
22. Nachwuchswissenschaftler*innenkonferenz (NWK)

https://doi.org/10.52825/ocp.v2i.133

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 15 Dec 2022

Verifying the Elliptic Curve Verifiable Random
Function Secp256r1 on Blockchain

Nomana Ayesha Majeed1 and Alex Kemloh Kouyem1

1 Fakultät Angewandte Computer und Biowissenschaften, Hochschule Mittweida
* Corresponding author: majeed@hs-mittweida.de

Abstract. Randomness is a critical issue in peer-to-peer networks because random numbers
allow us to fairly select the candidates, resolve the lotteries, select block producers, etc. The
difficulty is that each participant wants to verify that the random number was randomly gener-
ated, this led to the invention of verifiable random functions (VRF). The VRF is a pseudo-
random function that provides a solution to blockchain-based random number generation.

This paper focuses on the implementation of an elliptic curve-based VRF introduced by
NIST called ECVRF-secp256r1 in Solidity. The algorithm verifies the randomness on-chain,
tests the gas consumption at each stage, and compares it to the ECVRF-secp256k1.

1. Introduction

Providing randomness to the blockchain without compromising the decentralization is critical
due to the deterministic nature of the blockchain. Four important directions namely cost, time,
randomness, and security need to be considered while generating a random number. There
are several methods such as commit and reveal, blockchain as a source of randomness, Ora-
cle pattern, etc. But none of these methods ensure all four domains, this leads to the invention
of verifiable random function.

2. Technical background

2.1 Blockchain

The Blockchain is a distributed immutable append-only database that is shared among the
nodes of a peer-to-peer computer network. Ethereum is a decentralized blockchain platform
that securely executes and verifies application code using smart contracts [1]. It offers a flexible
platform to build decentralized applications using Solidity and EVM.

2.2. Secp256k1 and Secp256r1 curve [2]

Secp256k1 curve is based on the Koblitz curve whereas the Secp256r1 curve is a random
curve introduced by NSA. Regarding secp256r1, it is assumed that the randomly selected pa-
rameters are more secure but there is a concern that random coefficients can provide the black
door since it is almost impossible to prove that they are purely random. Parameters in the
secp256k1 curve are chosen with relatively high rigidity therefore, it is considered as more
efficient curve.

213

https://doi.org/10.52825/ocp.v2i.133
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Majeed and Kouyem | Open Conf Proc 2 (2022) "22. Nachwuchswissenschaftler*innenkonferenz (NWK)"

2.3 Elliptic curve VRF [3]

VRF is a cryptographic primitive that maps input to a verifiable pseudorandom output. For a
key pair (𝑝𝑘, 𝑠𝑘) and an input 𝑥, a VRF produces a unique pseudorandom verifiable output and
a non-interactive proof of correctness. It satisfies three properties called provability, pseu-
dorandomness, and trusted uniqueness. Additionally, elliptic curves have an advantage in
terms of small security key size over RSA.

3. Our Contribution

We implemented an elliptic curve based VRF [4] for both secp256r1 and secp256k1 curves in
JavaScript and Solidity. We executed the proof off-chain using JavaScript because transmitting
the proof on-chain would reveal the secret key. However, the smart contract verifies the proof
on-chain using the verify function. We also implemented a fast way to verify proofs by perform-
ing scalar multiplications off-chain, since adding and multiplying elliptic curve points on the
blockchain is expensive.

We tested the gas consumption based on 10 randomly selected secret keys and seeds
of different lengths for both curves at each stage. The following table summarizes the min,
max, and average gas consumption:

Table 1. Average gas consumption for secp256k1 and secp256r1 curve

Methods (Solc 0.6.12,

optimizer: true)

secp256r1

secp256k1

min max avg avg

cost

min max avg avg

cost

fastVerify 55035 197198 76550 $0.21 65501 203857 99781 $0.27

verify 1489351 1749433 1615921 $4.47 1529800 1786976 1634355 $4.51

proofToHash 23564 23600 23596 $0.06 23564 23600 23597 $0.06

computeFastVerifyParams 1487122 1747195 1613680 $4.46 1527608 1784779 1632151 $4.51

decodeProof 50523 50568 50548 $0.14 56837 56894 56872 $0.16

hashAndTryIncrement 47626 189785 69141 $0.19 58104 196447 92374 $0.25

hashPoints 28465 28513 28499 $0.08 28453 28513 28497 $0.08

According to the table 1, we concluded that secpr1 consumes slightly less gas than
secpk1 (on average < 23.231 gas) [5]. By using the “computeFastVerifyParams” we can save
on average ~1613680 gas.

To identify the difference between functions fastVerify, verify, and hashAndTryIncre-
ment, we have analyzed these functions against the test vectors as given below:

214

Majeed and Kouyem | Open Conf Proc 2 (2022) "22. Nachwuchswissenschaftler*innenkonferenz (NWK)"

Table 2. Average gas consumption for secp256k1 and secp256r1 curve using different
seeds and keys

Secret keys: c9afa9d845ba75166b5c215767b1d6934
e50c3db36e89b127b8a622b120f6721

817f508d2d36aaa7ca077d1fd3c27d710
75aa979c59a9b75fc4a29b8cd27f3e0

seed methods secp256r1 secp256k1 secp256r1 secp256k1

‘ ’

fastVerify 102333 99614 55035 99602

verify 1651202 1644866 1563218 1630763

hashAndTryIncrement 94912 (3 rounds) 92229 (2 rounds) 47626 (1 round) 92229 (2 rounds)

‘test’

fastVerify 55229 65723 102519 99867

verify 1530011 1601713 1636950 1661479

hashAndTryIncrement 47820 (1 round) 58314 (1 round) 95106 (3 rounds) 92455 (2 rounds)

‘optimization’

fastVerify 78927 65834 78991 65806

verify 1651491 1655153 1672512 1555690

hashAndTryIncrement 71554 (2 rounds) 58410 (1 round) 71570 (2 rounds) 58394 (1 rounds)

‘VRF is pretty
amazing’

fastVerify 79118 134231 55464 65942

verify 1634215 1688928 1623232 1584749

hashAndTryIncrement 71697 (2 round) 126810 (3 rounds) 48043 (2 rounds) 58521 (1 round)

‘Example of EC-
DSA with an-
sip256r1 and

SHA-256’

fastVerify 127557 66600 56110 66588

verify 1749433 1614904 1587918 1633671

hashAndTryIncrement 120151 (4 rounds) 59179 (1 round) 48701 (1 round) 59179 (1 round)

The function hashAndTryIncrement used to generate a valid curve point for both
fastVerify and verify consumes more than 80% of the total amount of gas. Some combinations
(public key + seed) requires the algorithm to perform several rounds to search for a valid curve
point, this causes an increase in gas consumption since each new round cost ~20,000 - 40,000
gas. Additionally, hashAndTryIncrement consumes much gas therefore, the question is
whether we can also perform this function off-chain? This will allow us to save ~69,141 gas for
the secp256r1 curve and ~92,374 gas for the secp256k1 curve.

4. Conclusion

Applications using VRF must ensure that the key pair is generated correctly using good ran-
domness. In addition, implementers should be careful that the proof does not obscure the
seed. Anyone who knows the public key and proof can use an off-chain dictionary attack to
search for the seed by checking guesses for the seed with VRF_verify. Chainlink [6] offers a
random number generator using VRF with secp256k1 curve but the cost is extremely high.
Implementing VRF with secp256r1 would slightly reduce the costs but performing scalar mul-
tiplications off-chain will drop the costs dramatically.

Data availability statement

The underlying data is available upon request from the authors.

Competing interests

The authors declare that they have no conflicts of interest.

215

Majeed and Kouyem | Open Conf Proc 2 (2022) "22. Nachwuchswissenschaftler*innenkonferenz (NWK)"

References

1. Ethereum.org (2022), “ethereum.org,“. https://ethereum.org/en/what-is-ethereum/. [Ac-
cessed 14-03-2022].

2. Brown, D. R. (2010). Sec 2: Recommended elliptic curve domain parameters. Standars
for Efficient Cryptography

3. Micali, S., Rabin, M., & Vadhan, S. (1999, October). Verifiable random functions. In
40th annual sym-posium on foundations of computer science (cat. No. 99CB37039)
(pp. 120-130). IEEE.

4. S. G. L. R. J. V. Dimitrios Papadopoulos (2021): "Verifiable Random Funtions (VRFs),".
https://datatracker.ietf.org/doc/pdf/draft-irtf-cfrg-vrf-06. [Accessed 05-01-2022]

5. Cao, M. (2021): “Announcing our Verifiable Random Function (VRF) library in Solidity”.
https://medium.com/witnet/announcing-our-verifiable-random-function-vrf-library-in-
solidity-c847edf123f7. [Accessed 12-02-2022]

6. Chainlink Developers: “Introduction to chainlink VRF”.
https://docs.chain.link/docs/chainlink-vrf/ [Accessed 19-04-2022]

216

