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Abstract: Ontology learning (OL) from unstructured data has evolved significantly, with
recent advancements integrating large language models (LLMs) to enhance various
aspects of the process. The paper introduces the LLMs40L 2024 datasets, developed
to benchmark and advance research in OL using LLMs. The LLMs40OL 2024 dataset
as a key component of the LLMs4OL Challenge, targets three primary OL tasks: Term
Typing, Taxonomy Discovery, and Non-Taxonomic Relation Extraction. It encompasses
seven domains, i.e. lexosemantics and biological functions, offering a comprehensive
resource for evaluating LLM-based OL approaches Each task within the dataset is
carefully crafted to facilitate both Few-Shot (FS) and Zero-Shot (ZS) evaluation scenar-
ios, allowing for robust assessment of model performance across different knowledge
domains to address a critical gap in the field by offering standardized benchmarks for
fair comparison for evaluating LLM applications in OL.

Keywords: Ontology Learning, Large Language Models, Dataset, LLMs4OL Chal-
lenge

1 Introduction

Ontologies have gained a lot of popularity and recognition in the semantic web because
of their fine s ource ofsemantics andi nteroperability. T he i ncrease i n unstructured
data on the web has made the automated acquisition of ontology from unstructured
text a most prominent research area. Recently, instead of handcrafting ontologies,
the research trend is now shifting toward automatic ontology learning (OL) [1]. OL
involves automatically identifying terms, types, relations, and potential axioms from
textual information to construct an ontology [2].

Looking back to the history of OL research, until early 2002 [3], most OL approaches
relied on seed words or existing base ontologies rather than building new ones from
scratch. Later in 2003 [4] the natural language processing (NLP) technique showed
promise for the exiraction of new concepts. However, relation exiraction for OL re-
mained still challenging. Also, the prior domain knowledge of the base ontologies still
was in the middle of the focus for OL. With progress in the field, in 2006 the concept of
“ontology learning layer cake” [5] was introduced to organize and describe the different
steps involved in the process of ontology learning from the text for real-life application
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scenarios. The OL layer cake includes (from the bottom of the cake to the top), Terms,
Synonyms, Concepts, Taxonomies, Relations, Rules, and Axioms. This reflects a pro-
gression from simpler to more complex and abstract forms, each step building on the
results of the previous one. It provides a structured approach to understanding and au-
tomating the OL process. Later in 2011, Hazman et al.[6] studied various OL systems
and categorized them into two categories, (1) learning from unstructured data and (2)
learning from semi-structured data. They also pointed out that when human-based
evaluation is not possible, carrying out five-level evaluations for OL is important, levels
such as lexical, hierarchical, contextual, syntactic, and structural levels. Since 2011
and in 2018 survey of [7] showed that a hybrid approach comprising both linguistic
and statistical techniques produces better ontologies. However, it is difficult to find the
best technique amount approaches due to the domain of the studies. The trend was
shifted toward statistical techniques for term extractions, however for relation extraction
clustering methods were the most used ones. Moreover, the various evaluations of OL
showed that human-based evaluation is the most reliable approach for evaluation.

Considering that most of the approaches in the field were based on statistical ap-
proaches or clustering models, the emergence of large language models (LLMs), of-
fered a paradigm shift in OL since their characteristics justify OL as a studied for the
first time within LLMs4OL paradigm [8]. One reason for this shift is the LLM’s genera-
tion capabilities because they are being trained on extensive and diverse text, similar
to domain-specific knowledge bases [9]. For the first time, in 2023 the LLMs4OL [8]
paradigm was introduced that incorporates LLMs for three important tasks of OL as
Term Typing, Taxonomy Discovery, and Non-Taxonomic Relation Extraction. Later,
more researchers were involved in the OL tasks from different perspectives [10]-[13].

The current trend in the semantic web reveals a growing interest among researchers
in utilizing LLMs [14]. A benchmark dataset is essential to assess the performance
of OL approaches, particularly those involving LLMs, in a consistent and compara-
ble manner. Without such benchmarks, it becomes difficult to evaluate progress and
compare various methodologies effectively [13]. To address this gap, in this work, we
introduce an LLMs4OL paradigm tasks dataset to bridge the gap in benchmark eval-
uation datasets specifically within the context of OL using LLMs. Our key contribution
is the creation of the LLMs4OL dataset, aimed at facilitating consistent evaluation in
this emerging field. For the first time, this dataset is introduced in the "1st LLMs40L
Challenge @ ISWC 2024” [15], a challenge organized at the prestigious International
Semantic Web Conference (ISWC). The primary goal of the challenge is to provide a
shared platform for researchers to benchmark their LLM-based OL approaches. By es-
tablishing this dataset and launching the LLMs4OL Challenge, we hope to encourage
further research and innovation in OL with LLMs, ultimately enabling a more structured
and fair comparison of different methods in this rapidly evolving area.

The LLMs40OL 2024 dataset addresses three OL tasks, which are known as primitive
ontology construction tasks [16]. Considering, L as a lexical entries for conceptual
type T, and Hr as a representation of taxonomy of types, and R as a non-taxonomic
relations, the LLMs4OL tasks are defined as follows:

» Task A — Term Typing: For a given lexical term L, discover the generalized type
T.

» Task B — Taxonomy Discovery: For a given set of generalized types T', discover
the taxonomic hierarchical pairs (T,,T;) pairs, representing "is-a” relations.

» Task C — Non-Taxonomic Relation Extraction: For a given set of generalized
types T and relations R, ddentify non-taxonomic, semantic relations between
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types to form a (T, r,T;) triplet, where T), and T; are head and tail taxonomic
types with r € R.

The LLMs4OL dataset is publicly available on GitHub', providing easy access for
researchers and practitioners in the field. The paper is organized as follows: Section
2 describes the domains that are being considered for benchmarking LLMs40I and
Section 3 investigates how ontologies are curated for OL. In section 4, we discuss the
curated dataset. Finally, we conclude in Section 5

2 Ontological Resources and Domains of the Study

The LLMs40L 2024 datasets support a variety of domains from lexosemantics to
biomedical. Such variety supports the comprehensiveness of the studies within the
LL Ms40OL 2024 Challenge. In the following, we detail each ontology within the domains
that we used for the construction of the LLMs4OL paradigm tasks dataset.

Lexosemantics. WordNet [17] is a large lexical database of English that serves as
a rich ontology for NLP and other applications. It was developed at Princeton Uni-
versity and has become a widely used tool for understanding and representing the
relationships between words. WordNet is divided into four main parts of speech, 1)
Nouns: Concepts, entities, and objects. 2) Verbs: Actions, processes, or states of be-
ing. 3) Adjectives: Descriptive qualities or attributes. 4) Adverbs: Modifiers of verbs,
adjectives, or other adverbs. Each part of speech has its own set of synsets and re-
lationships, which helps in distinguishing the different meanings words can have when
used in different grammatical contexts

Geographical Locations. The GeoNames [18] Ontology is a formal representation of
geographical data that models geographic features, locations, and associated informa-
tion. It is a crucial part of the Linked Open Data (LOD) cloud, providing a machine-
readable format for geographic data to facilitate integration, querying, and sharing of
geographic knowledge across different domains. GeoNames contains over 12 million
geographical names and 9 million unique features such as cities, countries, rivers,
mountains, lakes, etc. This makes GeoNames a rich ontology for further studies of
LLMs4O0L tasks.

Biomedical. The Unified Medical Language System (UMLS) [19] is a comprehensive
biomedical ontology developed and maintained by the U.S. National Library of Medicine
(NLM). It integrates various healthcare terminologies, coding systems, and ontologies
to create a unified resource that supports NLP, biomedical data integration, and in-
teroperability between different healthcare systems. UMLS Metathesaurus is a large
database of biomedical concepts and terms that integrates many existing terminologies
and coding systems. It consists of source vocabularies and includes well-known on-
tologies like SNOMEDCT_US [20], NCI [21], and MEDCIN [22]. The SNOMEDCT_US
provides the core general terminology for the electronic health record. However, NCI
covers vocabulary for cancer-related clinical care, translational and basic research, and
public information and administrative activities. Moreover, the MEDCIN medical termi-
nology encompasses symptoms, history, physical examination, tests, diagnoses, and
therapies.

Biological. Gene Ontology (GO) [23] consortium is a major bioinformatics initiative
that provides a standardized vocabulary to describe the functions, locations, and pro-
cesses involving genes and gene products across different species. GO aims to unify
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the representation of gene and gene product attributes, allowing researchers to con-
sistently annotate biological data and make it easier to compare gene functions across
organisms. GO provides a hierarchical structure to describe gene products in three key
areas such as Biological Process (BP), Molecular Function (MF), and Cellular Compo-
nent (CC). The BP describes our knowledge of the biological domain in the larger pro-
cesses accomplished by multiple molecular activities. The CC goes beyond molecular
activities and considers only location, relative to cellular compartments and structures.
MF describes activities that occur at the molecular level, such as “catalysis” or “trans-
port”.

General Knowledge. DBpedia [24] is a crowd-sourced initiative aimed at extracting
structured data from content generated across various Wikimedia projects. This data
forms an open knowledge graph (OKG) that is accessible to everyone on the Web. The
DBpedia Ontology (DBO), as a cross-domain ontology, emerged from a community ef-
fort to use Wikipedia’s most commonly used infoboxes to create a formal vocabulary for
categorizing knowledge for more precise querying and data linking. Wikipedia articles,
typically representing specific entities (e.g., people, places, or events), can be classi-
fied under one or more of these classes. As a result of this, the ontology is structured
as a hierarchy of classes and properties that describe concepts and their relationships,
resulting in 768 classes, which form a subsumption hierarchy with around 3,000 prop-
erties and contain approximately 4 million instances.

Food. Food Ontology (FoodOn) [25] is a consortium-driven project to build a compre-
hensive and easily accessible global farm-to-fork ontology about food, that accurately
and consistently describes foods commonly known in cultures from around the world.
The FoodOn as a food product terminology supports food security, safety, quality, pro-
duction, distribution, and consumer health and convenience.

Web Content Types. Schema.org [26] vocabulary covers entities, relationships be-
tween entities, and actions, and can easily be extended through a well-documented
extension model. The schemas are a set of 'types’, each associated with a set of
properties and the types are arranged in a hierarchy. Overall, schema.org consists
of 806 Types, 1476 properties 14 datatypes, 90 enumerations, and 480 enumeration
members.

3 Ontology Curation for LLMs40OL Tasks

We curated 6 ontologies comprising a total of 10 datasets for Task A, 6 ontologies for
Task B, and 3 ontologies for Task C. The curated ontologies and processes are rep-
resented in Figure 1, which involves three steps, each corresponding to the specified
tasks. In this section, we provide a brief overview of the curation process.

3.1 WordNet Ontology — Task A

We utilized the WN18RR dataset, as introduced in [27]. For evaluation, we merged the
test and validation sets, while the original training set was retained for model training.
Additionally, we focused on four specific lexical term types T": nouns, verbs, adverbs,
and adjectives. We also incorporated the sentences available in the WordNet dataset
as additional context for the terms.
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Figure 1. LLMs40OL 2024 Datasets Curation.

3.2 GeoNames Ontology — Tasks A and B

The GeoNames ontology encompasses all geographical locations worldwide. To nar-
row our focus, we first restricted the dataset to locations represented in English letters,
resulting in a set of lexical terms L. GeoNames uses Feature-Code [28] to categorize
and classify various geographic entities. Each location is associated with a Feature-
Code, which denotes a type of geographical location (e.g. "road”, or "populated place”
locations). We mapped these Feature-Code’s to their corresponding names to create
a set T, identifying a total of 680 distinct types within GeoNames. For instance, the
term "Elks Country Club” with the feature-code "S.RSRT” is mapped to its type name,
“resort”. The resulting (L, T') pairs were then used to create a train-test split based on
T, with approximately 10% of the data allocated for testing and the remaining used for
training at Task A.

For Task B, we utilized GeoNames Feature Codes, which are hierarchically structured
to reflect varying levels of granularity in geographic features. These codes are divided
into nine primary categories: "Administrative regions,” "Hydrographic features,” "Area,”
"Populated places,” "Roads and railroads,” "Spot features,” "Terrain,” "Undersea fea-
tures,” and "Vegetation.” These categories operate at a higher level within a two-level
taxonomy, resulting in 680 pairs with an "is-a” relationship. We then split the data into
a 70-30 ratio to create training and test sets.

3.3 UMLS Ontology — Tasks A, B,and C

For generating UMLS sub-ontological sources i.e. NCI, MEDCIN, and SNOMEDCT_US,
we considered umls-2022AB-metathesaurus-full version of the UMLS and processed
the MRCONSO files for obtaining the terms that are written in English. Next, we used the
following steps for extraction of lexical terms L, their respective types 7', and relations:

1. Filtering Lexical Terms: For each source (NCI, MEDCIN, SNOMEDCT_US), the
dataset is first filtered to extract relationships where both entities in a relationship
belong to the specific source being considered. This filtering is done by matching
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the source (NCI, MEDCIN, SNOMEDCT _US), ensuring that only triplets from that
source are used. The Concept Unique Identifiers (CUIs) of these terms are then
stored in a list, representing all the unique CUIs from the source.

2. Retrieving Semantic Information: After identifying the unique CUIs for each source,
the next step is to gather semantic information about these CUIs. For each CUI,
data from the MRSTY (Metathesaurus Semantic Types) file is used to obtain its
Type Unique Identifiers (TUI), Semantic Type Numbers (STN), and Semantic Type
Strings (STY). This information is collected and stored in a dictionary that links
each CUI to its corresponding semantic types, ensuring that each TUI and STN
is consistently associated with only one semantic type.

3. Conflict Resolution: During the previous steps, any conflicts—where a TUI or
STN might be associated with different semantic types—are checked and re-
ported. Once the consistency of the data is verified, the final hierarchy for each
source (NCI, MEDCIN, SNOMEDCT_US) is obtained, which contains mappings
from TUIs to their STNs and STYSs, along with a list of all unique TUIs and STNs
associated with each source, representing the hierarchical structure of entities
within that specific source.

Thus, separate datasets for NCl, MEDCIN, and SNOMEDCT_US are created, each
capturing the unique semantic relationships and entity types within those sources. For
Task A, we only considered CUI's and TUI’s to form the task dataset. We split the
datasets per source into training and testing sets with a 70-30 ratio. For Tasks B and
C, since both datasets are based on the same semantic network, we leveraged this
network to extract types along with their relationships. Types with ’is-a’ relationships
are used for Task B, while non-’is-a’ relationships are used for Task C. In both cases,
the datasets are split using a 70-30 ratio.

3.4 Gene Ontology — Tasks A, B,and C

For the Term Typing task, we needed to map lexical terms (gene products) to their
generalized types, derived from three Gene Ontology (GO) sub-ontologies: Biological
Process (BP), Cellular Component (CC), and Molecular Function (MF). To collect rel-
evant annotations, we used a Python script to query the GO Lookup Service (GOLR)
via the following API: https://golr-aux.geneontology.io. The query retrieved an-
notations containing information such as gene product names (bioentity name), labels
(annotation class label), and the associated ontology aspect. The dataset was then
grouped by the aspect field, which corresponds to the sub-ontology (BP, CC, or MF),
and duplicates were removed. After gathering and preprocessing the data, we created
separate datasets for each sub-ontology, organizing gene products (L) and their cor-
responding types (7). To ensure the quality of the dataset, we applied a frequency
threshold of 200, filtering out low-frequency terms, thus reducing noise. Subsequently,
the dataset was divided into training and test sets, with a 70-30 split to ensure a robust
evaluation of models performing the Term Typing task. The resulting datasets were
sufficiently large, with unique term counts for each sub-ontology, ranging from 323 to
792.

For Task B, the objective was to identify hierarchical relationships (i.e., "is-a” relations)
between the generalized types from Task A. We used the GO hierarchical structure,
which defines relationships as edges between nodes representing different ontology
term types. Using the GO ontology file, we extracted nodes and edges from the on-
tology graphs and then filtered the edges to retain only those that represent "is-a”
relations. We then generated pairs of term types representing the child-parent relation-
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SELECT DISTINCT 7?class 7label WHERE {
?class a owl:Class;
rdfs:label 7label .
FILTER (lang(?label) = 'en')

Figure 2. DBO SPARQL query for retrieving leaf classes for task A.

SELECT DISTINCT 7term 7label WHERE {
7?term a <leaf_class> ;
rdfs:label 7label .

FILTER (lang(?label) = 'en')

}

LIMIT 100

Figure 3. DBO SPARQL query for retrieving 100 terms for given leaf class. The leaf_class is a place
holder for replacing it with leaf class and querying for terms.

ships (sub, obj). These pairs were split into training and test sets based on the unique
term types involved, ensuring that no term appeared in both sets.

Finally, for Task C, we curated a dataset of semantic relationships between term types
discovered in Task A. The relations are encoded in the GO using properties such as
regulates, part of, and occurs in. We parsed the ontology to identify edges representing
these relations, using a predefined set of relation mappings. Edges that matched the
specified relation types were categorized into training and test sets. Similar to Task
B, we ensured that there was no overlap in the relations between the training and test
sets. The final dataset for Task C contained 10,538 training triplets and 7,234 test
triplets, spanning multiple non-taxonomic relations.

3.5 DBPedia Ontology — Tasks A and B

We have used DBPedia Ontology (DBO) for both Task A and Task B, leveraging the
structure and data provided by DBpedia’s SPARQL endpoint. The datasets from this
ontology has been utilized in a zero-shot setting, meaning it was used exclusively for
testing without any prior training. The models were evaluated directly on these unseen
tasks, without exposure to any data from the specific domain during training, empha-
sizing their generalization capabilities for Task A and Task B.

For Task A, we queried DBpedia for leaf classes and their associated terms in English.
Leaf classes were identified using the SPARQL query as described in Figure 2, which
retrieves all classes with English labels. For each leaf class, we queried up to 100
terms that belong to the class, again filtering for English terms using the SPARQL
query provided in Figure 3. The results of these queries were aggregated into terms
and their respective types, forming the dataset for Task A.

For Task B, we queried DBpedia’s subclass (‘is-a’) hierarchy to generate parent-child
relationships between taxonomic types. The SPARQL query, as described in Figure 4,
retrieved subclass relationships where both parent and child have English labels. The
resulting dataset contains hierarchical type pairs of "is-a” relations, with the taxonomic
types stored as lists. This dataset serves as the input for our Taxonomy Discovery task.
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SELECT DISTINCT ?childLabel ?parentLabel WHERE {

?child rdfs:subClass0f ?parent .

?child rdfs:label 7childLabel .

?parent rdfs:label 7parentLabel .

?child a owl:Class .

?parent a owl:Class .

FILTER (lang(?childLabel) = "en")

FILTER (lang(?parentLabel) = "en")

Figure 4. DBO SPARQL query for creating "is-a” relationships between taxonomic types for Task B.

PREFIX obo-term: <http://purl.obolibrary.org/obo/>

SELECT ?s 7label ?definition FROM <http://purl.obolibrary.org/obo/merged/FOODON> {
?s a owl:Class .
?s rdfs:1label 7label .
7s obo-term:TIA0\_0000115 ?definition .

Figure 5. FoodOn SPARQL query for extract entity labels and definitions for Task A.

3.6 Food Ontology - Tasks A, B, and C

For Food ontology (FoodOn), we construct datasets for tasks A, B, and C. All tasks are
designed to evaluate models in a zero-shot setting. For Task A, we queried FoodOn
to retrieve leaf classes (i.e., specific entity types) and associated terms. The SPARQL
query as described in Figure 5 was used to extract entity labels and definitions, en-
suring that only classes with English labels were included. The output from this query
was processed to assign terms to one of the predefined high-level categories such as
"Food”, "Environment”, "Agronomy”, etc. This resulted in a dataset where each term is
labeled with its corresponding class type (e.g., "Food”, "Plant”, etc.).

For Task B on taxonomy discovery, we extracted hierarchical relationships between
classes by retrieving rdfs:subClassOf relationships from the FoodOn. We used the
SPARQL query (presented in Figure 6) to obtain parent-child pairs of classes in English,
capturing the taxonomic structure. This resulted in a taxonomy dataset with pairs of
parent and child concepts, which we used to evaluate how well models can uncover
subclass relationships in a zero-shot context.

For the Task C, we focused on extracting object properties that represent non-taxonomic
relations between entities. The Figure 7 SPARQL query was used to retrieve all object
properties and their labels from the FOODON ontology. We then applied these rela-
tions to extract triples of the form (head entity, relation, tail entity), where each triple
represents a non-taxonomic relationship between two entities. This yielded a dataset
with various relation types and corresponding triplets, allowing us to evaluate models’
performance in predicting non-taxonomic relationships.

3.7 Schema.org — Task B

We also leveraged the Schema.org ontology to generate a dataset for Task B, with a
primary goal of extracting hierarchical relations between concepts, enabling the eval-
uation of how well models can identify ‘is-a’ relationships within a taxonomy. We ex-
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PREFIX obo-term: <http://purl.obolibrary.org/obo/>
SELECT DISTINCT ?childLabel ?parentLabel
FROM <http://purl.obolibrary.org/obo/merged/FOODON> WHERE {
?child rdfs:subClass0f ?parent .
?child rdfs:label 7childLabel .
?parent rdfs:label 7parentLabel .
?child a owl:Class .
?parent a owl:Class .
FILTER (lang(?childLabel) = "en")
FILTER (lang(?parentLabel) = "en")

Figure 6. FoodOn SPARQL query to obtain parent-child pairs of classes in English for Task B.

FROM <http://purl.obolibrary.org/obo/merged/FOODON> WHERE {
?property a owl:0bjectProperty .
?property rdfs:label 7propertyLabel .
FILTER (lang(?propertyLabel) = "en") .

}

ORDER BY 7propertyLabel

Figure 7. FoodOn SPARQL query to extract object properties that represent non-hierarchical relations
in English for Task C.

tracted subclass relationships from the Schema.org taxonomy by processing the on-
tology. First, we filter out irrelevant concepts by excluding root concept Thing or other
irrelevant RDF classes like rdf-schema#Class. Next, we prepare parent-child pairs by
using subType0f property, where if a child had multiple parents, we split these into sep-
arate parent-child pairs. This gave us a list of hierarchical relationships, where each
pair represented a child-parent relationship. Finally, to simulate a realistic few-shot
scenario, we split the types into training and testing sets. Concepts that appeared
in the subTypeOf property were divided into two sets using an 80/20 train-test split.
Parent-child pairs were then assigned to the training or testing set based on the parent
concepts.

4 Dataset Statistics

The LLMs40OL 2024 dataset is designed to support the benchmarking of ontology
learning models, with a total of 19 datasets distributed across three core tasks: Task
A - Term Typing, Task B - Taxonomy Discovery, and Task C - Non-Taxonomic Rela-
tion Extraction. The largest proportion of data is allocated to the Term Typing task,
given its fundamental role in associating terms with predefined types, which lays the
groundwork for downstream OL processes. Moreover, Taxonomy Discovery and Non-
Taxonomic Relation Extraction tasks are more specialized, focusing on hierarchical and
non-hierarchical relationships, respectively. This balanced yet task-specific distribution
ensures that models are tested across diverse, real-world learning scenarios.

Task A - Term Typing. Task A datasets as described in Table 1 covers both few-
shot (FS) and zero-shot (ZS) evaluation phases across multiple domains. The GeoN-
ames (A.2 FS) is the largest dataset, with over 8 million training samples and 702
thousand testing samples, making it highly significant for large-scale geographic term
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Table 1. LLMs40OL 2024 datasets — TASK A - TERM TYPING — domains and evaluation phases. "FS”
refers to the Few-Shot testing phase dataset containing train and test sets, But "ZS” refers to
the Zero-shot testing phase evaluation dataset containing only test sets.

Dataser Domain Train Test | Types
1 (FS) - WordNet lexicosemantics 40,559 9,470 4
2 (FS) - GeoNames geographical locations | 8,078,865 | 702,510 680
3 (FS) - UMLS - NCI 96,177 | 24,045 125
3 (FS) - UMLS - MEDCIN biomedical 277,028 | 69,258 87
3 (FS) - UMLS - SNOMEDCT_US 278,374 | 69,594 125
4 (FS) - GO - Biological Process 195,775 | 108,300 792
4 (FS) - GO - Cellular Component | biological 228,460 | 126,485 323
4 (FS) - GO - Molecular Function 196,074 | 107,432 401
5 (ZS) - DBO general knowledge - | 44,724 484
6 (ZS) - FoodOn food - | 18,087 12

Table 2. LLMs40L 2024 datasetls — TASK B - TAXONOMY DISCOVERY — domains and evaluation phases.
"FS” refers to the Few-Shot testing phase dataset containing train and test sets, But "ZS” refers
to the Zero-shot testing phase evaluation dataset containing only test sets. "Size” refers to
ground truth "is-a” pairs.

Dataset Domain - Train - Test

Size | Types Size | Types
B.1 (FS) - GeoNames | geographical locations 476 477 204 212
B.2 (FS) - Schema.org | web content types 1,070 | 2,062 364 728
B.3 (FS) - UMLS biomedical 74 76 45 51
B.4 (FS) - GO biological 33,703 | 25,372 | 5,753 | 6,621
B.5 (ZS) - DBO general knowledge - - 742 762
B.6 (ZS) - FoodOn food - - | 30,240 | 25,631

typing. Moreover, UMLS (A.3 FS) provides detailed biomedical data across three sub-
ontological sources such as NCI, MEDCIN, and SNOMEDCT_US, each with a large
number of types crucial for specialized medical term categorization. The GO (A.4 FS)
dataset, particularly the "Biological Process (BP)” subset, offers terms and types with
the highest variety of types up to 792. DBO (A.5 ZS) and FoodOn (A.6 ZS) are impor-
tant zero-shot datasets, to study the generalization of fine-tuned models.

Task B - Taxonomy Discovery. Task B dataset statistics are covered in Table 2,
showcasing 6 datasets from different domains. The GeoNames (B.1 FS), Schema.org
(B.2 FS), and UMLS (B.3 - FS) are relatively small in terms of training examples but
represent unique domains (geographical locations, web content, and biomedical). Sim-
ilarly, a zero-shot dataset DBO (B.5 FS) has small examples for testing which plays a
real-world scenario to study the generalization of models, when they are fine-tuned.
Moreover, GO (B.4 FS) stands out with over 33,7083 training samples and the highest
variety of types 25,372, making it key for biological taxonomy discovery. And FoodOn
(B.6 ZS) is significantly large with 30,240 test samples and 25,631 types, focusing on
the evaluation of the generalization of models in finding taxonomies in the food domain.

Task C - Non-Taxonomic Relation Extraction. Task C consists of 3 datasets, as
shown in Table 3, the datasets for this task are few in comparison to task A and B
datasets. The UMLS (C.1 FS), despite its moderate size, holds significance in biomed-
ical relation extraction, focusing on multiple relation types. GO (C.2 FS) shows an
imbalance in relation types, with 5 relations for training but only 2 relations for testing.
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Table 3. LLMs40OL 2024 datasets — TASK C - NON-TAXONOMIC RELATION EXTRACTION — domains and
evaluation phases. "FS” refers to the Few-Shot testing phase dataset containing train and test
sets, But "ZS” refers to the Zero-shot testing phase evaluation dataset containing only test sets.
"Size” refers to ground truth (h,r,t) triplets.

Dataset Domain - Train - - Test -
Size | Types | Relations | Size | Types | Relations
C.1 (FS) - UMLS biomedical | 3,030 121 33 | 2,611 111 15
C.2(FS)-GO biological | 10,538 | 10,901 5| 7,234 | 14,065 2
C.3 (ZS) - FoodOn | food - - -| 7,086 | 7,298 26

Task A - Term Typing (Types Distribution} Task B - Taxonomy Discovery [Train vs Test Types) Task C - Non-Ta ic RE (Train vs Test Types)

Train

. Test
FoodOn Faodan

o
§ GOilogical Process
] GO

[reree) Schema.on |

et GeoMames - '|'

Test

0 100 200 300 400 500 600 00 800 o 5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000 14000
Number of Types Number of Types Number of Types

Figure 8. LLMs40L datasets type distributions in train and test sets.

FoodOn (C.3 ZS), with 7,086 test samples and 26 relations, highlights the complexity
of non-taxonomic relations in the food domain.

Types Distributions. The Figure 8 highlights the complexity of the datasets across
tasks. In Task A (Term Typing), the GeoNames and GO-Biological Process datasets
stand out with the highest number of types, while WordNet and FoodOn have relatively
fewer types, indicating simpler classification challenges. For Task B (Taxonomy Discov-
ery), the Schema.org and GO datasets show a large number of types in both train and
test phases, suggesting their complexity, while FoodOn features a high number of test
types despite having no training data, making it a challenging zero-shot task. Lastly,
in Task C (Non-Taxonomic Relation Extraction), the GO dataset shows a significant in-
crease in types from train to test, and FoodOn again presents a large number of types
and relations, reinforcing its difficulty in a zero-shot setting.

5 Conclusion

In this paper, we introduced the LLMs4OL 2024 dataset, designed to advance the
field of OL by leveraging the capabilities of LLMs. The dataset encompasses three
core tasks— Task A - Term Typing, Task B - Taxonomy Discovery, and Task C - Non-
Taxonomic Relation Extraction—across seven distinct domains, providing a compre-
hensive benchmark for evaluating LLMs in diverse semantic and structural contexts.
By focusing on these tasks, we aim to push the boundaries of OL and enhance the
development of models capable of processing unstructured text into formalized knowl-
edge representations. The dataset also reflects real-world challenges such as class
imbalance and domain-specific variations, which are crucial for the development of ro-
bust, generalizable models. Furthermore, its integration into the LLMs4OL Challenge
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at the 23rd International Semantic Web Conference (ISWC) 2024 aims to foster com-
munity engagement and encourage the exploration of novel approaches to OL.

Moving forward, this dataset and its benchmarks will provide researchers with a foun-
dational resource to explore the intersection of LLMs and OL, promoting further inno-
vations in knowledge extraction, classification, and relation discovery. We believe that
the LLMs4OL 2024 dataset will serve as a key catalyst in the ongoing evolution of OL
and its practical applications across a variety of domains.
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