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Abstract: Large language models (LLMs) showed great capabilities in ontology learn-
ing (OL) where they automatically extract knowledge from text. In this paper, we pro-
posed a Retrieval Augmented Generation (RAG) formulation for three different tasks of
ontology learning defined in the LLMs4OL Challenge at ISWC 2024. For task A - term
typing - we considered terms as a query and encoded the query through the Query En-
coder model for searching through knowledge base embedding of types embeddings
obtained through Context Encoder. Next, using Zero-Shot Prompt template we asked
LLM to determine what types are appropriate for a given term within the term typing
task. Similarly, for Task B, we calculated the similarity matrix using an encoder-based
transformer model, and by applying the similarity threshold we considered only similar
pairs to query LLM to identify whatever pairs have the "is-a” relation between a given
type and in a case of having the relationships which one is "parent” and which one is
“child”. In final, for Task C — non-taxonomic relationship extraction — we combined both
approaches for Task A and B, where first using Task B formulation, c hild-parents are
identified then using Task A, we assigned them an appropriate r elationship. For the
LLMs40L challenge, we experimented with the proposed framework over 5 subtasks
of Task A, all subtasks of Task B, and one subtask of Task C using Mistral-7B LLM.

Keywords: Large Language Models, Ontology Learning, Retrieval Augmented Gener-
ation, Term Typing, Taxonomy Discovery, Non-Taxonomic Relationship Extraction

1 Introduction

Ontology Learning (OL) is a critical area in knowledge representation and manage-
ment, addressing the challenges of acquiring and structuring knowledge from diverse
textual sources. With the rapid advancements in Natural Language Processing (NLP),
particularly through the emergence of Large Language Models (LLMs), there is a com-
pelling opportunity to enhance OL processes. LLMs have demonstrated remarkable
capabilities in understanding and generating human language, making them potential
candidates for automating the extraction and organization of knowledge from natu-
ral language texts. In the work of Babaei Giglou et al. [1] LLMs4OL paradigm was
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introduced which investigates the hypothesis: Can LLMs effectively leverage their lan-
guage pattern recognition abilities to facilitate ontology learning? Our approach en-
compasses a comprehensive evaluation of different LLM families across three primary
tasks: term typing, taxonomy discovery, and extraction of non-taxonomic relationships.
These tasks are evaluated using diverse ontological knowledge sources, including lex-
icosemantic knowledge from WordNet, geographical knowledge from GeoNames, and
medical knowledge from UMLS. The empirical results from our study reveal that while
foundational LLMs may struggle with the reasoning and domain expertise required for
effective ontology construction, they can serve as valuable assistants when fine-tuned
appropriately. This fine-tuning can alleviate the knowledge acquisition bottleneck often
encountered in ontology development.

To systematically explore the capabilities of LLMs in OL, we have structured our
research into three distinct tasks as described in LLMs4OL 2024 Challenge [2]:

1. Task A — Term Typing: This task involves classifying terms into predefined cate-
gories across various domains, such as geographical locations in GeoNames and
medical terminologies in UMLS.

2. Task B — Taxonomy Discovery: Here, we aim to identify hierarchical relation-
ships between term types, utilizing datasets from GeoNames and Schema.org to
establish taxonomic structures.

3. Task C — Non-Taxonomic Relationship Extraction: This task focuses on iden-
tifying semantic relationships between terms that do not conform to hierarchical
structures, with a particular emphasis on medical concepts in UMLS.

The rest of the paper is constructed as follows: In section 2 we refer to some pre-
viously conducted works. Then in section 3, we describe our methodology and after
reporting the results of the study in section 4, we provide information about datasets
we used in our implementations.

2 Related works

The construction of ontologies and knowledge graphs (KGs) has traditionally relied
on human domain experts to define entities, establish relationships, and ensure data
quality. However, the advent of Large Language Models (LLMs) has introduced promis-
ing avenues for automating aspects of this labor-intensive process. In the work of
Kommineni et al. [3] proposed a semi-automated pipeline for constructing KGs using
open-source LLMs. Their approach involves formulating competency questions (CQs),
developing an ontology based on these CQs, and constructing KGs with minimal hu-
man involvement. The authors demonstrate the feasibility of their pipeline by creating
a KG focused on deep learning methodologies, utilizing scholarly publications. Their
findings suggest that while LLMs can significantly reduce the human effort required for
KG construction, a human-in-the-loop approach remains essential for evaluating the
quality of automatically generated content.

Another study [4] introduces ANGEL, a framework that integrates ontology structures
and instructive prompting within LLMs for Named Entity Recognition (NER) data aug-
mentation. This framework addresses the challenge of generating scalable training
data while maintaining contextual diversity and label consistency. The experimental re-
sults indicate that ANGEL outperforms state-of-the-art methods, showcasing the poten-
tial of LLMs to enhance NER model performance, especially in low-resource scenarios.
OntoChat is presented as a framework designed to facilitate conversational ontology
engineering [5]. By leveraging LLMs, OntoChat supports requirement elicitation, anal-
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ysis, and testing in large collaborative projects. The framework allows users to interact
with a conversational agent to create user stories and extract competency questions,
thus streamlining the ontology engineering process. Preliminary evaluations indicate
positive feedback from domain experts, although challenges such as biases and the
need for enhanced insights into implementation costs remain.

One other work presented SPIRES [6], a knowledge extraction approach that utilizes
LLMs for zero-shot learning and schema-conforming query answering. SPIRES recur-
sively interrogates prompts to extract information from input text while adhering to a
user-defined knowledge schema. The method demonstrates flexibility and customiza-
tion, enabling it to perform various tasks without requiring new training data. The re-
sults indicate that SPIRES can assist in knowledge curation and validation, significantly
improving the efficiency of knowledge base creation. Furthermore, researchers inves-
tigate the use of LLMs to generate technical content relevant to the SAPPhIRE model
of causality. They present a method for hallucination suppression using Retrieval-
Augmented Generation (RAG) to ensure the generated content is accurate and sci-
entifically grounded. The study emphasizes the importance of the context provided to
the LLM, demonstrating that different contexts can lead to varying quality in the gener-
ated responses. This research aims to build a software tool for generating SAPPhIRE
models, highlighting the potential of LLMs in technical knowledge generation [7].

In a study, L.Silva et al. [8] explore the creation of capability ontologies using LLMs.
The authors conduct experiments with different prompting techniques and LLMs to gen-
erate machine-interpretable models from natural language descriptions. Their findings
indicate that even complex capabilities can be accurately modeled, significantly reduc-
ing the effort and expertise required for ontology creation. The study also emphasizes
the need for semi-automated quality checks to ensure the reliability of the generated
ontologies. Yushi Sun and his team also investigated whether traditional knowledge
graphs should be replaced by LLMs, particularly regarding their ability to capture spe-
cialized taxonomies. The authors introduce TaxoGlimpse, a benchmark for evaluating
the performance of LLMs across various taxonomies. Their comprehensive experi-
ments reveal that while LLMs perform well on common taxonomies, they struggle with
specialized domains and leaf-level entities. The study suggests future research direc-
tions that combine LLMs with traditional taxonomies to create novel neural-symbolic
taxonomies [9]. Recent research has started to explore the potential of LLMs in ontol-
ogy matching (OM) using retrieval augmented generation (RAG), leveraging the vast
amount of knowledge encoded in these models to perform more sophisticated and
context-aware matching. The LLMs40OM [10] framework represents a significant ad-
vancement in this direction. It introduces an approach that employs LLMs for OM
tasks through two modules dedicated to retrieval and matching, enhanced by zero-
shot prompting across three ontology representations: concept, concept-parent, and
concept-children. Comprehensive evaluations using 20 OM datasets from various do-
mains demonstrate that LLMs4OM can match and even surpass the performance of
traditional OM systems, particularly in complex matching scenarios using RAG.

The mentioned research collectively highlights the transformative potential of LLMs
in ontology and KG construction, offering various methodologies to enhance automa-
tion and reduce the reliance on human expertise. However, they also underscore the
importance of maintaining human oversight to ensure the accuracy and relevance of
the generated content. As the field evolves, future research will likely continue to ex-
plore the integration of LLMs in knowledge engineering, addressing existing limitations
and enhancing the effectiveness of these technologies.
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Figure 1. RAG for Term Typing Task of LLMs4OL
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3 Methodology
3.1 Task A — term typing

In Task A, the goal is to classify terms into predefined categories across various do-
mains. We implemented a Retrieval-Augmented Generation (RAG) approach, leverag-
ing LLMs using QLoRA approach. This setup allowed us to efficiently handle the term
classification task without the need for additional fine-tuning. By integrating RAG, we
aimed to enhance the accuracy and relevance of the classifications, making it suitable
for a wide range of domains where terms might have clear meanings and require exact
categorization.

To accomplish the task, the Figure 1 implemented to treat the types as a knowledge
base (KB) and employed a Context Encoder model to generate embeddings for these
types, which were then stored in the KB Embedding Storage. Specifically, we used the
dpr-ctx_encoder-single-nq-base model [11], which is a sentence-BERT variant, to
create context-aware embeddings. For any given query, we generated the correspond-
ing embedding using a Query Encoder with dpr-question_encoder-single-ngq-base
model [11]. This dual-encoder approach facilitated a robust representation of both
terms and types, ensuring that the system could effectively match terms with the most
relevant types. Once the embeddings were in place, a Retrieval model searched the
KB Embedding Storage to retrieve the top-k candidate types using the cosine similar-
ity metric (we set top-k as 20). These candidate types were then passed to the LLM,
specifically the Mistral-7B-Instruct-v0.3 [12] model, which processed the candi-
dates through a specialized prompt template (as described in Figure 2). The prompt
was designed to instruct the LLM to identify the most probable types for the given term
and return them in a simple Python list format, without any additional explanation. This
process allowed for efficient and accurate term typing, ensuring that the most suitable
types were consistently identified for each term.

3.2 Task B - taxonomy discovery

In Task B: Taxonomy Discovery, the focus is on identifying "is-a” relationships between
predefined types, where the goal is to determine the hierarchical child-parent relation-
ships among these types. This process involves analyzing provided types to establish
which ones serve as more general categories (parents) and which are more specific
instances (children). By uncovering these relationships, we can construct or expand a
taxonomy that organizes types in a structured manner, reflecting their inherent hierar-
chies. The overall workflow for this task is visually summarized in Figure 3.
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Given a list of types as a candidate to be assigned to the term, identify the most probable
types.

Return types only in the form of a Python list.
Do not provide any explanation.

Term: <term>
Candidates: <candidates-1ist>

Suitable types:
Figure 2. Prompt Template for Task A - Term Typing
Types Embedding Matrix similarity Matrix
- Cosine
Similarity
“ ———» |Context Encoder| ———» —_
n*768 nn
Apply
Prompt Template similarity Threshold

l Y
Query ) _
Parent-Child - LLM «— List of pairs

Figure 3. RAG for Taxonomy Discovery Task of LLMs4OLB

The first step in this task was to generate a types embedding matrix using a con-
text embedding model. This matrix represents the types in a high-dimensional space,
capturing their semantic similarities. To identify potential “is-a” relationships, we cal-
culated pairwise cosine similarities between all possible pairs of types, producing a
cosine-similarity matrix. This matrix serves as the foundation for detecting relation-
ships, with each value representing how closely related two types are in terms of their
embeddings. We then applied a threshold-based filter to the lower triangular part of
this matrix, effectively narrowing down the list of possible type pairs that might exhibit
a child-parent relationship. The filtered pairs were then passed to a Large Language
Model (LLM) to assess whether a child-parent relationship exists between each pair.
We designed a specific prompt template to guide the LLM in this evaluation. For each
pair, the LLM was asked to determine if a hierarchical relationship was present, and if
so, to identify which type is the child and which is the parent. The model was instructed
to output the results in a JSON format, strictly indicating the child-parent pairs or re-
turning an empty JSON object if no relationship was found. This structured approach
ensured that the LLM’s output clear and accurate taxonomy. The prompt template in
Figure 4 is used in the taxonomy discover framework.
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Given two types, determine whether they can have the children-parent relations or not.
Then which one would be a parent and which one would be a child?

Use the following output format:

{

“child”: "type”,
“parent”: "type”
}

Notes:

- If it is not possible to establish a parent-child relationship.
Just return empty ‘{}".

- Do not return anything other than JSON.

- Do not provide any explanation

Term-1: <first-types>
Term-2: <second-type>

HHH

Figure 4. Prompt Template for Task B - Taxonomy Discovery

3.3 Task C — Non-Taxonomic Relation Extraction

In Task C: Non-Taxonomic Relation Extraction, the objective is to identify and extract
triplets in the form of (head, relation, tail) from a set of given types. These triplets repre-
sent non-taxonomic relationships between types, where "head” and "tail” are types, and
“relation” defines the nature of their connection. This task leverages the methodologies
developed for both Task A (Term Typing) and Task B (Taxonomy Discovery), integrating
them to uncover and label relationships beyond simple hierarchical structures.

The first phase of this task mirrors the approach used in Task B: we begin by identify-
ing potential pairs of types that may have a significant relationship, treating the problem
similarly to how we discovered “child-parent” relationships in Task B. We use a context
embedding model to create embeddings for the types and then calculate pairwise co-
sine similarities to determine which pairs are closely related. By applying a threshold
to the cosine similarity matrix, we filter out the most promising type pairs, which could
potentially form the basis of non-taxonomic triplets.

Once the type pairs are identified, we employ an approach similar to Task A to assign
the appropriate relationship (or "relation”) to each pair, transforming the "child-parent”
identification into a broader relation extraction. The filtered pairs are fed into an LLM
using a prompt depicted in Figure 5 to determine the exact nature of the relationship
between each pair. The LLM, informed by its understanding of the types, assigns a
specific relation to each pair, effectively completing the triplet. This combined approach
ensures we can extract meaningful and accurate (head, relation, tail) triplets, providing
a comprehensive understanding of the relationships within the given set of types.
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Given a head and tail type with candidate relations between them, identify the most
probable relation between head and tail.

Notes:

- Return a single relation in the following format:
{’relation’:relation-name’}

- not provide any explanation.

Head-Type: <head-type>
Tail-Type: <tail-type>

Candidate relation between head and tail types: <candid-1list>
Suitable relations:

Figure 5. Prompt Template for Task C - Non-Taxonomic Relation Extraction

4 Results

In the LLMs40OL Challenge, we participated in multiple subtasks across three ma-
jor tasks: Task A (Term Typing), Task B (Taxonomy Discovery), and Task C (Non-
Taxonomic Relation Extraction). Our performance was evaluated based on F1 scores,
precision, and recall under both Few-Shot (FS) and Zero-Shot (ZS) testing scenario
datasets of the challenge [13]. The results are presented in Table 1.

Table 1. Phoenixes at LLMs4OL Challenge Results Across LLMs40L SubTasks.

| SubTasks | Rank | F1 | Precision | Recall |

Task A - Term Typing

SubTask A.1 (FS) - WordNet

SubTask A.3 (FS) - NCI

SubTask A.4 (FS) - Cellular Component
SubTask A.4 (FS) - Biological Process
SubTask A.4 (FS) - Molecular Function
Task B - Taxonomy Discovery

0.8158 0.7689 | 0.8687
0.0737 0.0562 | 0.1070
0.0158 0.0124 | 0.0217
0.0319 0.0214 | 0.0622
0.0700 0.0485 | 0.1256

(2SN 6, N6 BN

SubTask B.1 (FS) - GeoNames 5 | 0.0036 0.0019 | 0.0294
SubTask B.2 (FS) - Schema.org 3 | 0.0155 0.0079 | 0.3901
SubTask B.3 (FS) - UMLS 2 | 0.0960 0.0550 | 0.3778
SubTask B.4 (FS) - Gene Ontology (GO) 1] 0.0164 0.0180 | 0.0149
SubTask B.5 (FS) - DBpedia Ontology (DPO) 2 | 0.0164 0.0180 | 0.0149
SubTask B.6 (ZS) - Food Ontology (FoodOn) 1| 0.0308 0.0243 | 0.0420

Task C - Non-Taxonomic Relationship Extraction
SubTask C.1 (FS) - UMLS \ 2 \ 0.0273 \ 0.0433 \ 0.0199

Below, we provide an overview of our results and their insights.

4.1 Task A - Term Typing

In Task A, we participated in five subtasks focused on different ontologies and domains.
Our best performance was in SubTask A.1 (FS) - WordNet, where we achieved an F1
score of 0.8158. This result indicates a relatively strong ability to classify terms within
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the WordNet domain, with a precision of 0.7689 and a recall of 0.8687. However, our
performance in the other subtasks fell short, particularly in SubTask A.4 (FS) - Cellular
Component, where we only achieved an F1 score of 0.0158. Similar low scores were
observed in SubTask A.4 (FS) - Biological Process (F1 = 0.0319) and SubTask A.4 (FS)
- Molecular Function (F1 = 0.0700). These results suggest that our model struggled
with more specialized biological domains, likely due to the complexity and specificity of
the terms involved. Overall, the presented results show the formulation of the task with
RAG is beneficial, however, fine-tuning is one of the requirements to obtain a better
performance as observed in [1].

4.2 Task B - Taxonomy Discovery

In Task B, we explored the discovery of "is-a” relationships across various ontologies.
Our best result was in SubTask B.3 (FS) - UMLS, where we ranked 2nd with an F1
score of 0.0960. However, the F1 scores across other subtasks, such as SubTask B.1
(FS) - GeoNames (F1 = 0.0036) and SubTask B.2 (FS) - Schema.org (F1 = 0.0155),
indicate difficulties in accurately identifying taxonomic relationships in these domains.
For SubTask B.3 (FS) - UMLS the recall score of 0.3778 shows that our approach was
competitive in identifying complex relationships within the UMLS domain, however, LLM
failed to find appropriate relations.

4.3 Task C - Non-Taxonomic Relationship Extraction

For Task C, we participated in SubTask C.1 (FS) - UMLS, which focused on extracting
non-taxonomic relationships. Our model achieved an F1 score of 0.0273, ranking 2nd
in this subtask. Despite the relatively low F1 score, this result shows that our approach
was competitive in identifying complex relationships within the UMLS domain. The
precision of 0.0433 and recall of 0.0199 indicate that while our model was able to
correctly identify some relationships, there were challenges in capturing the full range
of relevant relations, suggesting areas for further improvement.

5 Conclusion

In conclusion, our participation in the LLMs40L Challenge revealed strengths in certain
domains, particularly in Task A for WordNet and in Task B for Food Ontology. However,
the generally low F1 scores across many subtasks highlight the challenges of term typ-
ing, taxonomy discovery, and relation extraction in highly specialized domains. These
results suggest that while our approach has potential, there is significant room for im-
provement, particularly in enhancing the model's adaptability to diverse and complex
ontologies. The implementation of this work is published in the GitHub repository for the
research community at https://github.com/MahsaSanaei/Phoenixes-LLMs40OL-ISWC.
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