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Abstract. The Smart Readiness Indicator (SRI) is a framework introduced by the EU in 2018 
to assess smart buildings in various aspects. However, the SRI has been criticized for several 
limitations, including its ambiguous service definitions. This paper proposes the application of 
Non-Intrusive-Load Monitoring (NILM) technology to enhance SRI evaluation on the example 
of SRI service E-12. NILM can be used to disaggregate energy consumption data to end use 
levels and allows for granular non-intrusive energy consumption measurement. The study in-
volves a rigorous methodology using open sensor data and NILM algorithms to evaluate de-
vice-specific energy consumption We evaluate the IDEAL dataset and three different frequen-
cies (5s, 15min, 1h), three different algorithms (CO, RNN, Seq2Point) and one data imputation 
strategies (forward filling). The results show that with a higher frequency, the performance 
metrics (F-score, normalized absolute error) increase. Regarding further considerations, we 
identify a trade-off between resource and energy efficiency, as well as privacy considerations 
with increasing measurement frequency. To achieve its aims for awareness, the SRI needs to 
consider interoperability and appropriate aggregations (frequency and spatial). 

Keywords: Smart Readiness Indicator, Non-Intrusive-Load Monitoring, Smart Meter, Monitor-
ing, Energy Efficiency 

1. Introduction

The European Union introduced the concept of the Smart Readiness Indicator (SRI) in 2018 
to raise awareness for three key functionalities of smart buildings: occupant-centric control, 
grid flexibility and energy optimization [1]. The SRI is a framework that covers nine technical 
domains and standardizes the evaluation of a buildings’ readiness to achieve the core objec-
tives. Electricity, as one of the domains, is evaluated based on criteria such as monitoring of 
energy consumption or application of sensors. The SRI has been the subject of various cri-
tiques in academic and policy literature, mainly because it (a) insufficiently considers building 
typologies and system types [2], [3]  (b) lacks integration of the building and it’s technology into 
districts and cities [3], [4] (c) contains abstract service level definitions [5] and (d) focuses on 
the design outcomes rather than the real impact of the technology installed on the energy 
consumption in a building [6]. Critique is paramount considering the fact that Information and 
Communication Technology (ICT) that could  reduce the energy consumption also requires 
resources such as electricity [7], [8].   

Admittedly, ''smarter'' buildings do not automatically lead to better buildings considering energy 
optimization, grid flexibility or occupant-centric control. In addition, the SRI does not provide 
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sufficient guidelines on technical requirements for each specific level and the gained benefits. 
Besides hardware, software can often also be used to achieve significant increases of  SRI 
scores [9]. Hence, the evaluation of the SRI should consider the specific implementations (e.g., 
number of sensors, effect of software) and its impact in comparison to the anticipated benefits.  

Addressing that, this research delves into complementing the SRI evaluation criteria, by provid-
ing ecological, data governance and technical perspectives for consideration in implementation 
of a SRI service. By applying the technique of Non-Intrusive-Load Monitoring (NILM), we pro-
vide an example to investigate the challenges associated with data collection and its availability 
for the SRI, emphasizing the importance of clear data requirements. The approach highlights 
the need for standardized data reporting and integration mechanisms, promoting data trans-
parency and reliability. For this the SRI Service E-12 “Feedback – Reporting Information - 
Reporting information regarding electricity consumption” which has the precondition “Always 
to be assessed” is considered.  

NILM is a technology that enables non-intrusive measurement of individual end uses of a 
measurement point through algorithms. This allows for the identification and tracking of device 
usage, without individual measurements. As a result, device-specific feedback on usage be-
havior and consumption can be provided. Such direct feedback can lead to up to 12 percent 
energy savings compared to no feedback on electricity consumption [10]. Considering the ef-
ficacy of NILM and the current limitation of SRI, we explore how NILM can contribute to the 
assessment of the SRI and help define more precise requirements. We achieve this by dis-
cussing an SRI service in detail and providing arguments and alternatives within a broader 
scope, considering arguments and requirements from different perspectives such ecological, 
system integration and data privacy. For this, we discuss several options on implementing the 
SRI and demonstrate the achieved potential effects by using Non-Intrusive-Load Monitoring 
(NILM). 

2. Methodology  

Following the research framework introduced above, this section describes the case study and 
the workflow of this study. Figure 1 provides a visual illustration of this, in addition to the intro-
duced research framework.  

Figure 1. The proposed study design. 
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2.1 SRI-Service  

The SRI encompasses 57 pre-defined services. Evaluating them all in this paper is not feasi-
ble. Instead, we focus on discussing a specific service and giving broader criteria and meth-
odology for evaluation of another service. As an example, we take the SRI service E-12: Feed-
back – Reporting Information Reporting information regarding electricity consumption. The ser-
vice and its functionalities levels are stated in Table 1. The service and its definition are taken 
from the SRI sheet version 4.4. We consider this service to be central, as the collection and 
processing of information on energy consumption are essential to enable other services such 
as control. Furthermore, electrification through renewable energies is considered one of the 
main strategies for decarbonizing the energy consumption of the existing building stock [11].  

Table 1. The SRI service E-12 and its functionality levels [12] 

Smart ready 
service 

Functional-
ity level 0 
(as non-
smart de-
fault) 

Functional-
ity level 1 

Functional-
ity level 2 Functional-

ity level 3 
Functional-
ity  level 4 

Reporting in-
formation re-
garding elec-
tricity con-
sumption 

None 

Reporting on 
current elec-
tricity con-
sumption on 
building level 

Real-time 
feedback or 
benchmark-
ing on build-
ing level 

Real-time 
feedback or 
benchmark-
ing on appli-
ance level 

Real-time 
feedback or 
benchmark-
ing on appli-
ance level 
with auto-
mated per-
sonalized 
recommend-
dations 

 

2.2 Case Study 

There are a variety of datasets which are commonly used in NILM e.g. [13], [14]. For further 
analysis, we chose the IDEAL dataset, which contains metered electricity data from 255 homes 
in the UK and Scotland. Data was recorded at 1 Hz up to 23 months per household [15]. Due 
to various reason described by the authors sometimes data is lacking (e.g., transmission er-
rors) or was not recorded during a specific time (e.g. household was not yet part of the study). 
Household 73 is one of households with the most recorded data and was hence selected. 

2.3 Data Processing and Result Analysis  

As displayed in Figure 1, the workflow of our work consists of four parts: (1) data collection and 
pre-processing; (2) NILMTK model training and validation; (3) result evaluation and (4) analy-
sis. Each part contains multiple steps. First, data is collected and pre-processed. For the se-
lected household (73), we extract the metered electricity consumption data collected from Jan-
uary 1st, 2018 till June 14th, 2018 (164 days) and resample the data into three different fre-
quencies: 5 seconds, 15 minutes, and 1 hour. Another frequency, 1 month, is initially planned 
but not implemented. This is because a training period exceeding 3 months yields more con-
vincing disaggregation results for monthly frequency, but demands significantly greater com-
putational effort due to the large number of data points involved in 5-second time series (e.g., 
around 1,067,040 data points within a 3-month training period). Due to computational re-
striction this experiment was not feasible. The resampled data are subsequently being 
cleaned, where measurements that are consecutively missing for more than 5 time steps from 
either any device or the total meter are removed. Missing data that have a missing period of 
shorter than 5 time steps can be supplemented using forward filling (i.e., missing values are 
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filled with the last valid observation forward). In the next step, the cleaned data are divided into 
training and testing datasets (with a division ratio of 0.7 for training).  
Second, several NILM algorithms from the open-source NILMTK1 Library [14], [16] are applied 
to identify energy consumption of devices, including CO, RNN and Seq2Point. In this process, 
end use disaggregation models are trained and validated for each device. Eventually, the total 
electricity consumption data is disaggregated using the trained models. The process iteratively 
runs for all investigated frequencies, with slight variation of model settings as indicated in Table 
2. 

Table 2. Overview of model settings for different resolutions. The setting is based on previous 
experimental runs using the models and the data, considering the covered time span (that includes 

daily or weekly patterns) and the required computational time. 

 Number of epochs Batch size 

5 seconds 

50 

32768 

15 minutes 1024 

1 hour 256 

 
Third, evaluation metrics are defined and used to access the efficacy of disaggregation perfor-
mances across different resample frequencies. We applied a commonly used metric, the F-
score, which the qualitative identification of end-uses and are calculated based on True Posi-
tive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). The calculation 
of F-score is described as follows (Batra et al., 2014) [16]:  
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒

 

In addition, a metric to assess qualitative performance of end-use disaggregation is used: nor-
malized absolute error (NAE). NAE is calculated by the sum of absolute differences between 
the prediction and measurement of each time step (yt and xt, for the time span of 1 to n), 
normalized by the sum of ground truth data, which is expressed as: 

 

The reason for selecting NAE that normalizes the accumulative errors with total consumption 
data (instead of other parameters, e.g., Mean Absolute Errors, as frequently used in other 
literature) is that with normalization, the influence of device-specific energy consumption data 
can be eliminated. This makes prediction performance easily comparable across various de-
vices. The above-mentioned process, including model training, validation, and result analysis, 
was conducted using Python 3.8. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑒𝑒𝑛𝑛𝑝𝑝𝑝𝑝𝑒𝑒𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒,𝐹𝐹𝑁𝑁𝑁𝑁𝑎𝑎 =
∑ �𝑦𝑦𝑎𝑎,𝑡𝑡 − 𝑥𝑥𝑎𝑎,𝑡𝑡�𝑛𝑛
𝑡𝑡=0
∑ 𝑥𝑥𝑎𝑎,𝑡𝑡
𝑛𝑛
𝑡𝑡=0
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3. Results and discussion 

3.1 End-use Prediction Performances across Sampling Frequencies, De-
vices, and Methods 

As previously introduced, in this study we use three different algorithms to train and predict 
end uses based on total electricity consumption time series. The same workflow is applied for 
three different resampling frequencies. The performance metrics provide insights on the trade-
offs between disaggregation performance and metering frequency, which impacts the effort for 
data acquisition, processing, and storage. The results are shown in Figure 2, where subplots 
(a) and (b) are results with input dataset where consecutive missing data are removed, while 
(c) and (d) are from the dataset with an additional missing data filling process. 

First, comparing performance metrics with the same input data across different data sampling 
frequencies, both qualitative and quantitative identification of end uses are better with higher 
data resolutions. More specifically, F-score, which ideally would approximate 1, is of the high-
est average value when resampled with a 5s frequency (cf. e.g., Figure 2 (a)). On the contrary, 
given an optimal disaggregation performance, the normalized absolute error which reflects the 
deviation between prediction and measurement, would be close to 0. For this metric, the high-
est resampling frequency (5s) also obtains the best results (cf. e.g., Figure 2 (b)). With a de-
crease in sampling frequency, the normalized absolute error increases, indicating a worsen 
disaggregation performance. 

 

 

 

 

 

 

 

 

(a) (c) 
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(b) (d) 

   

Second, even for the same sampling frequency, disaggregation performance varies among 
different devices, which are illustrated in different colors. In general, fridge has the highest F-
scores compared to the other devices, while kettle are less correctly identified, resulting in the 
much lower F-scores values. For normalized absolute error, while the identification of kettle 
performs slightly better for the 5s resolution, when resampled into a larger time step (15min, 
1h). the algorithms cannot quantitatively identify the usage of kettle anymore. Notably, with the 
current experiment settings, no applied algorithm can be identified as the perfect method, as 
their performances differ between devices and resolutions. What should be also noted is that 
the variation between devices stretches when the resampling frequency is increased. While 
fridge might still remain identifiable and could be relatively quantitatively well predicted, the 
other devices (especially kettle) become less possible to identify – both qualitatively and quan-
titatively. The differences of prediction performance between devices can indicate the impact 
of energy consumption profiles. The energy consumption profile of a kettle consists of multiple 
small time steps with a relative low energy usage, making it difficult to predict and especially 
sensitive to sampling frequencies. On the other hand, fridge is of a rather constant energy 
consumption pattern and hence the highest predictable. 

Third, no improvement is observed in filling NAN with forward filling. Although the input time 
series is prolonged, no or even contra improvement is obtained. However, this does not ex-
clude any other filling method – further methods can be tested while considering the computa-
tional efforts. 

3.2 Impact of Data Quantity and Quality 

In this study, we resample measurement data with a total duration of 164 days in out experi-
ment. In an optimal case where data can be collected, transmitted, and stored correctly at all 
time steps, the 49 days testing days (30% of the total duration) would equal to 846720, 4704, 
and 1176 data points for 5s, 15min, and 1h resampling frequencies, respectively. As our results 
in Section 4.1 show, better prediction performances can be achieved with a higher resampling 
frequency. This is not only because a higher frequency enables better records of the energy 

Figure 2. Illustration of prediction performance metrics, F-score and normalized absolute error, for predic-
tion of different end uses (washing machine, fridge, and kettle) with the experimented data resolutions (5s, 

15min, 1h) and applied algorithms (CO, RNN, Seq2Point). Subplots (a) and (b) are results based on the 
dataset with consecutive missing data removed, while subplots (c) and (d) are based on the dataset with 

additional forward filling of none-consecutive missing data. 
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consumption profiles (e.g., time series of kettle usage with shorter and smaller fluctuations can 
be recorded), but also because of the potentially higher density of data used for trainings of 
the data-driven disaggregation algorithms. Hence both data quantity and quality are essential 
for disaggregating end uses from the total electricity consumption data. 

As an example, Figure 3 visualizes the variation of disaggregation performances depending 
on the input data frequency and the selected algorithm. With a higher frequency (5s), the dis-
aggregated energy consumption time series (a washing machine from home 73) using both 
algorithm RNN and algorithm Seq2Point can fit the fluctuation and magnitude of the resampled 
ground truth time series better, while CO interprets much smaller fluctuations from the total 
consumption time series. When data are resampled with a lower frequency, 15min, the time 
series is described by fewer data points. While the algorithms especially Seq2Point can dis-
aggregate the time series relatively well, the conveyed information is much reduced. For in-
stance, neither can peak load nor numbers of energy consumption peaks can be interpreted 
from the 15min-resolution time series. While resampled to the 1h resolution, the profile be-
comes a single point, giving even less information. Accordingly, the peak consumption is re-
duced, as during the resampling process, average values are taken from the closest time 
steps. 

However, having data of a higher sampling frequency does not necessarily ensure good dis-
aggregation performances. Although not influencing the overall evaluation shown in Figure 2, 
there are time steps with abundant missing values within the experimented dataset, for which 
the disaggregation algorithms cannot properly perform. An example is shown in Figure 4, 
where more missing data exists when resampled with 5s than with the 15min frequency. Con-
sequently, the 5s time series presents less temporal fluctuation and also generates worse dis-
aggregation outcomes.   

Figure 3. Comparison of different disaggregation results using three resampled time series of a 
washing machine from home 73 in the IDEAL dataset (zoomed to 9:30-10:30, May 27, 2018). Time 

series of the ground truth data (measurement data, resampled to 5s, 15 minutes and 1 hour) are 
shown in solid black color, whereas the disaggregated results using resampled total home 

consumption data are displayed in blue series dash or dot lines with different markers: CO – circle 
markers in sky blue, RNN – diamond marker in blue violet, and Seq2Point – x markers in medium 

blue. Different frequencies are considered as “real-time”. 
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To examine the quantity and partially the quality of the data, Figure 5 is created to visualize 
the number of available data points in the testing dataset. Although 5s resolution could provide 
data of a higher resolution, more data lost is observed in the investigated time frame. Especially 
little data can be collected and used to train the algorithms to identify usage of kettle. Although 
forward filling is not proved effective in our study, filling of missing data could magnificently 
enrich the input dataset. With missing data filling, we almost obtain a complete dataset for the 
15min frequency (around 94% data points can be collected). Because not much missing data 
exist in the resampled 1h-resolution data, an implementation of data filling is not essential in 
our case (available data increase from 94% to 98% after the filling process). With this analysis, 
we conclude that measuring with a higher frequency can lead to more resource exhaustive 
data handling processes, i.e., more data points are generated and should be transmitted and 
processed, which may increase the chances of missing data. Although missing data filling 
strategies can be carried out to make up for the data lost, attention in planning, implementing, 
and impact evaluating of sampling with high frequencies should be paid. 

 

 

Figure 4. Comparison of different disaggregation results using three resampled time series of a wash-
ing machine from home 73 in the IDEAL dataset (zoomed to 00:00 on May 17, 2018, till 02:00 on May 

18, 2018). Time series of the ground truth data (measurement data, resampled to 5s, 15min and 1 
hour) are shown in solid black color, whereas the disaggregated results using resampled total home 
consumption data are displayed in blue series dash or dot lines with different markers: CO – circle 
markers in green, RNN – diamond marker in dark green, and Seq2Point – x markers in dark olive 

green. Different frequencies are considered as “real-time”. 
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3.3 A technical perspective 

There is a variety of ways in which a digital application pursuing a specific goal can be de-
scribed or developed [17]. This makes a general evaluation of digital applications unattainable. 
However, a few general aspects should be considered within the implementation of digital ap-
plications and hence should be integrated in the SRI governance framework. These are in-
teroperability, privacy, and robust processes, whenever necessary. A often criticized aspect in 
the context of building control technologies is the lack of commonly applied interfaces and 
standards [18]. Furthermore, the data and systems should be interoperable. For example, it is 
conceivable that closed systems may meet the SRI criteria requirements but lead to increased 
efforts if (partial) system changes occur. In [19], criteria for the interoperability of systems 
across domains are defined. These include for example, considering technical interoperability 
through established standards or joint definitions of criteria for security and privacy. Reflecting 
on the service E-12 and the results of our analysis, three key questions arise.  

1. What to and how to report data effectively?  

If the reporting is not in relation to a person and their actions, or not comprehensible to them, 
it does not bring added value to the service. Benchmarks and feedback should be comparable 
and understandable [20]. If the frequency or spatial aggregation is not appropriate, e.g., in 
case of large buildings, or the given statements are wrong, e.g., in case of false or mismatching 
feedback and benchmarks, the service might not fulfill its duties. Hence, the scale and com-
parison need to be designed, such that benchmarking and recommendations are considerable 
(e.g., comparing flats of same size or orientation) and understandable. One should also con-
sider the kind of equipment that is monitored, as there is a huge difference between a kettle 
and a fridge, and how their electricity demands are flexible and variable. 

2. What is the necessary frequency to gather sufficient data to provide valuable 
information?  

As previously stated, frequency and spatial aggregation should be appropriate depending on 
the purpose. Considering energy consumption and our study settings, we recommend 15 

Figure 5. An overview of available data for various devices when resampled to different frequencies. 
For each device, the lower bar with a specific color indicates the number of available data points after 
consecutive missing data are removed, while together with the grey color bar above, the column illus-

trates the number of data points obtained after filling missing data with forward filling. 
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minutes as a good trade-off between accuracy and required resources (measurement, com-
puting, for instance). Further improvement can be achieved with fine tunings of disaggregation 
model parameters. As discussed in Section 3.2, we see variety of both data quantity and quality 
in further analysis and reporting, hence it is also essential to ensure the quality of data collec-
tion, indicated by different criteria such as data consistency, accuracy, precision, and com-
pleteness. 

3. How should the infrastructure be set up to provide the functionality levels? 

Considering the increased energetic and resource efforts, to record, store, process, and visu-
alize data at higher frequency and for more devices, as well as the increased effort for moni-
toring system integration, one should aim to confirm integration. Software-based approaches, 
as we show in this paper are a sufficient alternative to hardware-based monitoring, once the 
models have been trained and validated.  

3.4 An ecological perspective  

From an ecological perspective, data should only be used measured, processed, stored, and 
analyzed in which it supports a specific use. As the SRI evaluates buildings regarding the 
capability to perform 3 key tasks, optimization of energy efficiency, and in-use performance, 
adoption to occupant needs, adoption to signals from the grid. Evaluating the ecological ben-
efits of the SRI should consider these three arguments. Hence, data should only be gathered 
and processed in the amount which is needed to fulfill the task.  

Regarding energy efficiency, multi-family houses, functionality levels 1 and 2 offer no added 
value as they do not allow for individual household consumption analysis, making it impossible 
to identify specific high-consumption units. However, for single-family houses, these levels can 
identify unusually high consumption. Functionality levels 3 and 4, which provide device-level 
consumption details and personalized recommendations, respectively, are more helpful in 
identifying devices that consume high amounts of energy and are thus more conducive to 
achieving goals. Regarding the ability to meet user needs, whether the digital application meets 
a goal of providing relevant information to a person’s actions, the ability is met at all service 
levels for single family homes. However, at the building level in multi-family houses or large 
nonresidential buildings this goal is typically not sufficiently met. For effective network interac-
tion, in addition to reporting, a signal regarding the network or supply situation must be trans-
mitted. If this signal is directed at individual households, it lays the groundwork for network 
interaction, hence we consider a positive rating for the higher functionality levels. 

3.5 A data protection perspective  

Considering data protection as a legal assessment of the three goals of the SRI, or the func-
tional levels contained therein, the evaluation must (like any data protection evaluation) be 
measured against the adherence to the underlying fundamental assessment principles. The 
various functional levels can be examined to a certain extent abstractly in terms of the inherent 
data protection risks they pose. Thus, there is a tendency for the risk potential to increase with 
higher functional levels, and therefore the effort required to ensure compliance with processing 
principles (e.g., data security) increases as well. This assumption is based on the fact that with 
higher data resolution and availability, the quality and quantity of information that can be de-
rived from a dataset also increase, as does the likelihood that various datasets can be linked 
together to derive further information.  

There are two central limitations to the above statement. Firstly, a higher data protection rele-
vance does not necessarily mean that a functional level is per se “worse” than one with lower 
relevance. It simply means that the technical, organizational, and legal requirements that must 
be placed on the system to ensure effective protection of the rights of the affected individuals 
increase. From the perspective of the responsible parties, this may indeed be associated with 
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higher resource expenditure. Secondly, neither the existence of the tendency described above 
nor the existence of the principles presented above should obscure the fact that the data pro-
tection legal assessment of an application depends significantly on specific circumstances, or 
the context of data processing and the technical-organizational framework used for data pro-
cessing. 

To enhance the informative value of general statements about the data protection risk of a 
functional level, for this reason, as is already within the scope of data sufficiency, a distinction 
can be made according to (at least two) building types: single-family homes and multi-family 
homes or large non-residential buildings. This is based on a further assumption: the smaller 
the reference object (i.e., the building to which the data relates) of the data processing is, or 
the fewer the number of people who are present in the reference object the more information 
can be derived about the person.  

4. Conclusion and outlook   

Digitalization of energy systems should evaluate the trade-offs between technical investments, 
added value, data protection at an appropriate scale, and ecological net-benefits of the system. 
As discussed in this paper with the example of the SRI Service E-12, increasing the SRI func-
tionalities generates more benefits regarding optimizing energy efficiency, enhancing user 
needs and system integration through grid signals. For each single service, a variety of tech-
nology, digital applications and frameworks can be used to achieve functionality levels.  

The benefits and drawbacks of each level often depend on the scale and the frequency of the 
service. From a data protection perspective, even slightly collecting data is worse than collect-
ing no data at all. From an ecological perspective, installing equipment or software which can-
not be used to achieve the proposed benefits has affects the ecological impact negatively. We 
consider it from this perspective to be good to directly aim for interoperability at the highest 
service level.  

The NILM-based analysis provided a perspective, on how governance frameworks such as the 
SRI should consider specific implementations to sustain their net positive benefits. As our re-
sults show and especially Figure 4 terms such as real-time should be evaluated considering 
the expected benefits. If for example, feedback on a personal level is not provided and interop-
erability is not designed, but data is recorded at a high frequency with respective costs, the 
proposed SRI system benefits are not achieved. It is up to governmental agencies, industry, 
and research to define technologies, and methods that can fulfill possible goals without wasting 
resources and energy. 

For further analysis, we suggest considering the SRI as a framework which can be used to 
map digital applications in the operation phase of the building. Further studies could for exam-
ple aim at mapping digital applications within the research sector towards these services and 
their functionality levels. It provides use-cases, which are not standardized but still are compa-
rable within a given area, as we show within this paper. Additionally, state-of-the-art imputation 
studies can be applied to the preprocessing and the criticality of data quality and quantity can 
be further explored.  
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