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Abstract. Automated ontology construction is a challenging task that traditionally 
requires extensive domain expertise, data preprocessing, and resource-intensive model 
training. While learning-based methods with fine-tuning are common, they often suffer 
from high computational costs and limited generalizability across domains. This paper 
explores a fully automated approach that leverages powerful large language models 
(LLMs) through prompt engineering, eliminating the need for training or fine-tuning. 
We participated in the LLMs4OL 2025 shared task, which includes four subtasks: 
extracting ontological terms and types (Text2Onto), assigning generalized types to 
terms (Term Typing), discovering taxonomic relations (Taxonomy Discovery), and 
extracting non-taxonomic semantic relations (Non-Taxonomic Relation Extraction). Our 
team focused on the first three tasks by using stratified random sampling, simple 
random sampling, and chunking-based strategies to include training sets in the 
prompts without limitations imposed by context window sizes. This simple yet general 
approach has proven effective across these tasks, enabling high-quality ontology 
construction without additional annotations or training. Additionally, we show that 
pretrained sentence embedding models ranging from 0.1B to 1.5B parameters perform 
comparably to a simple F1 token overlap baseline in taxonomy discovery, suggesting that 
embedding-based methods may not always offer significant advantages. Our findings 
highlight that prompt-based strategies with modern LLMs enable efficient, scalable, 
and domain-independent ontology construction, providing a promising alternative to 
traditional, resource-heavy methods.

Keywords: Automated Ontology Construction, Large Language Models, 
Prompt Engineering

1. Introduction

Automated ontology construction is a complex and multifaceted task that traditionally 
involves extensive domain knowledge, data preprocessing, and model training. While 
learning-based methods—particularly those involving model fine-tuning—have become 
common, they often require significant computational resources and are not easily 
generalizable across domains. Ideally, a high-quality, fully automated approach that
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bypasses model training and fine-tuning would offer a more efficient and accessible
alternative.

The emergence of powerful large language models (LLMs) presents a promising
opportunity to replace or supplement human experts in ontology creation. These models,
with their ability to understand and generate structured knowledge from text, enable a
new generation of ontology engineering tools that are fast, cost-effective, and domain-
independent.

To explore the viability of LLM-based ontology construction, we participated in the
LLMs4OL 2025 shared task, the second iteration of this competition following its debut
in 2024 [1], [2], [3], [4]. The 2025 edition includes four distinct tasks: Task A – Text2Onto,
which involves extracting ontological terms and their types from raw text; Task B –
Term Typing, which focuses on assigning generalized types to lexical terms; Task C
– Taxonomy Discovery, which requires identifying taxonomic (is-a) relations between
types; and Task D – Non-Taxonomic Relation Extraction, which involves extracting other
semantic relations between types.

Our team focused on Tasks A, B, and C, applying a unified prompting-based
methodology that avoids any form of supervised training or fine-tuning. Instead, we
leveraged prompt engineering strategies informed by sampling techniques from the
provided training data. This approach allowed us to generate high-quality ontological
structures using zero-shot or few-shot prompting, without incorporating any external
knowledge or additional annotations.

Furthermore, in the Taxonomy Discovery subtask, we show that pretrained sentence
embedding models (ranging from 0.1B to 1.5B parameters) perform comparably to
a simple F1 token overlap baseline. This suggests that, in certain ontology tasks,
embedding-based approaches may not provide a significant performance advantage
over more lightweight lexical methods.

These findings highlight the practical benefits of prompt-based strategies in ontology
learning tasks, especially when aiming to reduce reliance on computationally expensive
training pipelines. Our results demonstrate that, with careful prompt engineering, modern
LLMs can effectively perform complex ontology construction tasks in a scalable and
resource-efficient manner. Achieved the best overall performance across all teams
in the challenge and ranked 1st on the final leaderboard. This opens the door
to more accessible ontology generation workflows, particularly in low-resource or
time-constrained settings. Overall, our work contributes to the growing evidence that
LLMs, when coupled with generalizable prompting strategies, can serve as a viable and
efficient alternative to traditional learning-based ontology engineering approaches.

2. Datasets

The datasets presented in Table 1 correspond to those we actually used to produce the
results reported in this paper. Note that these may not cover all datasets available within
the respective tasks, but only those included in our experiments for Tasks A (Text2Onto),
B (Term Typing), and C (Taxonomy Discovery).

Task A involves ontology extraction from domain-specific corpora in ecology,
engineering, and scholarly domains.

Task B focuses on semantic term typing with datasets from OBI and SWEET
taxonomies, along with two blind test sets (B5 and B6) evaluated without training data.
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Task C targets taxonomy discovery using ontologies such as OBI, Schema.org,
SWEET, and MatOnto. Here, test data counts represent unique types rather than
document IDs.

Table 1. Training and test data statistics for Tasks A, B, and C. Train/test numbers indicate unique
document IDs, except for Task C test sets, where values refer to the number of unique types.

Task & Dataset Training Data Testing Data
Task A - Text2Onto (Ecology) 2,000 483
Task A - Text2Onto (Engineering) 83 21
Task A - Text2Onto (Scholarly) 40 10
Task B - Term Typing (OBI) 201 87
Task B - Term Typing (MatOnto) 85 37
Task B - Term Typing (SWEET) 1,707 626
Task B - Term Typing (B5-Blind) – 46
Task B - Term Typing (B6-Blind) – 288
Task C - Taxonomy Discovery (OBI) 10,003 2,821
Task C - Taxonomy Discovery (SchemaOrg) 742 359
Task C - Taxonomy Discovery (SWEET) 11,626 4,118
Task C - Taxonomy Discovery (MatOnto) 885 370
Task C - Taxonomy Discovery (PO) 2005 916

The datasets used across the three tasks exhibit significant variability in size and
complexity, which poses unique challenges for ontology learning methods. Task A’s
Text2Onto datasets differ notably in scale, with the ecology domain providing the largest
corpus, potentially offering richer contextual information for ontology extraction compared
to the relatively small engineering and scholarly datasets. Task B’s Term Typing datasets
include both well-established ontologies like OBI and SWEET with substantial training
samples, alongside blind test sets (B5 and B6) that require robust generalization without
prior training data. This setup tests the adaptability of models to unseen domains.

Task C’s Taxonomy Discovery datasets are generally large, with tens of thousands
of training instances reflecting comprehensive domain coverage. The distinction that
test sets for Task C represent unique types rather than documents highlights the need
for models to accurately infer hierarchical relationships at a fine-grained semantic level.

3. Methodology

3.1 Task A - Text2Onto

In this task, our goal is to extract terms and their corresponding types from given sets
of documents. We employ two different prompt formats, each designed specifically for
term extraction and type extraction, respectively, to effectively leverage LLMs. Also, two
forms of prompting were used. Our approach leverages in-context learning by utilizing
few-shot examples based on the training sets.

3.1.1 Term Extraction

Preprocessing. Let D = {d1, d2, . . . , dN} denote the set of documents, where each
document di is associated with an identifier idi, title ti, and text content xi. Let T =
{τ1, τ2, . . . , τM} be the set of extracted terms. We define a mapping function
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f : T → 2D (1)

which maps each term τj to a subset of documents f(τj) ⊆ D in which the term
appears. Using this, we construct the inverse mapping

g : D → 2T (2)

such that for each document di, the associated term set is

g(di) = {τj | di ∈ f(τj)}. (3)

From D, a random subset Ds ⊆ D of size |Ds| = k (where k is the sample size)
is selected to form the prompt examples. Each sampled document di ∈ Ds is paired
with its corresponding terms g(di), which together constitute the few-shot exemplars for
guiding the large language models. This preprocessing step ensures that the exemplars
are representative and diverse, improving the efficacy of in-context learning for ontology
construction.

Simple Random Sampling. In the preprocessing step, a random subset Ds ⊆ D of size
|Ds| = k is selected without replacement from the full document set D = {d1, d2, . . . , dN},
where N = |D|. The sampling is uniform, meaning each possible subset of size k has
an equal probability of being chosen. To ensure the sample size does not exceed the
number of available documents, we set k = min(k′, N), where k′ is the desired sample
size. Formally, the probability of selecting a particular subset Ds is given by:

P (Ds) =
1(
N
k

) , (4)

where
(
N
k

)
is the binomial coefficient representing the number of ways to choose k

documents from the N documents in D.

Stratified Random Sampling. In the preprocessing step, a random subset Ds ⊆ D
of size |Ds| = k is selected without replacement from the full document set D =
{d1, d2, . . . , dN}, where N = |D|. To capture the diversity of the dataset, we employ a
stratified random sampling approach based on a feature space F = {f1, f2, . . . , fm},
where features may include document topics, lengths, or semantic embeddings. The
dataset D is partitioned into L disjoint strata {S1,S2, . . . ,SL} such that D =

⋃L
l=1 Sl and

Sl ∩ Sl′ = ∅ for l ≠ l′. Each stratum Sl contains Nl = |Sl| documents, with proportion
pl = Nl/N .

Within each stratum Sl, a subset of kl = ⌊k · pl⌋ documents is sampled uniformly
without replacement, ensuring the total sample size is approximately k =

∑L
l=1 kl. The

probability of selecting a specific subset Ds =
⋃L

l=1 Ds,l, where Ds,l ⊆ Sl and |Ds,l| = kl,
is given by:

P (Ds) =
L∏
l=1

1(
Nl

kl

) , (5)

where
(
Nl

kl

)
is the binomial coefficient representing the number of ways to choose kl

documents from the Nl documents in stratum Sl.

For each sampled document di ∈ Ds, the corresponding set of terms g(di) is
retrieved, forming the few-shot exemplars provided to the large language models. This
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stratified sampling approach ensures that the prompt examples respect the context
window constraints of large language models while preserving dataset variability through
proportional representation of diverse document features.

Prompt Construction. Using the sampled subset Ds obtained from either simple or
stratified random sampling, we construct prompts to extract relevant terms for ontology
creation. Each document di ∈ Ds contains an identifier, title, and text, denoted as di.id,
di.title, and di.text, respectively. The terms g(di) associated with each document are
retrieved from a precomputed mapping, forming few-shot exemplars. These exemplars
are formatted as a sequence of document-term pairs within the prompt, enclosed in
designated markers to guide the language model.

For each document in the dataset D, a prompt is constructed by combining an
example prompt, derived from the sampled subset Ds, with the document’s title and text.
The prompt instructs the language model to extract all relevant terms that could form
the basis of an ontology, formatted as a valid Python list of terms, e.g., [′term1′,′ term2′],
or an empty list [] if no terms are found. The specific prompt structure is as follows:

Prompt for Ontology Term Extraction

{Sampled subset Ds}
[var]

Title: {title}
Text: {text}
[var]

Extract all relevant terms that could form the basis of an ontology

from the above document.

Format the output as: [’term1’, ’term2’, ...] from texts enclosed

in [var][var] tags.

Ensure the output is a valid Python list string, e.g., [’term1’,

’term2’].

If no terms are found, return [].

Do not write ‘‘‘python.

Figure 1. Prompt used for ontology term extraction from sampled subset Ds. It directs the model to
extract terms enclosed in [var] tags and return them as a valid Python list.

This process ensures that the language model leverages the diversity of the sampled
exemplars while respecting context window constraints, enabling robust term extraction
for ontology development.

3.1.2 Type Extraction

The preprocessing and sampling procedures for type extraction follow the same
methodology as the term extraction task. Specifically, documents are parsed and
a representative subset Ds ⊆ D is selected via random sampling to construct
few-shot exemplars. The only difference lies in the label mapping step: instead of
associating documents with ontology terms, each document di ∈ D is linked to its
corresponding types from a predefined ontology or type schema. These type annotations
are obtained using a matching function over the available structured metadata. Once
the document-to-type pairs are established, prompt construction proceeds analogously
to the term extraction setting, by formatting the sampled documents and their types into
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in-context examples suitable for guiding the large language model in zero- or few-shot
classification.

Type-to-Document Matching. Let D = {d1, d2, . . . , dN} denote the set of documents,
where each document di is a structured tuple di = (idi, ti, xi), representing the identifier,
title, and text content, respectively. Let T = {τ1, τ2, . . . , τM} be the predefined set of
candidate types.

We define a matching function:

match(τj, di) =

{
1, if τj ∈ FullWordMatch(ti + xi);

0, otherwise
(6)

where FullWordMatch refers to case-sensitive, full-token string search using regular
expressions:

FullWordMatch(s) = {τj ∈ T | re.search(\bτj\b, s) ̸= ∅} (7)

The resulting inverse mapping function g : D → 2T is then defined as:
g(di) = {τj ∈ T | match(τj, di) = 1} (8)

To ensure one-to-one visibility in sampling and avoid repetition, a set of already
matched terms is tracked during iteration:

Tseen ⊆ T , such that for each τj ∈ Tseen, only one di is shown. (9)

This process results in each term τj being matched to a unique document di where
it first appears in a full-word form, ensuring unbiased, interpretable few-shot exemplars
for prompt construction in the type extraction task.

Prompt Construction. Similar to the ontology term extraction task, the few-shot prompt
for type extraction is constructed using a sampled subset of documents Ds ⊆ D. Each
document di ∈ Ds is paired with its associated types (concept classes) and wrapped
with custom delimiters [var]...[var] to scope the relevant text. The prompt explicitly
instructs the language model to extract only those type mentions that can serve as
ontology classes, and to format the output as a valid Python list string. The final prompt
template used during inference is presented below:

Prompt for Ontology Type Extraction

{Sampled subset Ds}
[var]

Title: {title}
Text: {text}
[var]

Extract all relevant types mentioned in the above document that

could serve as ontology classes. Only extract types found inside

[var]...[var] tags.

Format the output as a valid Python list string, for example:

[’type1’, ’type2’].

If no types are found, return an empty list: [].

Do not provide any additional explanation or categorize the types.

Do not write ‘‘‘python.

Figure 2. Prompt used for ontology type extraction from the sampled subset Ds. It instructs the model to
extract type-level ontology class candidates from content within [var] tags and return them as a Python

list.
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3.1.3 Batch Prompting

Let Dtest = {d1, d2, . . . , dT} denote the set of test documents, where each di consists
of a title ti and text content xi. Unlike standard prompting where each document di is
processed individually, we adopt a batch prompting strategy in which the entire set Dtest
is passed to the LLM as a single concatenated prompt. Formally, we define the batch
prompt Pbatch as:

Pbatch = [Instruction] ||
∥∥T

i=1
[var] ti xi [var], (10)

where ∥ denotes string concatenation, and [var] markers delimit the start and end
of each document block. The output of the LLM is denoted as:

Ybatch = fLLM(Pbatch), (11)

where Ybatch is a flat list of terms (or types) extracted from all documents jointly. The
output is parsed and stored in a plain text file, with each predicted term written on a
separate line.

Batch Prompt for Ontology Term or Type Extraction

{Sampled subset Ds}
Based on these samples, extract all relevant terms or types from

the provided JSONL file.

Your output must be a plain .txt file. Write each extracted item

(term or type) on a separate line. The output should follow this

format:

term1(type1)

term2(type2)

term3(type3)

...

Do not include any extra formatting, explanations, or bullet points.

Only return newline-separated terms or types.

Figure 3. Batch prompt used for extracting ontology terms or types from a sampled JSONL dataset
subset Ds. The model is instructed to output plain text with one term-type pair per line, without additional

formatting or explanation.

3.2 Task B - Term Typing

In this task, the objective is to identify the correct type(s) for each input term. Formally,
let T = {τ1, τ2, . . . , τM} denote the set of ontology types extracted from the training data,
and let V = {v1, v2, . . . , vL} be the set of unique ontology terms. For each type τj ∈ T ,
a set of representative terms Ej ⊆ V is selected using the same stratified and simple
sampling strategy employed in Task A.

The prompt examples are then constructed by pairing each type τj with a small
random sample of its associated terms Ej, ensuring that all types in T are represented
in the prompt. For the test term v∗ ∈ V , the goal is to predict the correct set of types:

h(v∗) ⊆ T (12)

using few-shot in-context learning, where h : V → 2T is the type prediction function
induced by the LLM.
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Prompt for Type Assignment to Terms

From the sample terms provided for each type, identify the type(s)

of the term. A term can have more than one type. Only write the

types in quotation marks, and if there is more than one, separate

them with a comma.

The types must be selected from the given list|no more, no less.

Examples:

{Sampled subset DT }

Figure 4. Prompt used for assigning ontology types to given terms from a sampled subset DT . The
model is instructed to choose only from a predefined list of types and format them using quotation marks,

with multiple types separated by commas.

3.2.1 Batch Prompting

In the batch prompting setting, rather than sending one term at a time to the language
model, a complete list of test terms is given as a single input, accompanied by the pre-
constructed examples. The language model is then expected to identify the appropriate
types for each term in the batch. The output is expected to be a valid JSON list, where
each object contains an id and a corresponding list of types associated with the term.

Prompt for Batch Type Classification

From the sample terms provided for each type, identify the type(s)

of the term in a second JSON file.

A term can have more than one type.

Output file must be in this format:

[

{ "id": "TT 465e8904", "types": [ "type1" ] },
{ "id": "TT 01c7707e", "types": [ "type2", "type3" ] },
{ "id": "TT b20cb478", "types": [ "type4" ] }
]

The id must be taken from the input JSON file.

You must find the type(s) for each term in the JSON file.

Sample terms for each type are provided in a text file.

Types must be selected only from the sample list.

Figure 5. Prompt used for batch classification of ontology types for terms in a JSON file. The model is
guided to assign one or more types per term based on provided samples, producing structured output in

JSON format using the term IDs and a fixed list of allowed types.

3.2.2 Blind

In blind subtasks, no training samples or inclusion files are available. Instead, a text file
containing the complete list of types is provided. These types are used directly within
the prompt construction for the blind challenge, as shown in the example below. This
approach allows the model to rely solely on the type list without being exposed to any
prior example-term associations.
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Prompt for Blind Type Classification

Identify the type(s) of the term in a second JSON file.

A term can have more than one type.

Output file must be in this format:

[

{ "id": "TT 465e8904", "types": [ "type1" ] },
{ "id": "TT 01c7707e", "types": [ "type2", "type3" ] },
{ "id": "TT b20cb478", "types": [ "type4" ] }
]

The id must be taken from the input JSON file.

You must find the type(s) for each term in the JSON file.

Types must be selected only from the types list.

Figure 6. Prompt for blind classification of ontology types for terms based on a JSON file. The model is
instructed to assign one or more types per term using the term IDs, with output formatted as a JSON

array and types restricted to a predefined list.

3.3 Task C - Taxonomy Discovery

For subtask C, the objective is to identify all parent–child relationships from a given text
file containing ontology terms. Unlike other tasks, only the batch prompting strategy was
applicable for this task due to the nature of the relation extraction process, which makes
it impractical to query the language model API separately for each possible pair. A major
challenge in this task was the size of the input file, which exceeded the maximum context
length of large language models. Our sampling strategies were not effective in this task.
To address this limitation, we adopted a chunking strategy, whereby the input data was
split into manageable segments that fit within the model’s context window.

Furthermore, for the OBI dataset, where many parent and child terms exhibit
token-level overlap, we employed a sentence embedding similarity comparison strategy.
This technique helps capture semantic relationships even when lexical similarity is
high, thereby improving the accuracy of parent-child link detection in overlapping term
scenarios.

3.3.1 Chunking Strategy

Let P = {(pi, ci)}Mi=1 denote the full set of potential parent–child pairs extracted from the
source data, where pi is a parent concept and ci is its corresponding child. Due to the
context window limit Lmax of a given large language model (LLM), we partition the full
input I into disjoint chunks:

I =
K⋃
j=1

Ij, with |Ij| ≤ Lmax, Ij ∩ Ij′ = ∅ for j ̸= j′. (13)

Each chunk Ij is independently submitted to the LLM to extract a local set of
candidate relations:

Pj = LLM(Ij), for j = 1, 2, . . . , K. (14)

The final output set is constructed as the union of all extracted sets, followed by
deduplication:
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Pfinal =
K⋃
j=1

Pj, with duplicates removed. (15)

This process ensures that the full set of hierarchical relations is recovered as
completely as possible under the constraint Lmax.

3.3.2 Batch Prompting

For Task C, the batch prompting approach is employed with the chunking strategy
described previously. Let the set of training pairs be partitioned into N disjoint chunks:

T =
N⋃
i=1

Ti, Ti ∩ Tj = ∅ for i ̸= j, (16)

and the test data similarly partitioned into M disjoint chunks:

S =
M⋃
j=1

Sj, Sj ∩ Sk = ∅ for j ̸= k. (17)

The batch prompt is constructed by pairing each training chunk Ti with each test
chunk Sj, resulting in a total of

N ×M (18)

prompts to be processed.

This ensures that all possible combinations of training and test chunks are covered
within the context window limitations of the language model.

Prompt for Parent-Child Relation Extraction

From this file, extract all parent and child relations for all

pairs like examples in JSON file.

Output file must be in this format:

[

{ "parent": "parent1", "child": "child1" },
{ "parent": "parent2", "child": "child2" },
{ "parent": "parent3", "child": "child3" },
{ "parent": "parent4", "child": "child4" }
]

You must find all parent-child pairs from the input file.

Each pair should be extracted and formatted as shown above.

Figure 7. Prompt for extracting parent-child relations from a JSON file. The model is instructed to identify
and output all parent-child pairs in the specified JSON format.

3.3.3 OBI subtask

In this subtask, due to the high lexical overlap between child and parent terms in
the training set, we employed a sentence embedding–based strategy. Specifically, we
computed the embedding vector ec for each child term using a pretrained sentence
embedding model. Then, for each possible parent term p in the training set, we computed
its embedding vector ep and calculated the cosine similarity.
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The parent term with the highest cosine similarity score was selected as the most likely
parent of the given child. This method leverages semantic similarity beyond surface-level
token overlap and is particularly useful in datasets with high lexical redundancy, such as
OBI.

4. Experiments and Results

All the reported results were calculated using the CodaLab platform of the competition1.
The performance was measured and reported using the F1 score, which is calculated
as:

F1-score = 2× Precision × Recall
Precision + Recall

(19)

The experiments utilize several state-of-the-art language models, including
gemini-2.5-flash-preview-05-20 [5], grok-3 and its lighter variant grok-3-mini [6],
deepseek-chat-v3-0324 [7], gpt-4o-mini [8], and claude-sonnet-4 [9]. These models
provide a diverse range of architectures and capabilities, and their respective citations
are included to acknowledge their original contributions.

4.1 Task A - Text2Onto

As shown in Table 2, batch-prompted models (indicated by ”Batch”) often outperform or
match non-batch models in several subtasks. Claude Sonnet 4 (Batch) and Deepseek
code v3 (Batch) exhibit strong performance, particularly in the scholarly and engineering
domains. Stratified sampling was applied wherever feasible to ensure balanced training
and evaluation across term types and domains. Overall, the Gemini model and Claude
Sonnet 4 (Batch) consistently achieve the highest F1 scores in both term and type
extraction tasks.

1https://codalab.lisn.upsaclay.fr/competitions/23065
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Table 2. F1 scores for various models across SubTasks A1 (Term Extraction) and A2 (Type Extraction) for
different domains. The best-performing model for each subtask is highlighted in bold.

SubTask Model F1 Score
Ecology
A2.1 - Type Extraction Gemini 0.62
A2.1 - Type Extraction Deepseek code v3 0.47
A2.1 - Type Extraction Claude Sonnet 4 (Batch) 0.66
Scholarly
A1.2 - Term Extraction Gemini 0.42
A1.2 - Term Extraction Deepseek code v3 0.34
A1.2 - Term Extraction Grok 3 mini 0.39
A1.2 - Term Extraction GPT 4o mini 0.35
A1.2 - Term Extraction Claude Sonnet 4 (Batch) 0.45
A2.2 - Type Extraction Gemini 0.47
A2.2 - Type Extraction Deepseek code v3 0.43
A2.2 - Type Extraction Claude Sonnet 4 (Batch) 0.61
A2.2 - Type Extraction Grok 3 (Batch) 0.65
Engineering
A1.3 - Term Extraction Gemini 0.57
A1.3 - Term Extraction Deepseek code v3 0.58
A1.3 - Term Extraction GPT 4o mini 0.51
A1.3 - Term Extraction Claude Sonnet 4 (Batch) 0.45
A1.3 - Term Extraction Deepseek code v3 (Batch) 0.57
A1.3 - Term Extraction Deepseek + Claude (Batch) 0.58
A2.3 - Type Extraction Grok 3 (Batch) 0.62
A2.3 - Type Extraction Gemini 0.32
A2.3 - Type Extraction Deepseek code v3 0.18
A2.3 - Type Extraction Claude Sonnet 4 (Batch) 0.66
A2.3 - Type Extraction Grok 3 (Batch) 0.30
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4.2 Task B - Term Typing

Table 3. F1 scores for various models on Term Typing subtasks (Task B).

SubTask Model F1 Score
OBI
B1 - Term Typing Deepseek code v3 0.75
B1 - Term Typing Gemini 0.72
B1 - Term Typing GPT 4o mini 0.56
B1 - Term Typing Claude Sonnet 4 (Batch) 0.94
MatOnto
B2 - Term Typing Deepseek code v3 0.38
B2 - Term Typing Gemini 0.41
B2 - Term Typing GPT 4o mini 0.44
B2 - Term Typing Claude Sonnet 4 (Batch) 0.57
SWEET
B3 - Term Typing Deepseek code v3 0.44
B3 - Term Typing Gemini 0.48
B3 - Term Typing GPT 4o mini 0.28
B3 - Term Typing Claude Sonnet 4 (Batch) 0.69
Blind
B4 - Term Typing Claude Sonnet 4 (Batch) 0.76
B5 - Term Typing Claude Sonnet 4 (Batch) 0.93

As illustrated in Table 3, models utilizing batch prompting (labeled ”Batch”) generally
outperform or closely rival their non-batch counterparts across the Term Typing subtasks.
Claude Sonnet 4 (Batch) consistently delivers top F1 scores across all domains, including
both standard and blind test sets.

4.3 Task C - Taxonomy Discovery

Table 4. F1 scores for various methods on Taxonomy Discovery subtasks (Task C). Batch-prompted
methods are indicated accordingly.

SubTask Method F1 Score
OBI
C1 - Taxonomy Discovery F1 token overlap 0.34
C1 - Taxonomy Discovery Bge-m3 0.35
C1 - Taxonomy Discovery All-mpnet-base-v2 0.35
C1 - Taxonomy Discovery All-MiniLM-L6-v2 0.35
C1 - Taxonomy Discovery NovaSearchstella en 1.5B v5 0.35
MatOnto
C2 - Taxonomy Discovery Claude Sonnet 4 (Batch) 0.66
C2 - Taxonomy Discovery Grok 3 (Batch) 0.37
SWEET
C3 - Taxonomy Discovery Claude Sonnet 4 (Batch) 0.5
SchemaOrg
C5 - Taxonomy Discovery Claude Sonnet 4 (Batch) 0.66
PO
C8 - Taxonomy Discovery Grok 3 (Batch) 0.27
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As shown in Table 4, performance on the OBI subtask indicates only marginal differences
between the simple token overlap method and advanced sentence embedding
techniques. Despite employing more sophisticated encoders such as bge-m3 [10],
all-mpnet-base-v2 [11], all-MiniLM-L6-v2 [12], and NovaSearchstella en 1.5B v5 [13],
F1 scores remain tightly clustered around the token overlap baseline. This suggests that
for structured domains like OBI, token-level similarity still provides competitive results.
However, in other subtasks such as MatOnto and SchemaOrg, batch-prompted methods
like Claude Sonnet 4 (Batch) show considerable performance gains.

5. Conclusions

This study demonstrates that effective prompt engineering strategies can mitigate the
inherent limitations of LLMs arising from their restricted context windows. By employing
such strategies, it is possible to utilize LLMs efficiently, circumventing the need for
costly hardware and extensive, time-consuming training procedures. Coupled with the
capabilities of contemporary powerful LLMs, these methods facilitate the fully automatic
construction of high-quality ontologies. Furthermore, our findings indicate that sentence
embedding–based approaches do not significantly outperform simple F1 token overlap
metrics, with similar results observed across a spectrum of pretrained models ranging
from 1.5 billion to 0.1 billion parameters. These insights highlight promising directions
for leveraging LLMs in knowledge representation tasks while optimizing resource usage.
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