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Abstract. Randomness is a critical issue in peer-to-peer networks because random numbers 
allow us to fairly select the candidates, resolve the lotteries, select block producers, etc. The 
difficulty is that each participant wants to verify that the random number was randomly gener-
ated, this led to the invention of verifiable random functions (VRF). The VRF is a pseudo-
random function that provides a solution to blockchain-based random number generation. 

This paper focuses on the implementation of an elliptic curve-based VRF introduced by 
NIST called ECVRF-secp256r1 in Solidity. The algorithm verifies the randomness on-chain, 
tests the gas consumption at each stage, and compares it to the ECVRF-secp256k1. 

1. Introduction

Providing randomness to the blockchain without compromising the decentralization is critical 
due to the deterministic nature of the blockchain. Four important directions namely cost, time, 
randomness, and security need to be considered while generating a random number. There 
are several methods such as commit and reveal, blockchain as a source of randomness, Ora-
cle pattern, etc. But none of these methods ensure all four domains, this leads to the invention 
of verifiable random function. 

2. Technical background

2.1 Blockchain 

The Blockchain is a distributed immutable append-only database that is shared among the 
nodes of a peer-to-peer computer network. Ethereum is a decentralized blockchain platform 
that securely executes and verifies application code using smart contracts [1]. It offers a flexible 
platform to build decentralized applications using Solidity and EVM. 

2.2. Secp256k1 and Secp256r1 curve [2] 

Secp256k1 curve is based on the Koblitz curve whereas the Secp256r1 curve is a random 
curve introduced by NSA. Regarding secp256r1, it is assumed that the randomly selected pa-
rameters are more secure but there is a concern that random coefficients can provide the black 
door since it is almost impossible to prove that they are purely random. Parameters in the 
secp256k1 curve are chosen with relatively high rigidity therefore, it is considered as more 
efficient curve. 

213

https://doi.org/10.52825/ocp.v2i.133
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Majeed and Kouyem | Open Conf Proc 2 (2022) "22. Nachwuchswissenschaftler*innenkonferenz (NWK)" 

 

2.3 Elliptic curve VRF [3] 

VRF is a cryptographic primitive that maps input to a verifiable pseudorandom output. For a 
key pair (𝑝𝑘, 𝑠𝑘) and an input 𝑥, a VRF produces a unique pseudorandom verifiable output and 
a non-interactive proof of correctness. It satisfies three properties called provability, pseu-
dorandomness, and trusted uniqueness. Additionally, elliptic curves have an advantage in 
terms of small security key size over RSA. 

3. Our Contribution 

We implemented an elliptic curve based VRF [4] for both secp256r1 and secp256k1 curves in 
JavaScript and Solidity. We executed the proof off-chain using JavaScript because transmitting 
the proof on-chain would reveal the secret key. However, the smart contract verifies the proof 
on-chain using the verify function. We also implemented a fast way to verify proofs by perform-
ing scalar multiplications off-chain, since adding and multiplying elliptic curve points on the 
blockchain is expensive. 

We tested the gas consumption based on 10 randomly selected secret keys and seeds 
of different lengths for both curves at each stage. The following table summarizes the min, 
max, and average gas consumption: 

Table 1. Average gas consumption for secp256k1 and secp256r1 curve 

Methods (Solc 0.6.12, 

optimizer: true) 
 

secp256r1 

 

secp256k1 

 

 

min max avg avg 

cost 

min max avg avg 

cost 

fastVerify 55035 197198 76550 $0.21 65501 203857 99781 $0.27 

verify 1489351 1749433 1615921 $4.47 1529800 1786976 1634355 $4.51 

proofToHash 23564 23600 23596 $0.06 23564 23600 23597 $0.06 

computeFastVerifyParams 1487122 1747195 1613680 $4.46 1527608 1784779 1632151 $4.51 

decodeProof 50523 50568 50548 $0.14 56837 56894 56872 $0.16 

hashAndTryIncrement 47626 189785 69141 $0.19 58104 196447 92374 $0.25 

hashPoints 28465 28513 28499 $0.08 28453 28513 28497 $0.08 

According to the table 1, we concluded that secpr1 consumes slightly less gas than 
secpk1 (on average < 23.231 gas) [5]. By using the “computeFastVerifyParams” we can save 
on average ~1613680 gas. 

To identify the difference between functions fastVerify, verify, and hashAndTryIncre-
ment, we have analyzed these functions against the test vectors as given below: 
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Table 2. Average gas consumption for secp256k1 and secp256r1 curve using different 
seeds and keys 

Secret keys: c9afa9d845ba75166b5c215767b1d6934
e50c3db36e89b127b8a622b120f6721 

817f508d2d36aaa7ca077d1fd3c27d710
75aa979c59a9b75fc4a29b8cd27f3e0 

seed methods secp256r1 secp256k1 secp256r1 secp256k1 

 

‘ ’ 

fastVerify 102333 99614 55035 99602 

verify 1651202 1644866 1563218 1630763 

hashAndTryIncrement 94912 (3 rounds) 92229 (2 rounds) 47626 (1 round) 92229 (2 rounds) 

 

‘test’ 

fastVerify 55229 65723 102519 99867 

verify 1530011 1601713 1636950 1661479 

hashAndTryIncrement 47820 (1 round) 58314 (1 round) 95106 (3 rounds) 92455 (2 rounds) 

 

‘optimization’ 

fastVerify 78927 65834 78991 65806 

verify 1651491 1655153 1672512 1555690 

hashAndTryIncrement 71554 (2 rounds) 58410 (1 round) 71570 (2 rounds) 58394 (1 rounds) 

 

‘VRF is pretty 
amazing’ 

fastVerify 79118 134231 55464 65942 

verify 1634215 1688928 1623232 1584749 

hashAndTryIncrement 71697 (2 round) 126810 (3 rounds) 48043 (2 rounds) 58521 (1 round) 

‘Example of EC-
DSA with an-
sip256r1 and 

SHA-256’ 

fastVerify 127557 66600 56110 66588 

verify 1749433 1614904 1587918 1633671 

hashAndTryIncrement 120151 (4 rounds) 59179 (1 round) 48701 (1 round) 59179 (1 round) 

The function hashAndTryIncrement used to generate a valid curve point for both 
fastVerify and verify consumes more than 80% of the total amount of gas. Some combinations 
(public key + seed) requires the algorithm to perform several rounds to search for a valid curve 
point, this causes an increase in gas consumption since each new round cost ~20,000 - 40,000 
gas. Additionally, hashAndTryIncrement consumes much gas therefore, the question is 
whether we can also perform this function off-chain? This will allow us to save ~69,141 gas for 
the secp256r1 curve and ~92,374 gas for the secp256k1 curve. 

4. Conclusion 

Applications using VRF must ensure that the key pair is generated correctly using good ran-
domness. In addition, implementers should be careful that the proof does not obscure the 
seed. Anyone who knows the public key and proof can use an off-chain dictionary attack to 
search for the seed by checking guesses for the seed with VRF_verify. Chainlink [6] offers a 
random number generator using VRF with secp256k1 curve but the cost is extremely high. 
Implementing VRF with secp256r1 would slightly reduce the costs but performing scalar mul-
tiplications off-chain will drop the costs dramatically.  
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