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Abstract: The LLMs40L Challenge @ ISWC 2024 aims to explore the intersection of
Large Language Models (LLMs) and Ontology Learning (OL) through three main tasks:
1) Term Typing, 2) Taxonomy Discovery and 3) Non-Taxonomic Relation Extraction. In
this paper, we present our system’s design for the term typing task. Our approach uti-
lizes automatic prompt generation using soft prompts to enhance term typing accuracy
and efficiency. W e c onducted e xperiments o n s everal d atasets, i ncluding WordNet,
UMLS, GeoNames, NCI, MEDCIN, and SNOMEDCT_US. Our approach outperformed
the baselines on most datasets, except for GeoNames, where it faced challenges due
to the complexity and specificity of this domain, resulting in substantially lower scores.
Additionally, we report the overall results of our approach in this challenge, which high-
light its promise while also indicating areas for further improvement.
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1 Introduction

Currently, most information on the World Wide Web is in a format that is readable and
understandable by humans, but computers require significant processing to compre-
hend this data. To address this, the Semantic Web has been introduced, extending the
capabilities of the World Wide Web to make information on the internet interpretable
and interconnected more efficiently. T his i s a chieved u sing O ntology, w hich models

the concepts of information within a specific d omain. Typically, creating an ontology is
complex, time-consuming, and requires domain expertise. Therefore, Ontology Learn-
ing, which automates the extraction and creation of structured data from unstructured
information, has been employed. Given the rapid development of Large Language
Models (LLMs) with their deep understanding of language, the LLMs4OL Challenge [1]
aims to explore and utilize these models to facilitate automatic ontology creation. The
LLMs40L Challenge comprises three tasks.

1. Term Typing: Discover the generalized type for a lexical term
2. Taxonomy Discovery: Discover the taxonomic hierarchy between type pairs
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3. Non-Taxonomic Relation Extraction: Identify non-taxonomic and semantic rela-
tions between types

In this study, we are participating in term typing task. The goal of Term Typing task
is to assign types to lexical terms. For instance, given the term Tuxis POND from
the GeoNames dataset, the correct type would be “lake”. For the term typing task,
previous methods have primarily focused on using prompts with specific templates to
identify term types. However, the key challenge lies in finding an effective prompt that
produces accurate results. To address this issue, we propose a prompt-tuning-based
LLM for term typing, utilizing automatic prompt generation with soft prompts to enhance
both the accuracy and efficiency of the task. The repository of our approach is publicly
available (https://github.com/themes12/Prompt-Tuning-for-LLMs40L).

2 Related Work

Ontology learning is a technique used to extract knowledge from unstructured text
and create structured data known as an ontology. Popular ontology learning meth-
ods include using lexico-syntactic patterns [2] and clustering methods [3], or employing
lexico-syntactic patterns for term and relation extraction and clustering methods for
type discovery [4]. Additionally, seed-term-based bootstrapping methods are also em-
ployed [5]. Recently, LLMs have been utilized in ontology learning and have produced
promising results [6]. Nevertheless, this method relies on using specific hard prompts,
which are difficult to craft and may not yield optimal results. To address these chal-
lenges, soft prompting techniques, such as prompt tuning [7], have been developed.
Soft prompts involve creating learnable vectors, often referred to as virtual tokens, that
are prepended to the input embeddings and further refined through training. Unlike
hard prompts, soft prompts do not require manual crafting, making them more flexible
and easier to adapt to different tasks.

3 Approach

We designed the system, which consists of two phases as shown in Figure 1: 1) Train-
ing and 2) Testing. In the training phase, we begin with a dataset containing terms and
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Figure 1. The design of the system

their types. The data are preprocessed to remove any characters that might cause is-
sues, and then combined with an initial prompt. This input is fed into the LLM to create
a fine-tuned prompt. During the testing phase, the fine-tuned prompt is used on new,
unseen data, where the terms have no specified types. The LLM predicts the most
appropriate type for each term, and the results are formatted for evaluation, ensuring
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Figure 2. Prompt tuning.

accuracy and alignment with the expected output format. The details of each phase
are as follows:

3.1 Training Phase

The training phase involves two main steps. The details of each step are as follows:

3.1.1 Pre-processing

The objective of this preprocessing step is to remove characters that could interfere
with the final output, particularly during the process of splitting the output by commas
to convert it into a list for multi-label classification. This step is essential for ensuring
compatibility with the AutoModelForCausalLM and the evaluation system. For instance,
in datasets like Gene Ontology, some labels contain commas (e.g., "regulation of alter-
native mRNA splicing, via spliceosome”), which could disrupt the output if not handled
correctly. By removing problematic characters, we can prevent such issues and main-
tain the integrity of the results. Additionally, the inputs are restructured into a format
suitable for training by tokenizing and padding to ensure uniform input length.

3.1.2 Soft Prompting

The objective of the soft prompting step is to efficiently adapt LLMs to perform specific
downstream tasks without the need to retrain the entire model for each task. Training
LLMs requires a significant amount of time and resources. One effective way to enable
a LLM to perform specific downstream tasks is through the use of prompts. Prompts
help to describe the task or provide examples of the task (few-shot). There are two
types of prompts.

1. Hard prompt involves manually creating the prompt by hand. The downside is that
it requires substantial effort to create a good prompt.

2. Soft prompt involves creating a vector, referred to as virtual tokens, and prepend
them to the input embeddings for further training with the dataset. The drawback
is that humans cannot read the prompt.

In this study, we employ soft prompt. There are various techniques for creating soft
prompts, each designed for different tasks. For example, prefix tuning was designed
for natural language generation tasks, while P-tuning is designed for natural language
understanding tasks. Multitask prompt tuning is another technique that learns a single
prompt from data for multiple task types. We have chosen to use the prompt tuning
technique because it was initially developed for text classification tasks on T5 models.
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This makes it particularly well-suited for our application, as it leverages the strengths of
prompt-based methods in handling classification tasks efficiently. The process begins
with an initial prompt, which provides a basic template or instruction set for the task.
This initial prompt is then refined and adapted during the training process to become
a fine-tuned prompt. The advantage of using prompts is that there is no need to train
a separate model for each downstream task. Instead, a single LLM can be utilized,
greatly reducing the required time.

3.2 Testing Phase

The testing phase is designed to evaluate the performance of the fine-tuned LLM on
new, unseen data. This phase involves feeding the model with testing data and ana-
lyzing its output to determine its accuracy and effectiveness in predicting term types.
Once the testing data is prepared, it is fed into the fine-tuned prompt and subsequently
into the LLM. The model processes the input terms and generates predictions for their
types. The fine-tuned prompt guides the model to understand the context and require-
ments of the task, leveraging the knowledge gained during the training phase.

4 Experiment
4.1 Datasets

The datasets used in the term typing task [8] consist of the following four sub-datasets:

1. WordNet. WordNet is a lexicosemantics dataset derived from the original Word-
Net. It contains 40,943 terms for training and 9,470 terms for testing, encompass-
ing four types: nouns, verbs, adverbs, and adjectives.

2. GeoNames. GeoNames includes data on geographical locations, with 8,078,865
instances for training, 702,510 instances for testing, and a total of 680 classes.

3. UMLS. The UMLS dataset comprises three sub-datasets:

* NCI. Created by NCI Enterprise Vocabulary Services (EVS) to standardize
vocabulary for organizational and public use. It includes terms related to
clinical care, translational and basic research, public information, and admin-
istrative activities, with 96,177 instances for training and 24,045 for testing,
covering 125 classes.

« MEDCIN. Contains medical terminology such as symptoms, medical history,
physical examination findings, diagnostic tests, diagnoses, and treatment op-
tions, with 277,028 instances for training and 69,258 for testing, spanning 87
classes.

+ SNOMEDCT _US. A foundational general terminology used in electronic health
records (EHRs), with 277,028 instances for training and 69,258 for testing,
encompassing 87 classes.

4. Gene Ontology. This dataset includes three sub-ontologies:

 Biological Process. Describes biological processes occurring in living or-
ganisms at the cellular level, with 195,775 instances for training and 108,300
for testing, across 792 classes.

 Cellular Component. Describes the positions or structures within a cell, with
228,460 instances for training and 126,485 for testing, covering 323 classes.
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Table 1. MAP@1 Scores for Our Approach Compared to the Baseline Across Datasets

WordNet | GeoNames NCI MEDCIN SNOMEDCT_US
Baseline 0.9170 0.4330 0.3280 0.5180 0.4340
Our Approach 0.9368 0.3863 0.6009 0.7397 0.6707

* Molecular Function. Describes the activities of gene products, with 196,074
instances for training and 107,432 for testing, spanning 401 classes.

After that, we split the data into 90% for training and 10% for validation in the WordNet,
UMLS, and Gene Ontology datasets. For the GeoNames dataset, due to its large size,
we split the data into 99% for training and 1% for validation. During the prompt tuning
process, the UMLS and Gene Ontology datasets are sampled to 50,000 instances, and
the GeoNames dataset is sampled to 100 instances per class. The entire WordNet
dataset is used as it is.

4.2 Experimental Setup

Our study investigates a range of LLMs, including BLOOM-1B7, BLOOM-3B, BLOOM-
7B1, LLaMA-7B, LLaMA-2-7B-HF, LLaMA-2-7B-CHAT-HF, Meta- Llama-3-8B, Meta-
Llama-3-8B-Instruct, BioMistral-7B, and LLaMA-OpenBioLLM-8B. Based on the re-
sults from the validation datasets, we selected the following models for each dataset:
BLOOM-3B for WordNet, NCI, and SNOMEDCT _US; Meta-Llama-3-8B-Instruct for Geo
Names and Biological Process; BLOOM-1B7 for MEDCIN; and BioMistral-7B for Cel-
lular Component and Molecular Function. We implemented the models using Auto-
ModelForCasualLM and set the hyperparameters as follows: learning rate: 3e — 2,
epochs: 2-4, train size: 15% for WordNet and 5% for GeoNames, and 30% for other
datasets. The max token length is 10, and the virtual token size is 15 for WordNet, 40
for GeoNames, 30 for UMLS, 30 for Biological Process and Molecular Function, and 29
for Cellular Component. The choice of models and hyperparameters is based on the
results obtained from experiments on the validation datasets .

We used the best results presented in the study [6] as the baseline. Please note that
only WordNet, UMLS, GeoNames, NCI, MEDCIN, and SNOMEDC_US were investi-
gated. For evaluation metrics, we use MAP@1 (Mean Average Precision at rank 1)
[6] to compare our results with the baseline. MAP@1 measures the precision of the
top-ranked result for each query, providing an assessment of the model’s effectiveness
in retrieving the most relevant results. For reporting the results of our approach on this
challenge, we use the standard metrics of precision, recall, and F1 score as provided
by the challenge organizers.

5 Result and Discussion

Table 1 presents the MAP@1 scores for our approach compared to the baseline, using
the same datasets and evaluation metrics as described in LLMs4OL: Large Language
Models for Ontology Learning [6]. Our approach shows enhanced performance across
datasets such as WordNet, NCI, MEDCIN, and SNOMEDCT _US, indicating improved
term retrieval precision. However, the results for GeoNames reveal persistent chal-
lenges related to place name ambiguity. The results of the term typing task across
different datasets are summarized in Table 2. The results indicate that the system per-
forms well on the WordNet, NCI, SNOMEDCT _US, and MEDCIN datasets. However, in

"https://github.com/themes12/Prompt-Tuning-for-LLMs4OL/blob/main/result-validation.pdf
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Table 2. The result on term typing task

Dataset F1 Precision Recall
WordNet 0.9392 0.9389 0.9395
GeoNames 0.1489 0.1461 0.1519
NCI 0.5370 0.4450 0.6769
MEDCIN 0.5328 0.4183 0.7336
SNOMEDCT_US 0.5275 0.4266 0.6910
Cellular Component 0.1877 0.1653 0.2171
Biological Process 0.1025 0.0964 0.1095
Molecular Function 0.1270 0.1278 0.1261

the NCI, SNOMEDCT _US, and MEDCIN datasets, the recall is significantly higher than
the precision, which may be due to class imbalance. The performance on the GeoN-
ames and Gene Ontology datasets is significantly worse. For GeoNames, the problem
may stem from the ambiguity of place names and the fact that these names are often
proper nouns, making them difficult to predict. Additionally, datasets like the Biological
Process dataset, which has 792 classes, or the Geonames dataset, with 680 classes,
are more challenging compared to smaller datasets like WordNet, which has only 4
classes, or the NCI dataset, with 125 classes. The larger number of classes in these
bigger datasets can make predictions harder. For the Gene Ontology dataset, the poor
results may be due to the biological nature of the data, which includes information on
genes, molecules, and structures. This domain is highly specialized and contains a
vast number of possible classes.

6 Conclusion

In this study, we explored the use of soft prompt tuning for the term typing task as
part of the LLMs4OL Challenge @ ISWC 2024. Our approach demonstrated strong
performance on several datasets, particularly WordNet and UMLS sub-datasets (NCl,
MEDCIN, SNOMEDCT_US), indicating the viability of soft prompt tuning for ontology
learning tasks. However, the results on GeoNames and Gene Ontology datasets were
less satisfactory, highlighting challenges such as class imbalance and the complexity of
specialized domains. To improve the results, future work could focus on incorporating
additional contextual information beyond just the term, which may help the LLM make
better predictions. Additionally, employing techniques other than soft prompts, such as
Retrieval-Augmented Generation (RAG), could enhance the LLM’s ability to access up-
to-date knowledge and external information, potentially leading to improved prediction
capabilities. These strategies could address the current limitations and further advance
the effectiveness of soft prompt tuning for ontology learning tasks.

Author contributions

Thiti Phuttaamart: Software; Writing — Original Draft Preparation; Conceptualization.
Natthawut Kertkeidkachorn: Conceptualization; Writing - Review Editing; Project
administration; Supervision.

Areerat Trongratsameethong: Writing - Review Editing; Project administration; Su-
pervision.

90



Phuttaamart etal. | Open Conf Proc 4 (2024) "LLMs40OL 2024: The 1st Large Language Models for Ontology Learning
Challenge at the 23rd ISWC”

Competing interests

The authors declare that they have no competing interests.

Acknowledgement

This work was supported by JSPS Grant-in-Aid for Early-Career Scientists (Grant Num-
ber 24K20834).

References

[1] H. Babaei Giglou, J. D’Souza, and S. Auer, “LIms4ol 2024 overview: The 1st large lan-
guage models for ontology learning challenge,” Open Conference Proceedings, vol. 4, Oct.
2024.

[2] M. Hearst, Automated discovery of wordnet relations.” wordnet an electronic lexical
database, 1998.

[38] L. Khan and F. Luo, “Ontology construction for information selection,” in 14th IEEE Inter-
national Conference on Tools with Artificial Intelligence, 2002.(ICTAI 2002). Proceedings.,
IEEE, 2002, pp. 122—-127.

[4] J. Watr6bski, “Ontology learning methods from text-an extensive knowledge-based ap-
proach,” Procedia Computer Science, vol. 176, pp. 3356—-3368, 2020.

[5] C. H. Hwang, “Incompletely and imprecisely speaking: Using dynamic ontologies for rep-
resenting and retrieving information.,” in KRDB, Citeseer, vol. 21, 1999, pp. 14—20.

[6] H.Babaei Giglou, J. D’Souza, and S. Auer, “LiIms4ol: Large language models for ontology
learning,” in The Semantic Web — ISWC 2023, T. R. Payne, V. Presutti, G. Qi, et al., Eds.,
Cham: Springer Nature Switzerland, 2023, pp. 408—427, ISBN: 978-3-031-47240-4.

[7] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt
tuning,” arXiv preprint arXiv:2104.08691, 2021.

[8] H. Babaei Giglou, J. D’Souza, S. Sadruddin, and S. Auer, “LiIms4ol 2024 datasets: Toward
ontology learning with large language models,” Open Conference Proceedings, vol. 4, Oct.
2024.

91



	Introduction
	Related Work
	Approach
	Training Phase
	Pre-processing
	Soft Prompting

	Testing Phase

	Experiment
	Datasets
	Experimental Setup

	Result and Discussion
	Conclusion



