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Abstract: We introduce semantic towers, an extrinsic knowledge representation method,
and compare it to intrinsic knowledge in large language models for ontology learning.
Our experiments show a trade-off between performance and semantic grounding for
extrinsic knowledge compared to a fine-tuned model’s intrinsic knowledge. We report
our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024
challenge.
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1 Introduction and related work

Large language models (LLMs) have seen widespread applications across different
tasks in the fields of Natural Language Processing and Knowledge Representation.
Particularly, LLM-based systems are used to tackle ontology-related tasks such as
ontology learning [1], knowledge graph construction [2], ontology matching [3][4] and
ontology generation [5]. Retrieval-Augmented-Generation (RAG) systems, which build
on the capabilities of LLMs by enhancing retrieval using external knowledge sources,
have also shown promising results in tasks involving the use of ontologies [6]. On the
other hand, symbolic methods like semantic representation using primes and univer-
sals [7] form another research frontier in the area of knowledge representation which
is at the heart of ontologies [8].

In this work, we evaluate and compare the performance of fine-tuned models on
Task A of the LLMs4OL [9][10][11] 2024 challenge’ using intrinsic LLM knowledge and
external knowledge sources we define as semantic towers. The rest of the work is or-
ganized as follows. In section 2, we present our methodology. Section 3 describes our
experimental framework. In section 4, we report our results and discuss our findings.
Finally, we conclude in section 5.

Thttps://sites.google.com/view/lims4ol/home
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2 Methodology

This section describes the methodology for creating a semantic tower ST which we
define as:

ST = {s1, 82, ., Sn}, (1)
where s is a domain semantic primitive pointing to a semantic property for a given
domain and n is the minimal number of primitives needed to define the domain. The
rest of this section details the construction of domain semantic towers from semantic
primitives.

2.1 Domain semantic primitives

For each domain, we use the Wikidata Query Service? to retrieve semantic information
for each term type category. This body of information, or semantic set, serves as the
base for the domain semantic primitives.

The WordNet semantic set consists of: {subclass,instance,part,represents,description}.
The GeoNames semantic set consists of: {subclass,instance,part,category,description}.

2.2 Semantic towers

The construction scheme of semantic towers is domain-invariant and summarized in
the following steps:

1. The values of the semantic set for each term type are tokenized into a bag of
words, cleaned and normalized through lowercase transformation and stop word
removal.

. The result is transformed to a comma-separated list.

Empty values and duplicates are pruned from the list.

. The list of primitives is transformed to vector embeddings of size 1024 using the
gte-large® model by Google [12].

5. The resulting domain vector embeddings are stored in a MongoDB* collection to

form a vector store, i.e. the semantic tower.

6. The semantic tower is indexed on embeddings search for optimized performance.

IR N

Figure 1 shows examples of the WordNet and GeoNames semantic towers.

3 Experiments

This section describes our experiments in terms of data, models and training process.

3.1 Dataset description

We consider two datasets for our experiments: WordNet and GeoNames. Both datasets
are used for training and testing our models in the respective subtasks (A.1 and A.2).
The dataset descriptions are detailed in the following subsections.

2https://query.wikidata.org/
Shttps://huggingface.co/thenlper/gte-large
“https://www.mongodb.com/
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Figure 1. WordNet and GeoNames semantic towers with examples.

3.1.1 WordNet

The dataset consists of 40,559 train terms and 9,470 test terms. It contains four types
to classify each term: noun, verb, adjective, adverb. Figure 2 shows example data.

‘Lexical Term LH Sentence Containing L. (Optional) HType‘

|question chere was a question about my t1‘aining||noun|

‘lodge HWhere are you lodging in Paris? Hverb ‘
| genus equisemmH ||noun|

Figure 2. Subtask A.1 term typing WordNet examples.

3.1.2 GeoNames

The dataset consists of 8,078,865 train terms and 702,510 test terms. It contains 660
categories of geographical locations. Example data is presented in Figure 3.

| Lexical Term L | Tyvpe ‘
|Pic de Font Blanca Hpeak ‘

[Roc Mele | mountain|
[Estany de les Abelletes|lake |

Figure 3. Subtask A.2 term typing GeoNames examples.

3.2 System description

This section describes the models as well as the setup of our experiments.
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3.2.1 Models

We train one model for each subtask. We use the same base flan-t5-small® model
and fine-tune it on the subtask datasets respectively. The training hyperparameters
for both models are configured identically: {learning_rate: 1e-05, train_batch size: 4,
eval_batch_size: 4, num_epochs: 5, question_length: 512, target_length: 512, optimizer:
Adam}. For subtask A.1, the model is trained on 70% of the provided WordNet dataset
and the remaining 30% is used for validation. Table 1 shows the training results.

Table 1. Subtask A.1 model training results.

Training Loss Epoch Step Validation Loss
0.1725 1.0 1000 0.0640
0.1250 2.0 2000 0.0535
0.1040 3.0 3000 0.0469
0.0917 4.0 4000 0.0421
0.0830 5.0 5000 0.0384

For subtask A.2, the length of the data makes fine-tuning challenging. To remedy this
problem, we curate a subset from the original dataset using the following algorithm:

1. Each type category is counted into a length variable cat_len.

2. For each category represented less than 100 times (i.e. cat_len < 100), all terms
classified in that category are selected and kept in the dataset.

3. If cat.len > 100, only the first 25 terms classified in that category are selected.
The threshold of 25 keeps the size of the dataset relatively small given the large
number of categories.

We obtain a curated dataset of 2041 terms representing all possible categories. The
model is trained on 70% of the curated dataset and the remaining 30% is used for
validation. Table 2 shows the training results.

Table 2. Subtask A.2 model training results.

Training Loss Epoch Step Validation Loss
2.6223 1.0 1000 1.5223
2.1430 2.0 2000 1.3764
1.9100 3.0 3000 1.2825
1.7642 4.0 4000 1.2102
1.6607 5.0 5000 1.1488

The training of both models is done on a Google Colab instance using an A100
High-RAM GPU. Both A.1 and A.2 models are available publicly on Hugging Face re-
spectively under the names flan-t5-small-wordnet® and flan-t5-small-geonames’.

3.2.2 Features

The same feature engineering method is applied for both models. It consists in em-
bedding input text into vectors of size 1024 using the gte-large model. For the flan-t5-
small-wordnet model, the input is the concatenation of the term and the sentence when
provided. For flan-t5-small-geonames, the input text is the term.

Shttps://huggingface.co/google/flan-t5-small
Shttps://huggingface.co/HannaAbiAkl/flan-t5-small-wordnet
"https:/huggingface.co/HannaAbiAkl/flan-t5-small-geonames
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3.2.3 Setup

We conduct two experiments per subtask for a total of four.

For subtask A.1, the first experiment (WN1) consists in prompting the fine-tuned
WordNet model on the test split of the provided dataset which is used as an unofficial
test set ahead of the official submission. The prompt used for the model is: Give the
entity for the term X. Select the answer from this list Y, where X is dynamically
replaced by the input term and Y is replaced by the list of possible term types.

The second experiment (WN2) leverages the RAG pipeline shown in Figure 4 in
conjunction with a user prompt to retrieve the best term type for each input term. The
input is vectorized and compared to the embeddings of the WordNet semantic tower
for each term type. A cosine similarity score is used to determine the closest type from
the semantic tower vector store to return the top 1 candidate. The answer is then used
as an additional input to the user prompt given to the model: Give the entity for the
term X. Select the answer from this list Y relying on the search result Z, where X
and Y are as previously defined and Z represents the best-matched term type from the
semantic tower.

For subtask A.2, both experiments GN1 and GN2 mimic WN1 and WN2 respec-
tively. For GN1, the fine-tuned GeoNames model is evaluated on the test split of the
curated dataset. The user prompt for the model is the same as that of WN1, with the
only changes being the X term values and the Y list of types which now refers to the
geographical categories.

In experiment GN2, the same pipeline from Figure 4 is reproduced with the only
difference being the replacement of the WordNet semantic tower with the GeoNames
semantic tower. The user prompt used for the fine-tuned model is the same as that
of WN2, with the Y list reflecting the geographical categories. All experiments are
conducted on a Google Colab instance using a L4 High-RAM GPU. The code for our
experimental setup is publicly available on GitHub®.

Semantic
Tower

| Embeddings
Model Vector
Store

! Retrieval
| Results
v

Query Context Fine-
> Query tuned
Prompt LLM
User
Output <

Figure 4. RAG system architecture.

8https://github.com/HannaAbiAkl/SemanticTowers
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4 Results

Table 3 shows our experimental results on the WordNet test set. The results of the
GeoNames experiments are presented in Table 4. The F1 scoring metric reflects the
criteria of performance assessment set by the task organizers.

Experiments WN1 and GN1 perform better than WN2 and GN2 respectively, with a
performance gain close to 10%. At first inspection, the results seem to suggest that the
flan-t5 model, with a little fine-tuning, can rely on its existing knowledge regarding the
dataset domains to correctly classify terms by type. The use of an external knowledge
base, such as a semantic tower, seems to create more errors in the model answers.
However, closer examination of a subset of the outputs reveals that semantic towers
effectively ground certain semantic notions in the model that are otherwise lost if the
model only relies on its existing knowledge. Examples include correctly classifying
the term into the bargain as adverb with the aid of the WordNet semantic tower (as
opposed to classifying it as noun without it). While the word bargain dominates the term
in the example, the flan-t5-small-wordnet model misses out on the correct classification
which attributes an important weight to the adverb into that becomes more prominent
with the semantic tower embeddings representation. A similar case can be made for
the GeoNames experiments, where the usage of the semantic tower in conjunction with
the model improves the classification choice for plural categories (e.g. terms classified
as mountains, peaks, streams). The outputs of experiment GN1 show that the model
alone has a tendency to choose the singular forms of these categories which count
for incorrect classifications. Moreover, experiment GN2 also shows that the semantic
tower helps ground nuances between categories (e.g. stream versus section of stream)
which leads to a more fine-grained (and accurate) typing.

For the official test sets released by the task organizers, we evaluate only the A.1
subtask using WN1 and WN2 and present our results in Table 5. Both WN1 and WN2
demonstrate a slight drop in performance of around 1% but perform competitively well.
The results demonstrate that the model training as well as the WordNet semantic tower
construction are sound enough to avoid catastrophic drift.

We refrain from submitting to the other subtasks, most notably A.2, because of the
length of the official test set which is extremely challenging to run on our available
resources.

Table 3. Experimental results on the WordNet set.

Experiment F1

flan-t5-small-wordnet (WN1) 0.9820
flan-t5-small-wordnet + WordNet semantic | 0.8581
tower (WN2)

Table 4. Experimental results on the GeoNames set.

Experiment F1

flan-t5-small-geonames (GN1) 0.6820
flan-t5-small-geonames + GeoNames se- | 0.5636
mantic tower (GN2)
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Table 5. Subtask A.1 (few-shot) WordNet term typing leaderboard.

Teal Name F1 Precision Recall
TSOTSALearning 0.9938 0.9938 0.9938
DSTI (WN1) 0.9716 0.9716 0.9716
DaselLab 0.9697 0.9689 0.9704
RWTH-DBIS 0.9446 0.9446 0.9446
TheGhost 0.9392 0.9389 0.9395
Silp_nlp 0.9037 0.9037 0.9037
DSTI (WN2) 0.8420 0.8420 0.8420
Phoenixes 0.8158 0.7689 0.8687

5 Conclusion

In this shared task, we investigate and compare intrinsic knowledge in LLMs with exter-
nal semantic sources for ontology learning. While the introduction of semantic towers
proves there is still some way to go to achieve semantic resonance in LLMs, it shows
promising results in grounding these models semantically and fine-graining their knowl-
edge. Our fine-tuned models demonstrate that ontology term typing is a task within the
reach of LLMs based on their existing knowledge. In future work, we will explore the
potential of semantic towers and expand their implementation to existing LLM-based
systems.
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