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Abstract: In the realm of many thermal energy systems, and particularly within district
heating networks, heat load forecasts play a pivotal role in optimizing system operation
and efficient infrastructure usage. While district heating operators routinely log mea-
surement data, its potential remains underutilized. One essential application of such
data is forecasting a network’s heat load based on historical data records. Such fore-
casts can improve the efficient usage of plant infrastructure and facilitate predictive
operational strategies. This paper introduces "Predict-IT”, a web-based platform de-
signed to standardize the entire forecasting pipeline, making the generation of predic-
tions largely independent of expert knowledge. The Predict-IT platform is powered by a
state-of-the-art long short-term memory (LSTM) based neural network algorithm which
only requires very little inputs (measured heat load and ambient temperature) to deliver
satisfying forecasting accuracy, even a couple of days ahead. The prediction algorithm
is validated on two data sets from local Austrian district heating networks, showing the
general applicability of the LSTM-based neural network, given an appropriate set of hy-
perparameters. The Predict-IT platform simplifies the process of forecasting heat loads
into a few discrete steps: data upload, algorithm training, heat load forecast generation,
and visualization of forecasts. The source code will be open-source, and deployment
and installation will be facilitated by an easily installable Docker solution.

Keywords: Heat Load Forecast, LSTM-Based Neural Network, Web-Based Platform,
Open-Source Software

1 Introduction

Forecasting the heat load of district heating plants remains an active research area, as
evidenced by recent works such as [1], [2]. While existing literature primarily focuses
on creating and refining prediction algorithms, this paper takes a different approach.
Here, we introduce "Predict-IT”, a user-friendly web-based application designed for
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heat load forecasts of district heating networks. We describe the state-of-the-art algo-
rithm that powers these forecasts, and how Predict-IT wraps this core algorithm, en-
abling straightforward application at specific district heating plants. Leveraging docker
containers, deployment and installation are streamlined, and platform-independent us-
age of Predict-IT is ensured. The Predict-IT software and its core algorithms will be
licensed under an open-source software license which explicitly allows for commercial
use and distribution.

To enhance broad applicability, the Predict-IT platform is independent of the plant
control system and requires minimal inputs, namely historic measurement data of a
network’s total heat load and ambient temperature as time series. The software auto-
matically retrieves past and future ambient temperature values from an online weather
service, using the given plant location. The long short-term memory (LSTM) based
neural network algorithm uses the weather forecasts to generate predictions of the
future heat load, whereas the forecast horizon (e.g., 36 hours ahead, or three days
ahead) and forecast frequency (e.g., forecasts for every 20 minutes, or for every hour
over the forecast horizon) can be chosen by the user. Overall, the Predict-IT plat-
form for heat load forecasts reduces reliance on expert knowledge and the impact of
staff fluctuations, ensuring a more stable and reliable operational framework for district
heating networks.

This paper is organized as follows. In Section 2, the underlying approach is dis-
cussed, describing the required data and necessary data preparation steps, and ex-
plaining the LSTM-based neural network used in the forecasting algorithm and the
details of training and optimizing the neural network. Section 3 presents the data of
the two local Austrian heating networks, and contains the results and validation of the
algorithm tuning and prediction performance. In Sec-
tion 4, the Predict-IT software platform is introduced.
Finally, Section 5 discusses the results and outlines fu-
ture work, and Section 6 concludes the paper.

Data extraction from
control system

Manual data upload

2 Methodology and Technology

This section outlines the procedure of the Predict-IT
software for generating forecasts. Predict-IT utilizes
historical time series data representing measurements
of a district heating network’s heat load and ambi-
ent temperature. Figure 1 illustrates the data flow
diagram of Predict-IT, involving the following steps:
Data extraction from control systems or data loggers
and data upload into the Predict-IT platform are fol-
lowed by the data pre-processing stages (see Sec-
tion 2.1): Data format standardization (time stamps,
units, etc.), algorithm-specific data preparation (nor-
malization, handling missing values, feature engineer-
ing, etc.), and the generation of sub-samples. Follow-
ing this, the data is partitioned into training and test
sets to facilitate algorithm training and evaluation (see
Section 2.2). During the training phase, the LSTM-
based neural network algorithm is trained and evalu-
ated on the test set, and the algorithm hyperparame-
ters are optimized and stored for subsequent use (see

to application

Plant control system
dependent pre-processing

Pre-processing required
for algorithm

Training of LSTM-based
NNs on training data set

Evaluation of LSTM-based
NNs on test data set

Storage of best model

Prediction of heat load
for new data

Figure 1. Data flow diagram
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Figure 2. lllustration of the sliding window approach with a window length of 4. The top image shows
the first sample comprising the first 4 data measurements; the bottom image demonstrates
the shift to the second sample, comprising the 2™ to 5" measurements. If any observations
are missing within the window, the entire sample is disregarded.

Section 2.3). Utilizing the stored model, heat load forecasts can be generated with
minimal computational effort (see Section 3).

In terms of the Predict-IT modeling technology, data processing as well as model
learning and hyperparameter tuning are implemented in Python using Tensorflow [3],
[4]. Predict-IT employs the state-of-the-art Django web framework [5] to facilitate user
interaction (data upload, training, etc.) and to make forecast results available for visu-
alization and download. The deployment strategy for Predict-IT, including all necessary
components, is envisaged to be based on Docker [6], facilitating the packaging, de-
ployment and installation processes.

2.1 Data pre-processing

In a first step, the historical heat load and ambient temperature time series undergo
a preparation step to ensure they adhere to the required formatting in terms of time
stamps and physical units. Subsequently, these pre-processed data are resampled to
achieve uniform time intervals, such as 20-minutes or hourly intervals, depending on
the original data’s sampling rate. This resampling step is necessary because mea-
surement data are typically not available at constant sampling rates. Notably, if there
are gaps between consecutive measurements that exceed a user-defined threshold,
no resampling is done, and such data points are marked as missing values (compare
Figure 2).

In preparation for the algorithm, the resulting time series is segmented into equally-
sized samples using a sliding window approach, illustrated in Figure 2. The length of
the sliding window varies based on the resampling rate and the forecast horizon. For
example, with data resampled every 20 minutes (3 values per hour) and the forecast
horizon of 3 days (24-3 hours), the window length would be 3-24-3 = 216, meaning each
sample comprises 216 individual measurements. Alternatively, if data were resampled
every hour, a sample would comprise 24 - 3 = 72 measurements.

To ensure accurate forecasting, distinctive patterns within the heat load time series
are exploited. The heat load of a district heating network represents the overall thermal
power required by all connected customers. As such, the data encapsulate patterns
that represent daily, weekly and seasonal fluctuations: Daily patterns (e.g. different hot
water usage in the morning and at lunch, different building heat losses day and night),
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weekday patterns (e.g. different hot water 7 —— aay
or industry loads, depending on workday .| = o)
or weekend), and seasonal patterns (re-

duced thermal loads in spring or summer
compared to autumn and winter). To ef-
fectively encode these patterns for algo- 3
rithm training, feature engineering is em- 21
ployed: For instance, the "weekday” in- . } ]
formation could be encoded by integer N '\ '\ r\
numbers (1 to 7, assigned to each week- \/ J v/
day from Monday to Sunday), depicted as —— B —
green star marks in Figure 3. However,
this would result in a discontinuity at the
end of the week, even though weekdays
are cyclic. Therefore, a sinusoidal en- Figure 3. Feature engineering.

coding approach is adopted, where each

weekday is projected onto sine (blue cir-

cle marks) and cosine (orange cross marks), providing smooth transitions. Similarly,
encoding for time of day utilizes sine and cosine functions, and encoding for seasonal
effects involves projecting the distance from each day to the 215 of June to sine and co-
sine functions. Additionally, the presence of public holidays is encoded using a boolean
variable.
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2.2 Algorithm

For time series forecasting, various data-driven algorithm approaches are available,
broadly categorized into two groups: Statistical models of the ARIMA/SARIMA class,
which model time correlations among input variables using statistical methods with
a well-established theoretical foundation, and machine learning algorithms such as
boosting and support vector regression (see e.g. [2], [7]). In Predict-IT, a state-of-the-
art LSTM-based neural network is adopted due to its capability to represent time series
data with complex system dependencies [1], [8]. As a downside, LSTM-based neural
networks typically require longer training times compared to statistical algorithms.

The forecast horizon, representing the time span into the future for which Predict-IT
generates heat load forecasts, is a crucial parameter in forecasting models, specifying
granularity and accuracy of the predictions. In Predict-IT, the forecast horizon is a
parameter that can be adjusted by users in the web-based interface (see Section 4),
allowing users to tailor the Predict-IT forecasts to their specific needs.

The model structure utilized in Predict-IT is illustrated in Figure 4: It consists of two
LSTM models and a dense output layer. The first LSTM processes heat load data from
previous days as inputs z;, with the number of inputs defined by a sliding window size;
it outputs an internal state, s,. This state s, and the weather forecasts w; (ambient
temperature at the given location) are fed into the second LSTM, producing internal
states s;. Finally, a dense layer is applied to obtain the outputs, i.e. the forecasts of
future heat loads, z;.

2.3 Model training

In this section, we provide insights into the training of the LSTM-based neural networks,
focusing particularly on hyperparameter tuning, i.e., the selection of the optimal values
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Figure 4. Model diagram of the LSTM-based neural network

for the model hyperparameters. The objective is to find good candidate sets of hyper-
parameters which can be used by plant operators as a starting point for model training
without requiring the complete, computationally expensive hyperparameter optimiza-
tion. Speeding up the hyperparameter optimization is possible using parallel computing
techniques, yet this requires a CUDA compatible graphics card, which is not typically
available at the hardware of local district heating plant operators.

Towards this end, the neural networks were trained on 70 % of the available time
series data. The input consists of three days of historical measurement data of the
total heat load, resampled to 20-minutes intervals (i.e. a sliding window size of 216),
and the output delivers predictions for the heat loads of the coming three days, in
20-minutes intervals, using future ambient temperature as input. Presently, measured
ambient temperatures are used instead of weather forecasts (see Section 5 for further
discussion). We use the ready-implemented grid search approach of KerasTuner [9]
to obtain a set of hyperparameters that yield satisfying forecasts. Model training was
conducted on a NVIDIA Quadro P2000 graphics card.

Hyperparameter tuning of the Predict-IT forecasting model - the LSTM-based neural
network - involves the optimal choice of three parameters: the learning rate (determin-
ing the speed at which the neural network learns by incorporating new knowledge),
the number of latent dimensions in the network (reflecting model complexity), and the
batch size (indicating the number of samples processed before model parameters are
updated). During hyperparameter optimization, the number of epochs (representing
the number of times the model iterates through the entire dataset) is kept constant at
40, with an early stopping strategy implemented to prevent overfitting: The training is
stopped once the validation loss starts to increase again after reaching a local mini-
mum. After these first optimization steps, the number of epochs is tuned by training
this model 20 times and averaging the result. The used hyperparameter values are
listed in Table 1. In total, this grid search approach leads to 3- 10 - 2 = 60 combinations
of hyperparameters.
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Table 1. Possible values of the hyperparameters for the grid search.

Hyperparameter Values

Learning rate {0.003,0.005, 0.009 }

Latent dimensions {4, 6, 8,10, 12,16, 32,64, 128,256}

Batch size {256,512}

Epochs First constant with early stopping, then {1,---,40}

Table 2. Details of the data sets

Plant A Plant B
Location Austria Austria
Characteristics Private households only Private households,
two larger buildings
Observation period 10 years 5 years
Missing data 330 days 10 hours 324 days 21 hours
Data samples 200.888 samples 73.328 samples

For all experiments, the Mean Squared Error (MSE) is used as the loss function
on the test set, measuring the averaged squared differences between forecasted and
measured heat loads. Each hyperparameter combination undergoes five trials using a
grid search approach, with the final MSE computed as the average across these five
trials.

3 Results and Validation

In Section 3.1, we describe the data sets of two local Austrian district heating networks
used as use cases for validating the Predict-IT algorithm. For the two use cases, we
present the best found model hyperparameters (Section 3.2), the heat load forecasts
and discuss the applicability of a general hyperparameter set (Section 3.3).

3.1 Test Plants and Datasets

In order to validate the Predict-IT algorithm, the development team had access to two
datasets from local Austrian district heating networks. The LSTM-based neural network
was trained and evaluated on both datasets. Table 2 summarizes the two datasets.

 The first district heating network, referred to as Plant A, consists exclusively of pri-
vate households as customers, with measurement data spanning a period of ten
years, albeit with approximately one year of data missing. These gaps resulted
from several periods, lasting between 6 and 26 consecutive days. Employing
a sliding window of length 216, as defined for the algorithm training (see Sec-
tion 2.3), a total of 200.888 data samples were derived for Plant A.

» The second district heating network, referred to as Plant B, predominantly con-
sists of households, but also of two larger buildings, one of which is mostly used
on work days. Data observations span five years, with nearly one year of data
missing. Most periods of missing data span between 6 and 17 consecutive days,
with one longer data gap of approximately half a year. From these data, 73.328
samples are generated using a sliding window of length 216.
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3.2 Validation of hyperparameter tuning

The results of the hyperparameter tuning are illustrated in Figures 5 (grid search) and 6
(epochs). During the application of the algorithm on Plant A, for 256 latent dimensions
only a batch size of 256 (but not of 512) was utilized due to hardware constraints on the
graphics card. Consequently, 57 combinations of hyperparameters were explored for
Plant A and 60 combinations for Plant B. For Plant A, the best performing combination
of hyperparameters comprises a learning rate of 0.005, a batch size of 512, and 6 latent
dimensions, indicated by the white-coloured, large circle in Figure 5 (a) at position 6
at the x-axis and position 0.005 at the y-axis. Figure 6 (a) depicts the tuning process
for the number of epochs for this specific hyperparameter combination. Averaging over
all the results (orange line) indicates an optimal value of 12 epochs. Conversely, for
Plant B, the hyperparameter tuning yields slightly different results, as evidenced by
Figure 6 (b): Here, the optimum learning rate is the same at 0.005, but the batch size is
256 and the number of latent dimensions is 16; Figure 5 (b) reveals an optimal number
of epochs of 18 for Plant B.

A note on model complexity: While for Plant A the best results are reached with a
small latent dimension, indicating a less complex model, Plant B required more latent
dimensions, indicating a more complex model. This discrepancy could be attributed
to the structure of the underlying district heating network: Plant A has a rather homo-
geneous customer set (only private households), whereas Plant B includes a mix of
private households and larger buildings, resulting in increased variability of the mea-
sured heat load data.

A note on generalizability: Overall, as can be seen from Figure 5, the hyperparameter
combinations that are optimal for Plant A yield a larger MSE when applied on the data
of Plant B, and vice versa. This implies that utilizing a single set of hyperparameters
across multiple district heating plants is not sufficient, in practice. To further investigate
this, forecasts based on each hyperparameter set are evaluated using the datasets of
both plants (see Section 3.3).

A note on training time: Finally, we want to point out that both optimal model hyper-
parameters do not require the largest number of latent dimensions, nor the smallest
learning rate. In practice, this implies that the models can be trained on standard com-
puters without dedicated CUDA-compatible graphics cards.

3.3 Validation on Test Plants

After training the models and optimizing hyperparameters for Plant A and Plant B, the
Predict-IT algorithm was ready for generating heat load forecasts for the plants. To
assess the quality of the two inferred hyperparameter sets and the forecasts, a total of
four models were trained, as outlined in Table 3: For each plant, two models are trained,
based on the model hyperparameters derived in Section 2.3.For instance, the model
labeled "Model_hypB_datA” in Table 3 utilizes data from Plant A to generate forecasts
for Plant A, but employing hyperparameters inferred for Plant B.

All models were trained to forecast three days ahead in 20-minute intervals, based
on measured ambient temperature (see Section 5 for further discussion). Prediction
results were smoothed by summing three consecutive values, yielding hourly forecasts
with reduced noise.

The two models trained with the same plant data and hyperparameters (referred
to as Model_hypA_datA and Model_hypB_datB) are utilized to assess forecast quality,
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Figure 5. Results of the grid search for (a) Plant A and (b) Plant B. Along the x-axis are the latent
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dimensions, along the y-axis the learning rates. Each combination of latent dimension and
learning rate was run with two batch sizes: 256 (represented by the smaller circle), and 512
(larger circle), except for Plant A where only the smaller batch size was used with 256 latent
dimensions. The colour of the circles indicate the MSE - the lighter the color, the lower the
MSE (i.e., the better the result), as indicated by the colormap at the right side.

(a) Plant A (b) Plant B

Figure 6. MSE on the validation set for (a) Plant A and (b) Plant B using the hyperparameters found in

the grid search for the respective plants. Along the x-axis are the epochs, along the y-axis the
MSE. The grey lines show the results of 20 single runs, which are averaged to the final result,
shown in the thick orange line. The eclipse represents the optimal number of epochs.
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Table 3. Trained LSTM-based neural networks: For both data sets, models were trained using the two
optimal sets of hyperparameters from Section 3.2 (learning rate, latent dimensions, batch size,
epochs)

Hyperparameter set
Tuned on Plant A Tuned on Plant B
(0.005, 6,512, 12) (0.005, 16, 265, 18)

D Plant A | Model_hypA_datA  Model_hypB_datA
ald  pjant B | Model hypA datB  Model hypB datB

based on the MSE. These represent the best available forecasts from our LSTM-based
neural network. However, these results have to be interpreted with caution, as the fore-
casts are made on the test set which was also used to obtain the hyperparameters.
Conversely, the other two models (Model_hypB_datA and Model_hypA_datB) serve to
validate the generalizability of a single hyperparameter set to district heating plants for
which they were not trained. Visual inspection of the results allows comprehension of
model generalization on unseen data, demonstrating the model capabilities and facil-
itating comparison across different models. Further evaluation approaches, such as
residual analysis, will be considered in subsequent investigations.

Figure 7 illustrate two representative examples of predictions for each of the four
models. The top two rows show predictions for Plant A, once based on the same
plant’s hyperparameters (a), and once based on the other plant’s hyperparameters (b).
Similarly, the results for Plant B are illustrated in the bottom two rows, first based on the
same plant’s hyperparameters (c), and once based on the other plant’s hyperparame-
ters (d). In each plot, the blue line represents the heat load of the past 3 days, serving
as input to the model. The solid green line represents the true heat loads of the next 3
days, while the dashed purple line represents our model predictions.

For (a) Model_hypA_datA and (c) Model_hypB_datB, the results are satisfactory: The
predictions (dashed purple line) closely align with the true heat load values (green
solid line). However, as mentioned above, it's important to interpret these outcomes
with caution, as the hyperparameters are inferred from the same dataset used for the
forecasts, rather than from a separate validation set. For further validation, we ex-
amine the other two models: For (b) Model_hypB_datA the results remain satisfactory.
The used model (based on the hyperparameters of Plant B) is more complex than the
one based on the grid search on Plant A data, since it uses 16 instead of 6 latent di-
mensions. Overly complex models bear the risk of overfitting, but this concern does
not appear significant in this case. Conversely, for (d) Model_hypA_datB, the results
are less satisfactory, although the model still captures the overall trend. This discrep-
ancy arises from the model’s lower complexity, compared to the model obtained from
hyperparameter optimization on the Plant B data.

With respect to the initial objective in Section 2.3 of identifying robust candidate hy-
perparameter sets, these findings suggest a preference for hyperparameters that over-
fit the data. Given the longer training times associated with more complex models,
a trade-off between the number of models to train (i.e., the number of hyperparame-
ter candidate sets) and their complexity is expected. However, further investigation is
required to explore optimal model configurations.
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Figure 7. Results of the heat load prediction. In blue the network input (past heat loads), in green the
true future heat loads and in dashed purple the predictions.

4 Predict-IT Platform

The Predict-IT platform is a web-based user interface to the LSTM-based neural net-
work model, leveraging training the forecast model and producing heat load forecasts.
The platform guides the user through the required steps, as illustrated in Figure 8:

+ To set up a specific district heating plant, a few settings have to be entered by the
user, e.g. plant location, and forecast horizon and frequency (e.g. forecasts for 12
hours or 3 days ahead, in 20-minutes or hourly intervals).

* Next, a measurement data file must be uploaded, with specified column separator
or format. The measurement data are pre-processed in the background. In case

10
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Figure 8. Usage diagram of the Predict-IT platform, showing the Data Upload page. The steps in grey
font run in the background.

a pre-trained model for the plant is available, the heat load forecast is made and
visualized in real-time.

« Finally, if the model has not been trained yet, model training is triggered in the
background.

In the authors’ opinion, there are three crucial points for widespread and intuitive
applicability of the Predict-IT platform by plant operators:

1. Data input: Since the algorithm only requires historic time series of the total heat
load and the ambient temperature, data handling for the plant operator is limited to
providing these inputs which are typically available for heating networks. The am-
bient temperature can also be retrieved automatically by the algorithm, given the
plant location. Specifically, for the data formats of two leading Austrian providers
of plant control systems, automated data pre-processing has been implemented.

2. Model training: The training time of our algorithm depends on the model complex-
ity (i.e., the hyperparameter values) and can range from minutes to several hours,
such that the initial training could be done, e.g., overnight. Within the platform,
two measures are taken to limit the training time: Pre-defined sets of hyperpa-
rameters can be used, based on previously executed experiments, and re-training
strategies will be tested to evaluate when a complete retraining is needed (time-
intensive) and when a fine-tune is enough (time-efficient). To improve training
performance, model training can be performed on the computer’s graphics card,
leading to a significant speed-up in training time.

3. Platform usage: The Predict-IT application will be made available under an open-
source software license (details to be determined), and the deployment and in-
stallation will be realised using Docker, leveraging an installation process suitable
for various platforms and operating systems.

5 Discussion and future work

We presented "Predict-IT”, an open-source web-based platform to generate forecasts
of heat loads of district heating systems. The forecasts are powered by a state-of-the-
art data-driven model. This model, a LSTM-based neural network, has been validated
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against data of two Austrian local district heating networks. The model has shown to
perform satisfactorily on the test data, delivering accurate heat load forecasts up to
three days ahead, based on weather forecasts. The web-based Predict-IT platform
builds the basis for providing straightforward heat load forecasts to plant operators.

To test the Predict-IT system in real life and to obtain feedback from an operator, we
are planning to deploy the platform at a district heating plant. Furthermore, there are
several directions of future work:

» Currently, manual data upload is required for the historic heat load data used in
model training. The data upload could be automated and be done in real time, if
plant control and plant setup allow to do so.

* In the forecasting algorithm, training and testing steps currently utilize historic am-
bient temperature instead of forecast data. Using forecasts introduces additional
model uncertainty, necessitating further investigation into its impact on model per-
formance. Ideally, historic ambient temperature measurements would be replaced
with historic forecasts, an ongoing effort that involves identifying potential data
providers.

» The MSE is currently used as model loss function during training, albeit known to
be sensitive to residual peaks and not energy conservative. Exploring alternative
energy-conserving loss measures, such as the mean absolute error (MAE), could
be investigated.

« Limiting training time for the LSTM-based neural network is critical for the practi-
cal utility of the Predict-IT platform. This can be achieved in two ways: (1) Inves-
tigating suitable generalized hyperparameter sets in greater detail, considering
cross-validation strategies and applying the model to diverse datasets, such as
the Danish residential buildings dataset [10]. (2) Evaluating fine-tuning strategies
to enable retraining the model solely on new data, thereby accelerating overall
performance and providing usage guidelines for plant operators.

* We aim to conduct a more thorough model evaluation using residual analysis to
gain deeper insights into model performance and potential areas for improvement.

6 Conclusion

This paper describes Predict-IT, a software platform designed to produce forecasts of
the heat load of district heating networks, based on historic data and weather forecasts.
The algorithm used to power the Predict-IT forecasts is a state-of-the-art LSTM-based
neural network; the model and its training process are described in detail in this pa-
per. With very few input data, Predict-IT produced promising heat load forecasts when
tested with real data from two Austrian local district heating networks. Predict-IT is
independent of the specific plant control system, and the software boasts user-friendly
web-based utilization and installation (via Docker). The software will be accessible and
usable also for commercial purposes under an open-source software license, fostering
widespread accessibility and collaboration in the field.

Data availability statement

The data sets of the two local Austrian district heating networks (referred to as Plant A
and Plant B in the article) are not publicly available to preserve the anonymity of the
plant operators.
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