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Abstract. Digital Energy Twins are IT systems, interconnecting sensor data, simulation models 
and user interfaces to formulate a virtual representation of the behavior of real energy systems. 
Digital Energy Twins are useful to predict the behavior of energy systems under varying bound-
ary conditions and to optimize their operation considering economic and ecologic impact. Two 
different concepts of Digital Twins applicable to industrial energy systems were demonstrated: 
Digital Energy Twins and Digital Energy Shadows. While in literature, the term “Digital Twin” is 
widely used as synonym, for rather different applications involving simulations and virtual mod-
els connected to real-world data, this paper elaborates on the differences between digital twins 
and digital shadows in more detail. Given by the complexity of real-world energy systems (heat 
and electricity) and their implications on real time simulation, the concepts are demonstrated 
on different TRL levels. The results show the benefits and limitations of Digital Energy Twin 
and Digital Energy Shadow applications in relevant environments. 
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1. Introduction

According to [1], the degree of data integration is used to characterize Digital Twins. A Digital 
Twin hereby consists of physical objects and digital objects, exchanging data either automati-
cally or manually. If the data exchange between the physical and the virtual object in both 
directions is manual, e.g., using offline data exchange routines, this would be referred to as 
“Digital Model” or offline simulation. Rising the level of data integration to an automatic data 
flow from the physical to the virtual object leads to a “Digital Shadow”. The virtual object (e.g., 
energy or heat simulation) follows the behavior of the physical object, represented through 
sensor data from the energy or heat network. The simulation is now online (automatically con-
nected) to the actual sensor data. The highest level of data integration is reached when there 
is also an automatic data flow from the virtual back to the physical object. This closed loop 
data flow now enables a fully coupled status, where the behavior of the physical object (energy 
network) is controlled by the virtual object. This behavior is referred to as “Digital Twin”. This 
work presents use cases for the two different situations of “Digital Shadows” and “Digital 
Twins”. It describes the system concepts in more detail and presents implications on the de-
velopment and integration of Digital Energy Twins/Shadows in real world applications. The 
complexity of the data management and system modeling requires specific considerations 
when dealing with such concepts. 
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2. Digital Energy Twin (DET) 

The case of a “Digital Twin” is presented in Fig. 1. This case demonstrates the application of 
an energy-optimized production schedule. The main objective of the energy optimization is to 
minimize the total energy costs of the system. The main objective of the production schedule 
optimization is to achieve an optimal load profile of the factory. Developing a fully digital rep-
resentation of the factory is challenging as modelling requires iterative development steps to 
improve, evaluate and revise existing models and data aggregation methods. Therefore, the 
Digital Twin was installed at the laboratory of FH Vorarlberg [2] focusing on a lab-scale appli-
cation. 

 

Figure 1. Digital Energy Twin supporting decision-making on production planning. 

The Manufacturing Execution System (MES) transmits both the orders and the non-optimized 
production schedule to the optimizer. The optimizer utilizes the digital twin to predict the load 
profiles for energy consumption of various tasks. Leveraging these load profiles alongside 
weather data and an incentive function, the optimizer generates both the optimized production 
schedule and the battery operation schedule. Hence, the inputs for the optimizer include a list 
of jobs, estimated load profiles derived from the factory's nonlinear model, an incentive func-
tion, and weather data. Using the energy price as an incentive and the weather data as a 
disturbance, the production schedule and/or the battery control can be optimized. In this sense, 
the Digital Twin acts as input system for a model predictive (MPC) control for the real manu-
facturing machines. The details on the specific modeling approach are published in [3]. 

3. Digital Energy Shadow (DES) 

The case of a “Digital Shadow” is presented in Fig. 2. Compared to the “Digital Twin” in Fig. 1, 
there is no data flow from the virtual system back to the real system. This use case demon-
strates a design and operations optimization of the energy supply network at AT&S with high 
complexity. The main objective is the definition of energy-optimal operation settings of the 
combined heat and power supply system. 

The setup of the DES has evolved, i.e. the different modules (e.g. IoT Database, physical 
modelling of the energy supply system, etc.) have been developed and implemented sequen-
tially during various stages of the project. The combination of each module finally builds up the 
DES itself. The modules have been tested and, in some cases, used standalone to showcase 
the added value and find out potential issues to be improved. The following section describe 
its main modules. 
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Figure 2. Digital Energy Shadow supporting optimized operation of energy supply. 

3.1. Physical modelling of the energy supply system 

The Physics-based modelling of processes and utility components was performed on AT&S’ 
energy supply system in Hinterberg, specifically the plant 1 (Werk 1). To model the energy 
supply units (boiler, chillers, heat pump) mainly models of the open-source libraries Modelica 
Standard Library [4] (MSL) and Buildings [5] were used, e.g. BoilerPolynomial [6] and Open-
Tank [7] are used to model the gas boilers and water tanks respectively. Important to mention 
is that the parametrization and validation scope was constrained by the available databases, 
allowing examination only of specific system components, specifically three different chillers 
and the heat pump. Part of the validation work can be found in the final publishable report as 
well as in [8]. 

 

 
Figure 3. Monthly and yearly values of gas consumption of the status quo and potentially substituted by a heat 

pump using COP Map based on YH13K1E-TFDN. 

The physical model has been used standalone to conduct design optimization of the energy 
supply system. Three cases were studied, these are, 1) reduction of freshwater consumption 
with help of free cooling, 2) supply of the low temperature grid via return pipeline of the high 
temperature grid and 3) use of water dumped out of the system as source for a heat pump. 
The third study on the integration of a heat pump seems the most interesting one. In this case 
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the water dumped out of the system is cooled down prior to exit of the system. The energy 
extracted is used as a heat source for a heat pump which main contribution should be used to 
reduce the gas consumption. The results showed how about 2,5 GWh/a gas could be substi-
tuted thanks to the heat pump, from which 1,7 GWh and 0,8 GWh comes from the dumped 
water (heat source) and heat pump compressors (electricity) respectively, see Fig. 3. 

3.2. Data driven modelling of energy demand  

Due to the complexity and heterogeneity of the demand side, the energy demand clusters of 
the various production sections have been done using data driven methods. The modelling 
has been done at “machine” level (e.g. at lab scale, see [9]) and at top-level, first considering 
the whole energy demand and then clustering the main consumers, i.e. treating the main pro-
duction departments separately.  

For the modelling attempt at top-level for predicting the overall energy consumption, a time 
series forecasting machine learning model has been used. The data was available in a 15 min 
resolution. It trained the model on 11 months of data, where a split the data in 80% training 
data and 20% testing data was conducted. With the training data, training of different models 
using various parameters and settings was performed. A comparison between the measured 
data and the prediction result is given in Fig. 4. A more detailed description on the specific 
model implementation is given in [2]. 

 
Figure 4. Overall energy consumption prediction [2]. 

The top-level model has been refined to forecast singular consumer clusters (e.g. drilling ma-
chines). Successful outcomes were achieved for heating and cooling. Notably, accurate heat 
demand forecasts were generated by considering weather predictions (temperature and hu-
midity). Electricity demand forecasting for the overall demand yielded unsatisfactory results, 
prompting an individualized examination and Pareto analysis. Simple methods for forecasting 
were applied to small consumers, while larger consumers utilized more complex methods or 
additional data. Maintenance intervals proved crucial for some consumers (especially the cop-
per plants). In other areas, such as drilling, information about the production program is nec-
essary to be able to make a forecast. Here, neural networks, so-called LSTM (long-short-term 
memory), were used here to be able to carry out a forecast on their energy demand. Exemplary 
results are shown in Fig. 5 for the drilling department. Specific details on the model implemen-
tation are presented in [2]. 
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Figure 5. Forecast of the energy consumption of the drilling department (blue line)  
compared to the measurements (red line) [2]. 

The models have undergone iterative refinement for improved predictions. Their outputs are 
intended for independent use by utility operators and can also be combined with a plant model 
for operational optimization. 

3.3. Implementation experiences 

In terms of the implementation, the data acquisition process has proven to be very important. 
The data acquisition process of measured data is a critical aspect of such a project for its 
importance in the modelling and validation process as well as due to the high effort needed for 
data aggregation. Though the data availability within the project was good and most of the 
measurements needed were captured, different challenges were encountered that difficult the 
process to generate an industrial Digital Energy Shadow in a cost-effective way. These issues 
are mentioned below and should be addressed by any industrial site that envisages creating a 
digital shadow (or twin).   

• Data availability: Relevant missing measurement points should be identified as soon 
as possible, and additional measurement devices should be installed. 

• Data understandability: The labelling of the data should be clear enough so that the 
interpretation of the data can be done with as little know-how of the system as possible 
and therefore easily automated. Furthermore, complex system hydraulics require 
clearer schematics for easy understanding of the position of such sensors. 

• Data access: The manual acquisition of data should be avoided. Modern databases 
should be used that allow the efficient and automated reading of the information re-
quired. 

4. Results and Conclusion 

For the lab-scale use case of the Digital Energy Twin, the energy costs of a reference scenario 
were compared with the energy costs for optimized battery control and production scheduling. 
For a time-of-use tariff the energy costs could be reduced by 8.3 % within the laboratory envi-
ronment [2]. The simulations also show that production scheduling is the preferred method to 
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reduce energy costs for the specific set-up. If uncertainties are considered, the battery storage 
can react to fast changes and thus is able handle disturbances and uncertainties.  

The Digital Energy Shadow based on the industrial use case of company AT&S demonstrates 
its immediate use for design optimization purposes. Several measures were evaluated indicat-
ing potential for a 25 % reduction of freshwater consumption via free cooling and a reduction 
of gas consumption of more than 2 GWh/a by integrating a heat pump and making use of the 
industrial effluents.  

There is quite some flexibility on how a digital energy schadow/twin can be build. From the 
experiences gathered through the project, the following is concluded: 

• The use of industrial standard is key: The modelling at system-level and also at 
machine level using well established communication protocols (OPC-UA, Modbus, …) 
is crucial for efficient implementation. 

• Physics-based and data-driven modelling both are suitable for DET/DES applica-
tions. Each with its own advantages, drawbacks, and limitations the choice between 
approaches can be done individually. Important to mention is, as demonstrated in the 
project, some of the drawbacks can be overcome, e.g. slow physics-based models can 
be substituted by (faster) surrogate models, and e.g. limited amount of measured data 
to generate data-driven models can be extended with additional dedicated lab-runs.     

• The availability and quality of the data is critic for the modelling of the real system, 
for the parametrization/training of the models as well as their validation. 

• The use of a highly integrated cloud data base is a central part of a DET/DES and an 
enabler for all tasks involved in the implementation of a DET/DES. 
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