decision context, minimizing long term costs 
would imply finding the optimal combination of 𝑛𝑛 and 𝛼𝛼.  

8  NEYMAN and PEARSON (1933a: 291) may have trig-
gered off overvaluations by claiming: “Without hoping 
to know whether each separate hypothesis is true or 
false, we may search for rules to govern our behavior 
with regard to them, in following which we insure that, 
in the long run of experience, we shall not be too often 
wrong.” 

words, despite its hypothesis testing terminology, 
NHST has not adopted the Neyman-Pearson perspec-
tive of providing a behavioral rule for repeated deci-
sions given their error costs. Instead, it shares Fisher’s 
interest of drawing inductive inferences from a given 
set of data. Consequently, there are also common 
grounds with regard to what is to be understood by 
replication. Whereas statistical decision theory focus-
es on tests as behavioral rules for repeated choices 
under constant conditions, replication from the view-
point of inductive reasoning is first of all a mind ex-
periment based on which a sampling distribution can 
be conceived of. That is, we study one sample but 
envisage what would happen if we drew many other 
equal-sized random samples from the same population 
and applied the same econometric model to these 
samples (hypothetical statistical replications). We then 
ask the question of how much the sample quantity 
such as a regression coefficient would vary across 
these statistical replications. The standard error, which 
is itself an estimate that varies from sample to sample, 
indicates the dispersion (standard deviation) of the 
sampling distribution (e.g. the standard deviation of 
regression coefficients across replications) to the best 
of our knowledge.  

The practical approach of NHST in econometrics 
is also more similar to Fisher’s than to Neyman-
Pearson’s perspective in that there is usually no well-
specified alternative hypothesis. But being a mislead-
ing hybrid, many NHST-based empirical studies focus 
on “asterisks” and make inductive inferences in a qua-
si-automated way depending on whether the p-value is 
below or above some arbitrary threshold. While Fisher 
emphasized that inductive inferences always remain 
uncertain, he agreed with labeling results associated 
with 𝑝𝑝 ≤ 0.05 as “statistically significant” and even 
claimed that “non-significant” results can be ignored. 
This seems to have played an important role in the 
dissemination of dichotomous language and thinking 
in inductive inference, which, in turn, has contributed 
to the confusion with the decision rule 𝛼𝛼 (often also set 
to a default of 0.05) used by Neyman and Pearson. 
Even Fisher’s clarification that low p-values simply 
signify “worth a second look” and a later warning that, 
beyond “convenient” significance statements, “exact” 
p-values indicating the strength of evidence against 
the null should be used as an aid to judgment in induc-
tive inference (FISHER, 1960: 25) did not prevent the 
confusion – inherent to NHST – between p-value 
thresholds used for “convenient” significance declara-
tions in inductive inference and 𝛼𝛼 used as a behavioral 
rule in statistical decision theory. 
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4 Back to the Roots: Using the 
Standard Error as Measure of 
the Uncertainty of Estimates 

Understanding the potential and the limits of statistical 
inference is straightforward when we remember that it 
is conceptually based on the sampling distribution and 
its standard error. This implies keeping with the fol-
lowing step-by-step approach: (1) We collect a random 
sample from a defined parent population. (2) We ob-
serve a sample quantity (“effect size”), which can be a 
difference between two groups or an association be-
tween two variables such as a regression coefficient. 
(3) Aiming to make generalizing inferences, we use 
the observed sample quantity as an estimate for the 
population quantity of interest. (4) When assessing the 
validity of the estimate, we consider that inductive 
inferences are inherently uncertain and that they do not 
flow from a summary statistic of the data such as a p-
value automatically. (5) While the validity of findings 
beyond the narrow confines of an idiosyncratic study 
depends on more than just random sampling error, we 
realize that statistical inference is limited to consider-
ing the uncertainty of estimates resulting from random 
error. (6) Accounting for the specific data collection 
design (simple random sampling, stratified sampling, 
cluster sampling etc.), we estimate the standard error to 
quantify the uncertainty of the estimate.9 (7) We now 
possess information that can be understood as “signal” 
and “noise”, with the sample effect size representing 
the signal, and the standard error representing the noise 
from random sampling. (8) We use these two intelligi-
ble pieces of information – the estimate and its uncer-
tainty – in a comprehensive scientific reasoning that 
makes reasonable inferences from the idiosyncratic 
sample towards the real-world state of interest in the 
light of all available information. If convenient, we 
aggregate signal and noise into a signal-to noise ratio 
such as a t- or z-score.  
                                                           
9  Saying that the uncertainty of estimates is used to assess 

the validity of generalizations towards a parent popula-
tion (population validity) is at odds with the terminology 
of measurement theory which would distinguish be-
tween precision (or reliability or certainty) and accuracy 
(or validity). For example, we might find nearly identi-
cal sample effect sizes in statistical replications (pre-
cise/reliable/certain “measurement”), but they might be 
systematically biased estimates of the population effect 
size (inaccurate/invalid “measurement”). The termino-
logical conflict would be that, in statistical inference, we 
use a measure of (un)certainty to assess the population 
validity, which would not be termed “validity” in meas-
urement theory. 

Table 1 illustrates the potential and the limits of 
statistical inference by using an idealized example: 
our presumed research interest is to gain knowledge 
regarding the magnitude of the income gap between 
men and women in Berlin. We assume that two inde-
pendent research teams tackle the issue but use differ-
ent data collection designs. The first one draws a sim-
ple random sample of size 𝑛𝑛 = 600 from the real-
world population of interest (i.e., the residents of  
Berlin). For convenience sake, we assume that exactly 
300 women and 300 men happen to be in this sample. 
Having less resources, the second research team draws 
a simple random sample of size 𝑛𝑛 = 60. For conven-
ience sake, we assume again that the random draw 
results in equal-sized groups. Imagine now that, by 
coincidence, both research teams find the same group 
difference 𝐷𝐷 = 100 as well as identical within-group 
standard deviations 𝑠𝑠 = 745 in the male and female 
groups.10  

Now, both teams must “make sense of their fig-
ures” and address the inferential task of generalizing 
from the finding in the particular sample towards the 
population of interest. While the identified size of the 
income difference is 100 in both research designs, the 
variability of differences that would be found across 
many repeatedly drawn random samples would be 
much smaller in design 1 (𝑆𝑆𝑆𝑆 = 60.83) than in de-
sign 2 (𝑆𝑆𝑆𝑆 = 192.36). Despite identical effect sizes, 
the researchers using design 2 would face much more 
remaining uncertainty and would have to be much 
more cautious in their reasoning what they can claim 
to have learned from their small sample regarding  
the income differences between women and men in 
Berlin. This is because, due to the law of large num-
bers, the inferential leap is wider from a small sample 
to the parent population than from a large sample to 
that population.  

With some loss of information, the evidence from 
the data in terms of the size of the group difference 
found in the sample (estimate or “signal”) and its  
uncertainty (standard error or “noise”) can also be 
expressed as a signal-to-noise ratio, which is 1.64 in 
design 1 and 0.52 in design 2. When computing the  
p-value, we use the signal-to-noise ratio and combine 
it with the assumption of no-effect in the parent popu- 
lation (point null hypothesis). The p-value then answers 
the question: What is the conditional probability of 

                                                           
10  It should be noted that we use stylized numbers for  

the sake of easy traceability and understanding of the 
fundamental methodological issues. They are not chosen 
to reflect empirical facts. 
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finding this data (or more precise: of finding the ob-
served signal-to-noise ratio or even a larger one) in 
random replications if we assumed the point null hy-
pothesis (here: no income difference between women 
and men) to be true in the parent population.  

Expressing the signal and noise information as a 
p-value in conjunction with the dichotomous signifi-
cance declarations and the delusive terminology of 
NHST, which speaks of hypothesis testing and of 
rejecting or confirming hypotheses depending on 
whether p is above or below some specified “signifi-
cance” threshold, has apparently led to much confu-
sion. Despite NHST’s delusive invitation to interpret a 
p-value below or above some arbitrary threshold as a 
rule of what to believe, it would be a gross mistake to 
advertise the p-value of 0.30 in study 2 as an indica-
tion of no difference and a failure to replicate the find-
ing of study 1. There is not even the slightest indica-
tion pointing in this way: after all, we did find a dif-
ference of 100 in the small sample and this is com-
pletely consistent with what we found in the large 
sample. It would also be a gross mistake to interpret 
the “statistically significant” p-value in design 1 as a 
confirmation (of an ex post invented hypothesis) of a 
real difference of 100. In other words, conventional 
“statistical significance” is neither sufficient nor nec-
essary to conclude that there is a substantial effect. 
The only thing that from the perspective of the single 
study can be said is that 𝑝𝑝 = 0.05 represents stronger 
evidence against the point null hypothesis than 𝑝𝑝 =
0.30 because small p-values occur more often if there 
is an effect compared to no effect. Doing so, one 
should recognize that, contrary to a signal-to-noise 
ratio such as a z-or t-value, the p-value is a non-linear 
statistic in that a difference between, let’s say, a p-

value of 0.30 and 0.29 does not indicate the 
same increase of the strength of evidence against 
the point null as a difference between 0.05 and 
0.04. Another way of expressing the meaning of 
a p-value would be to say that lower p-values 
indicate a lower compatibility of the data with 
the point null hypothesis.  

Effect size and standard error – or “estimate 
and uncertainty” or “signal and noise” – and 
their derivatives such as p-values can help make 
inductive inferences from a particular set of data 
(random sample) towards a parent population. 
All the rest that we are confronted with in the 
NHST framework, i.e., hypothesis testing termi-
nology and dichotomous significance declara-
tions associated with arbitrary p-value thresh-
olds, propagate cognitive biases and seduce 
researchers to make logically inconsistent and 

overconfident inferences, both when p is below and 
when it is above the “significance” threshold. These 
misinterpretations are rooted in the very fabric of 
NHST as an inconsistent hybrid of the “hypothesis 
testing” approach by Neyman and Pearson and the ill-
termed “significance testing” approach by Fisher.  

The amalgamation of the two approaches into 
NHST is inconsistent because it pretends that we can 
use a critical signal-to-noise ratio (e.g. 1.645) to ob-
tain a dichotomous inductive rule of what to believe, 
while such a dichotomy would at best make sense as a 
behavioral rule of what to do in the light of a presum-
ably known loss function. As a consequence, it invites 
the misunderstanding that inferences are just a matter 
of statistics and that they flow from data automatical-
ly. Unfortunately, statistical practitioners seem to have 
widely succumbed to NHST’s misleading invitation 
and forgotten that the standard error, upon which all 
inferential statistics are based, is no more (and no less) 
than a continuous estimate of the variability (standard 
deviation) of the sampling distribution.11 Because of 

                                                           
11  While we do not focus on randomized experiments in 

this paper, it seems worthwhile noting that many exper-
imental economists consider power analysis as a means 
to improve the quality of experimental research. This 
implies that, contrary to most of econometric research, 
they identify a well-specified alternative hypothesis. But 
while this resembles the approach by Neyman and Pear-
son at first view, experimental economists are interested 
in making inductive inferences from a particular set of 
data and not in obtaining a behavioral rule for concrete 
decisions fraught with specific error costs. Using the 
concept of power in the exercise of inductive reasoning 
presupposes that one keeps with dichotomous signifi-
cance declarations and resulting yes/no conclusions be-

Table 1.  Inferential statistics for a group difference 
 Study design 1 Study design 2 

Group 1 
(men) 

Group 2 
(women) 

Group 1 
(men) 

Group 2 
(women) 

Sample size n 300 300 30 30 
Standard deviation 745 745 745 745 
Group mean 2 100 2 000 2 100 2 000 
Difference in 
group means 
(signal): D 

100 100 

Standard error of 
group difference 
(noise): SE 

60.83 192.36 

Signal-to-noise 
ratio: z  

1.64 0.52 

p-value  
(one-sided) 

0.05 0.30 

Source: own calculation 
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dichotomous significance declarations, which down-
grade the intelligible and continuous uncertainty in-
formation to a misleading binary variable, researchers 
all too often ignore that what they have is a signal and 
a noise information. Consequently, common interpre-
tations in the widely used NHST framework deviate 
substantially from Fisher’s modest “worth a second 
look” interpretation of the p-value. While at the very 
best we can reduce uncertainty (through larger sam-
ples) and assess uncertainty (by correctly estimating 
the standard error), we must embrace the remaining 
uncertainty caused by random error as long as we 
study samples instead of full populations.  

5 Conclusion 
We have not been digging very deep into the history 
of statistical science, but we hope that this primer  
on the differing perspectives of inductive reasoning 
(Fisher) as opposed to statistical decision theory 
(Neyman and Pearson) helps prevent inferential errors 
that are largely due to the delusive NHST-amalgama-
tion of these two irreconcilable approaches. While  
we believe that dichotomous approaches are not help-
ful in inductive inference, we realize that not all em-
pirical researchers agree with the calls to abandon 
significance testing as those made, for example, by 
AMRHEIN et al. (2019) and WASSERSTEIN et al. 
(2019). In view of the ongoing debate, we hope that 
the following propositions contribute to reaching a 
consensus that improves the quality of scientific 
communication and inductive inference in the future:  
1.  For the sake of clarity, first describe the empirical 

evidence you found in your specific data set and 
then, in a subsequent step, tackle inductive infer-
ence. 

2.  When you use inferential statistics (i.e., standard-
error-based summary statistics of your data) as 
auxiliary tools for drawing inferences, clearly 
communicate which probabilistic data generation 
mechanism (e.g. simple random sampling, strati-
fied sampling or cluster sampling) you applied.  

3.  Transparently communicate, for which kind of 
inference you want to use inferential statistics as 
an aid to judgment: generalizing inference, causal 
inference (not addressed here), or both. 

                                                                                                 
cause, assuming the conventional threshold, power indi-
cates the repeatability of p < 0.05 under the alternative 
hypothesis. Endorsing power therefore implies endors-
ing NHST – in opposition to present calls to abandon 
statistical significance testing.  

4.  In the case of generalizing inference, clearly state 
from which parent population the random sample 
was drawn and therefore to which parent popula-
tion you want to generalize with the help of infer-
ential statistics. 

5.  When keeping with NHST, explain how your 
inference is better supported by dichotomous sig-
nificance declarations than by exact p-values that 
represent a graded measure of the strength of evi-
dence against a point null hypothesis.  

6.  When using p-values as an aid to judgment, ex-
plain how your inferences gain from reporting a 
non-linear measure of the strength of evidence 
against a point null hypothesis instead of report-
ing the “original” evidence you found in the data 
in terms of the size and the uncertainty of the es-
timate. 

We believe that an efficient way of supporting a quick 
change for better inferences in the 21st century (cf. 
WASSERSTEIN et al., 2019) would be to revise journal 
guidelines in the spirit of these hopefully consensual 
proposals. Such revisions would have to include cor-
responding propositions for randomized controlled 
trials where inferences are first of all causal in nature 
(“treatment effects”) and where the standard error 
indicates the dispersion of the randomization distribu-
tion. Besides the hopefully immediate benefits of ap-
propriate guideline revisions, support for better infer-
ences should also come from professional associations 
and, in particular, from statistics teaching. It should 
provide students not only with a deep understanding 
but also an internalized intuitive grasp of the concept 
of the sampling distribution, a grasp that immunizes 
them against misinterpretations. Such misinterpreta-
tions seem to be invited by the fact that statistical 
terminology often contradicts the primal meanings 
from natural language, which, however, are more 
deeply rooted in people’s mind. Confusing the term 
“statistically significant” with “large” or “scientifical-
ly proven” is but one example.  

We hope that the propositions above contribute  
to an overall better understanding of the fact that  
the scientific enterprise represents an ongoing process 
of accumulating evidence and knowledge. In this  
process, each appropriately implemented single study 
that transparently communicates the data and the  
analytical methods plays an important role, but by 
itself a single study cannot provide probabilities, let 
alone definite conclusions for scientific propositions. 
The knowledge contribution of the single study must 
therefore always be critically assessed, and we must 
take into account both the potential and the limits  
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of inferential statistics in this assessment. In some 
research contexts, for example when an explicit alter-
native hypothesis is meaningful, it might be worth to 
get granular on Bayesian procedures. Even when we 
are reluctant to specify prior odds, the Bayes factor of 
the single study is informative because it can be used 
in a what-if-analysis that shows how much various 
prior odds would be changed through the study under 
consideration. In other instances, for example when 
there are many structurally similar studies in the field 
of interest, meta-analytical approaches might be useful 
to assess what is the most plausible estimate of a popu-
lation quantity – and its remaining uncertainty – in the 
light of the evidence across the summarized studies. 
The advantage of meta-analytical approaches is that 
they leave behind rash interpretations of the single 
study. Instead, meta-analysis synthesizes, with ade-
quate weights, the informational content of the includ-
ed studies irrespective of their respective p-values.  
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