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Abstract. This paper presents LABKAG'’s submission to the LLMs4OL 2025 Challenge,
focusing on ontology construction from domain-specific text using large language
models (LLMs). Our core methodology prioritizes prompt design over fine-tuning or
external knowledge, demonstrating its effectiveness in generating structured knowledge.
For Task A (Text20nto: extracting ontological terms and types), we utilized a locally
deployed Qwen3-8B model, while for Task C (Taxonomy Discovery: identifying taxonomic
hierarchies), we evaluated the performance of GPT-40-mini and Gemini 2.5 Pro. Our
experiments consistently show that incorporating in-domain examples and providing
richer context within prompts significantly enhances performance. These results confirm
that well-engineered prompts enable LLMs to effectively extract entities and their
hierarchical relationships, offering a lightweight, adaptable, and generalizable approach
to structured knowledge extraction.
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1. Introduction

Ontology learning plays a crucial role in knowledge representation, particularly as a
precursor to knowledge graph construction. It involves automatically extracting domain-
specific entities, relations, and hierarchies from unstructured text to build a structured
schema that serves as the conceptual backbone of a knowledge graph. In recent years,
Large Language Models (LLMs) have shown great potential in supporting this process,
thanks to their ability to extract and generalize knowledge from text without requiring
additional training.

Our team, LABKAG, is particularly interested in exploring best practices for applying
LLMs to knowledge graph construction and related tasks. While the LLMs4OL 2025
Challenge [1] is framed around ontology learning, its tasks align closely with essential
steps in the knowledge graph construction pipeline. We participated in Tasks A and C,
both of which simulate key components of extracting structured knowledge from arbitrary
text, regardless of domain.
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Task A focuses on identifying ontological terms and types from unstructured
documents. The objective is to extract domain-specific entities and categorize them
appropriately as terms or types. This process is critical in real-world scenarios where
structured schemas are needed but do not exist yet, for example, in internal enterprise
knowledge bases, or industry-specific documentation. Automatically identifying the
foundational vocabulary of a domain helps bootstrap ontologies that can later support
the search and query systems.

Task C, in contrast, centers on discovering the taxonomic structure between entities.
The goal is to identify is-a relationships among entities, enabling the construction
of hierarchies of domain knowledge. These hierarchies are essential for supporting
reasoning and inference in graph-driven applications, such as semantic search, product
recommendation, and compliance checking. In practice, having a taxonomic structure
helps transform flat lists of entities into rich, navigable structures that reflect how concepts
are related, improving the utility and interpretability of downstream knowledge systems.

Our goal is to evaluate how effectively LLMs can perform ontology learning tasks
under restricted but commonly encountered conditions. We focused on compact models
that require minimal computational resources and no additional training. We designed
our systems based on two core hypotheses: (1) LLMs are capable of extracting relevant
information from limited context, and (2) LLMs can generalize well from a small number
of carefully selected examples.

2. Related Work
2.1 In-Context Learning and Example Selection

The in-context learning capability of LLMs, notably exemplified by GPT-3 [2], allows the
language models to adapt to new domains and adhere to specific output formats by
learning from examples provided within the prompt, without requiring parameter updates.
This feature is particularly valuable for ontology construction, a domain-specific task
that frequently requires both nuanced knowledge understanding and strictly structured
output.

Consequently, prompt engineering has emerged as the key to optimal few-shot
performance. As highlighted by Zhao et al. [3], LLM behavior is highly sensitive to
various factors related to prompts, including the overall format, the quality and selection
of examples, the distribution of labels within those examples, and even their presentation
order. A comprehensive survey by Dong et al. [4] reviews key advancements in prompt
design and example selection strategies. Notable approaches include leveraging LLMs
to verbalize underlying task instructions for enhanced clarity [5], and selecting examples
based on their semantic similarity to target test samples [6].

These insights from prior research on in-context learning and prompt engineering
directly informed the design principles of our prompts for the ontology construction tasks
addressed in this paper, particularly regarding the use of in-domain examples and richer
contextual information.

2.2 LLM-Assisted Ontology Construction

The automation of ontology construction has been a long-standing interest. Recent
works by Giglou et al. [7] and Funk et al. [8] underscore the significant potential of
LLMs in this domain, proposing paradigms for their application in ontology construction.
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Beyond the overarching goal of extracting hierarchical structures, LLMs are also useful
in providing the fundamental building blocks for ontologies through information extraction.
For instance, as an initial phase within their Retrieval-Augmented Generation (RAG)
pipeline, GraphRAG [9] showcases the utility of LLMs for extracting both entities and
their interrelationships from unstructured text.

Collectively, these foundational works on LLM capabilities for both broad ontology
assistance and fine-grained information extraction directly inspired how LLMs are used
in our system for extracting entities and taxonomic relationships.

3. Task A: Text20nto
3.1 Methods

Task A consists of two subtasks: term extraction and type extraction. We adopted a two-
step pipeline. First, we extracted all relevant entities from the input documents, without
initially distinguishing between terms and types. Then, we classified each extracted
entity as a term, a type, or both. This section details each component of the pipeline.

3.1.1 Entity Extraction

Entity extraction, as the first step of our method, focuses on identifying all potentially
relevant entities from each document. This step does not distinguish between terms and
types; instead, all extracted entities are passed to the subsequent classification step.

We explored two prompting strategies for this step. The first, simpler approach was
inspired by GraphRAG’s prompt for graph extraction from text chunks. While the original
prompt targets both entities and relationships, we adapted it to focus solely on entity
extraction. Our prompt, shown in Figure 1, consists of a task description and a single
example that illustrates the expected output format. The expected response includes a
list of entities, each followed by its entity type and description.

The second, more advanced strategy builds on top of the first by utilizing few-shot
prompting, where examples are tailored to each test dataset. To select the most relevant
examples, we incorporate a retrieval mechanism inspired by Retrieval-Augmented
Generation (RAG). This involves selecting a small number of training documents that are
semantically similar to most test documents. Given that the training data only provide
entity names without associated descriptions, we first task the LLM with generating the
complete structured outputs, including entity names, types, and descriptions. These
retrieved documents with model-generated outputs are then inserted into the prompt as
examples to better guide the model’s behavior.

Post-processing in this step was kept minimal. We deduplicated entities that
shared both the same type and description. Entities with identical names but different
descriptions were retained in order to preserve context, which is important for the
classification step that follows.

3.1.2 Entity Classification

After extracting candidate entities from the documents, the second step of our pipeline
involves classifying each entity as a term, a type, or both. This classification establishes
the foundation of the ontology: types are the entities that populate the schema, while
terms represent domain-specific concepts or instances that fill in the structure.



Zhao et al. | Open Conf Proc 6 (2025) "LLMs40L 2025: The 2nd Large Language Models for Ontology Learning Challenge at the
24th ISWC”

You are assisting in the construction of a domain-specific ontology by
extracting meaningful entities from text. Each entity should represent a concept
relevant to the domain, including both general categories and specific subtypes.

Note that entities can overlap conceptually or hierarchically. Do not exclude
broader or more abstract terms just because more specific variants also appear.

Given a document, extract important domain terms (entities) and assign each one
a generalized type, such as Concept, Process, Unit, Method, Material, Organism,
Product, Ingredient, Category, etc. For each identified entity, extract the
following information:

¢ entity name: Name of the entity
* entity_type: Type of the entity
* entity_description: Comprehensive description of the entity’s attributes

and activities
Format each entity as
("entity"|||<entity name>|||<entity_type>|||<entity_description>)

[EXAMPLE AND REAL DATA OMITTED]

Figure 1. Prompt used for entity extraction

We performed this classification using a second round of LLM prompting and
explored several prompt design strategies, gradually increasing domain specificity and
contextual richness. In all strategies, the model was explicitly instructed to assign a
term or type label for each entity, based on its usage and meaning in context. During
post-processing, entities that serve different functions across different contexts were
labeled as both, reflecting their dual role in the ontology.

As for the prompting strategy, we began with a simple few-shot prompt that included
a generic task description and out-of-domain examples. The purpose of the examples
was to illustrate the expected output format. For each inference, we input a single entity
along with its description that was generated in the previous step. However, this generic
prompt proved ineffective, as the definition of type and term can vary significantly across
domains.

To address this, we designed a more tailored prompt with domain-specific task
descriptions and in-domain examples. Definitions were rephrased to align with the
domain, as shown in Figure 2. Examples were selected from the corresponding training
set to provide clearer signals. While the input format remained compact and consisted
only of the entity and its generated description, this strategy provided a more domain-
relevant guidance for classification.

Finally, we experimented with a strategy using the full document text as input. In
this setup, the model was given the original document along with the complete list
of extracted entities and was instructed to classify all entities in a single pass. This
approach retained the same domain-specific task description but provided the model
with richer context, helping it better understand how each entity appears and functions
within its original setting.

3.1.3 Term Expansion

In the Engineering subset, we observed consistently low recall in the term extraction
subtask. Upon analyzing the training data, we noticed that many of the ground-truth
terms do not appear verbatim in the documents. Many of these terms are prefixed units
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[SHARED TASK DESCRIPTION OMITTED]

You are assisting in the construction of a domain-specific ontology in the field
of engineering. Classify each entity accordingly, and use your understanding of
engineering semantics, units, and measurement systems to guide your decisionms.

Definitions:
* A specific term refers to a concrete value, expression, or unit used in
engineering contexts. These are often numerical ranges (e.g., "0{5"),
quantified values (e.g., "54.3584 on the Kelvin scale"), or precise

technical expressions (e.g., "British thermal unit (39 °F)", "centiwatt").
¢ A category type is a broader engineering concept or unit class that

generalizes over multiple specific terms. For example, "energy unit"
may include "kilojoule", "calorie", or "British thermal unit", while
"temperature scale" may include "Kelvin" or "Celsius".

[EXAMPLE AND REAL DATA OMITTED]

Figure 2. Task Description for Engineering Subset

formed by attaching Sl prefixes (e.g., milli-, giga-) to base units. While the documents
often mention a few examples, the ground-truth term list typically includes the full range
of prefixes, from “yocto-" to “yotta-”.

To address this, we introduced an additional term expansion step. We first provide
the LLM with the full document and a list of extracted terms. The model identifies which
terms are prefixed units. For each identified term, we generate variants by substituting
the original prefix with all other prefixes from a predefined list, covering the complete
spectrum.

3.2 Experimental Setup

All experiments were conducted using the Qwen3-8B model [10], which we deployed
and ran locally, with no additional training or parameter updates. Inference was handled
through a custom local pipeline, allowing full control over prompt formatting, batching,
and output parsing without relying on external APls.

The datasets used in this work were provided by the organizers of the LLMs4OL
2025 Challenge. Training data was not used to fine-tune the model, but served as a
source for constructing example-based prompts and evaluating few-shot strategies. We
concentrated our experiments on two subsets: scholarly and engineering. These subsets
were selected due to their relatively small number of documents, which enabled faster
iteration and easier result analysis during development.

3.3 Results and Analysis

We evaluated the performance on Task A by separately measuring the extraction quality
of terms and types using precision, recall, and F1 score. We began by evaluating the
intermediate output produced by the first step: entity extraction. At this stage, the system
outputs a flat list of entities without classification. For evaluation purposes, we used this
same list as the candidate set when assessing both term and type extraction quality,
treating it as the system’s prediction for each category.

In Table 1, we compare the two prompting strategies we introduced in Section 3.1.1:
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 generic: A one-shot generic prompt, which uses a general out-of-domain example
to illustrate the expected output format.

 in-domain: A few-shot prompt tailored to each domain, which uses semantically
similar training documents and LLM-generated examples.

Table 1. Task A: Performance After Entity Extraction

Subtask Prompt Recall (%) Precision (%) F1 Score (%)
A1.2-Scholarly generic 46.88 23.08 30.93
A1.2-Scholarly in-domain 65.63 34.43 45.16
A1.3-Engineering generic 45.70 74.63 56.69
A1.3-Engineering in-domain 46.07 79.50 58.33
A2.2-Scholarly generic 90.00 41.54 56.84
A2.2-Scholarly in-domain 90.00 44.26 59.34
A2.3-Engineering generic 58.33 6.27 11.32
A2.3-Engineering in-domain 69.44 7.89 14.16

The goal of the entity extraction step is to retrieve as many domain-relevant
entities as possible, making recall the primary focus at this stage. As shown in
Table 1, ”In-Domain” prompts, which use few-shot, in-domain examples, consistently
outperform the generic one-shot prompt across all subsets and evaluation metrics. This
demonstrates that incorporating domain-specific examples into the prompt is effective
for improving the coverage of target entities. The improvement is particularly significant
in the A1.2-Scholarly and A2.3-Engineering subtasks, where recall increases from
46.88% to 65.63% and from 58.33% to 69.44%, respectively. These results suggest that
these two subtasks may require more in-domain context or specialized vocabulary, and
therefore benefit more from tailored prompting.

We then evaluated the final output after applying entity classification. All experiments
in this stage were continued using the entity lists generated by ”"In-Domain” prompts
from the previous step, which had demonstrated higher recall and overall performance.

Table 2 compares prompting methods that vary in the richness of entity context,
as introduced in Section 3.1.2. For the A1.3 subtask, we additionally report results
incorporating the term expansion step described in Section 3.1.3.:

« description: A few-shot in-domain prompt, given only the entity and its generated
description.

« full doc: A few-shot in-domain prompt, given the entity and the original document
as context.

« full doc + term expansion: Same as “Full Doc,” with an additional term expansion
step applied after classification.

The goal of the entity classification step is to improve precision while maintaining
high recall. As shown in Table 2, prompts with full document context consistently
outperform the other in most subtasks. The gains are especially notable in A1.2-
Scholarly, where F1 scores increase by over 30%. This suggests that access to richer
contextual information allows the model to make more accurate classification decisions.
In A1.3-Engineering, the term expansion step significantly boosts recall, leading to a
higher overall performance; however, this comes at the cost of reduced precision.
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Table 2. Task A: Performance After Entity Classification

Subtask Method Recall (%) Precision (%) F1 Score (%)
A1.2-Scholarly description 15.63 50.00 23.81
A1.2-Scholarly full doc 65.62 75.00 70.00
A1.3-Engineering description 43.88 90.23 59.04
A1.3-Engineering full doc 43.88 93.02 59.63
A1.3-Engineering full doc + term expansion 73.86 60.66 66.61
A2.2-Scholarly description 70.00 41.18 51.85
A2.2-Scholarly full doc 90.00 77.14 83.08
A2.3-Engineering description 44 .44 25.40 32.32
A2.3-Engineering full doc 63.89 37.10 46.94

4. Task C: Taxonomy Discovery
4.1 Methods

Task C focuses on identifying hierarchical relationships within flat lists of domain-specific
terms, facilitating the construction of is-a taxonomic structures. The goal is to identify
patterns in which one term represents a broader category (parent) and another
represents a more specific instance or subcategory (child). Our approach relies on
prompt engineering with LLMs, using carefully crafted prompts with explicit instructions
and examples to guide the extraction of parent-child relationships.

To address challenges that arose in larger subsets, we introduced two pre-
processing strategies to augment the base method: (1) length-based chunking, which
splits long lists of terms into shorter, fixed-length segments; and (2) semantic-based
grouping, which organizes terms into coherent clusters based on meaning. The following
sections describe the motivation and implementation of three resulting pipeline variants.

4.1.1 Single-Step IsA Relationship Extraction

Single-Step IsA Relationship Extraction serves as a straightforward baseline with minimal
pre-processing. In this approach, LLMs are explicitly instructed to identify taxonomic
(IsA) relationships directly from flat, unstructured lists of domain-specific terms, and to
return the output in JSON format. To guide this process, we constructed a fixed prompt
with clear instructions and illustrative examples, as shown in Figure 3.

You are given a list of terms.
Your task is to identify hierarchical relationships between terms where one is a
more general "parent" and the other is a more specific "child".

Analyze EVERY term and identify SPECIFIC "is-a" relationships.

[INSTRUCTIONS AND REAL DATA OMITTED]

Figure 3. Example Prompt for Single-Step Extraction

While initially chosen for its simplicity, this method provided a foundation upon which
we built more specialized components to address challenges specific to each test subset.
We observed relatively low recall, particularly in larger subsets, likely due to input length

7
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limitations and the inefficiency of processing long, unordered lists. To address this,
we experimented with several chunking strategies, dividing term lists into manageable
batches while preserving context.

4.1.2 Chunking + IsA Extraction

The single-step approach breaks down when applied to long lists of terms, often resulting
in inconsistencies and missed IsA relationships due to token limits and the model’s
inability to maintain context over vast inputs. To address this, we adopted a chunking
strategy comprising two conceptual steps:

» Chunking and Relationship Generation: The term list is divided into smaller, more
manageable chunks, typically ranging from 300 to 500 terms per chunk. Each of
these chunks is then independently processed by the LLM using the prompt as the
single-step method. Subtask-specific examples are included to provide consistent
guidance within each chunk.

» Aggregation and Normalization: Within each chunk, parent-child pairs are extracted
in a similar fashion to the single-step method, but restricted to the terms present
in that specific chunk. The resulting pairs from each chunk are aggregated and
normalized during post-processing to form the final relationship set.

While this chunking approach enables efficient scaling of IsA extraction, it introduces
certain trade-offs. Because relationships are extracted only within individual chunks
rather than across the entire dataset, if a parent and child term appear in separate
chunks, the relationship may be missed. This local-only view can lead to reduced recall
and an increase in false positives. Our initial experiments confirmed this, showing that
recall remained relatively low despite improved handling of longer inputs.

4.1.3 Category Regrouping + Chunking + IsA Extraction

Category Regrouping aims to refine domain-specific terms into semantically coherent
groups (e.g., Health & Medical, Travel & Transportation) before applying ISA relationship
extraction. This step is motivated by two primary observations: (1) simple length-based
chunking often fails to capture valid parent-child relationships when related terms are
distributed across chunks; and (2) the source term lists frequently include irrelevant or
loosely related terms that are out-of-domain and unlikely to form meaningful taxonomic
structures. By category regrouping, we improve the quality of subsequent IsA extraction
in two ways: irrelevant terms are filtered out, and intra-group relationships become more
coherent, enabling more precise and focused extraction.

We implemented this regrouping step using an additional round of LLM prompting.
As shown in Figure 4, the LLM is instructed to classify terms into a predefined set
of high-level categories. This serves both to organize the input space and to suggest
potential parent terms for the next stage. While this step initially led to lower recall,
iterative refinement of the prompt design led to improvements in both recall and precision.
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You are a categorization assistant.
Classify the following scientific terms into high-level parent categories. Use
only from the following standardized parent categories:

[INSTRUCTIONS AND REAL DATA OMITTED]

Figure 4. Prompt for Category Regrouping

4.2 Experimental Setup

We conducted our experiments using two LLMs: OpenAl’s GPT-40-Mini [11] and Google’s
Gemini 2.5 Pro [12]. Both were queried with the same input terms to allow for a fair
comparison. To ensure deterministic and comparable outputs, we fixed the generation
parameters as follows: temperature was set to 0.1, top-p to 3, and top-k to 1.

For each run, we provided a carefully constructed prompt that included few-shot
examples and detailed rule-based instructions. The models returned structured outputs
representing parent-child relationships, which were then converted into JSON format for
analysis.

4.3 Results and Analysis

Our experimental results are summarized across several tables. Table 3 presents the
best performance achieved for each subtask, detailing the specific model, prompt, and
preprocessing strategies employed. This table highlights the overall effectiveness of our
best configurations.

For subtask C2, Table 4 compares the impact of using 1-shot versus few-shot
prompts. In these specific experiments, regrouping and chunking preprocessing
steps were not applied. This set of experiments clearly indicates that providing a
greater number of in-context examples generally contributes to improved performance,
particularly in simpler experimental settings.

Lastly, Table 5 details the influence of preprocessing strategies, namely regrouping
and chunking, on subtasks C2 and C5. The application of the regrouping step,
designed to provide a more organized input structure, consistently led to performance
improvements compared to experiments without this step, underscoring its contribution
to improved output quality.

Table 3. Best Performance on Task C

Subtask Model Prompt Regroup Chunk Recall (%) Precision (%) F1 (%)
C2-MatOnto Gemini 2.5 Pro  1-shot v v 47.09 49.71 48.36
C5-SchemaOrg Gemini 2.5 Pro  1-shot v v 71.38 59.68 65.01
C7-FoodOn GPT-40-mini 1-shot v v 2.00 2.32 2.15
C8-PO Gemini 2.5 Pro  1-shot v v 5.70 2.60 3.57
C9-Blind Gemini 2.5 Pro  1-shot v v 3.49 7.95 4.85
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Table 4. Task C: Comparison of 1-shot and few-shot prompting

Subtask Model Prompt Recall (%) Precision (%) F1 (%)
C2-MatOnto GPT-4o0-mini  1-shot 14.96 37.50 21.39
C2-MatOnto GPT-40-mini few-shot 19.67 50.00 28.23

Table 5. Task C: Effect of regrouping and chunking

Subtask Model Regroup Chunk Recall (%) Precision (%) F1 (%)
C2-MatOnto Gemini 2.5 Pro X v 40.72 48.20 4414
C2-MatOnto Gemini 2.5 Pro v v 47.09 49.71 48.36
C5-SchemaOrg Gemini 2.5 Pro X v 45.31 39.20 45.32
C5-SchemaOrg Gemini 2.5 Pro v v 71.38 59.68 65.01

5. Conclusion and Future Work

This paper presented LABKAG’s participation in the LLMs4OL 2025 Challenge,
investigating the efficacy of LLMs for constructing ontologies from domain-specific
text. Our work demonstrates that carefully crafted prompt design, without relying on
fine-tuning or external knowledge, serves as a powerful and highly effective strategy for
structured knowledge acquisition.

Our experiments, utilizing models including Qwen3-8B, GPT-40-mini, and Gemini
2.5 Pro, consistently showed that prompts incorporating in-domain examples and richer
context significantly enhance performance. Conversely, the inclusion of noise, whether
in the examples or input, invariably degraded performance. These findings underscore
the critical importance of carefully selecting prompting strategies according to the data
characteristics, especially in real-world applications.

These results highlight prompt-driven LLM application as a lightweight, generalizable,
and adaptable approach to acquiring structured knowledge. However, the reliance on
domain-specific in-context data limits its direct applicability to truly "blind” test sets.
Future work will therefore focus on adapting our approach to handle unseen domains,
and will further explore more advanced techniques for prompt calibration and example
selection.

Data Availability Statement

This work is based solely on the datasets provided by the organizers of the LLMs40L
2025 Challenge. These datasets are publicly available as part of the official challenge
resources. We did not use any additional third-party or proprietary data.

Underlying and Related Material

Our implementation code and prompt templates are publicly available on GitHub at:
https://github.com/laboro-public/LABKAG-LLMs40L-2025
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