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Abstract. Ontology Learning (OL) automates extracting structured knowledge from
unstructured data. We study how model-agnostic data manipulations can boost
performance of Large Language Models (LLM) on three OL tasks, i.e., term typing,
taxonomy discovery and non-taxonomic relation extraction, from the LLMs40L 2025
Challenge. We investigate two input-enrichment techniques, i.e., (i) data augmentation,
and (ii) addition of term and type definitions that expand the information supplied to an
LLM. Complementing the enrichment techniques, we also study a pruning technique,
i.e., a similarity-based candidate filtering technique that narrows the candidate space
in taxonomy discovery and non-taxonomic relation extraction to the most semantically
relevant types. When applied individually, each technique boosts precision—recall metrics
over the vanilla setting where an LLM is trained on the original data. However, applied
together they yield the best scores in five out of the seven ontology—task combinations,
showing synergetic benefits. Our findings show that careful curation of inputs can itself
yield substantial performance improvements. Codebase and all training artifacts are
available at our GitHub repository’.

Keywords: Ontology Learning, Large Language Model, Data Augmentation, Definition
Mining, Similarity Filtering

1. Introduction

Ontology Learning (OL) aims to extract information from unstructured or semi-structured
text into a formal ontology that machines can reason about [1]. Despite recent advances
in information extraction models, for example described in Deng et al. [2], the OL
problem still remains challenging. Accurately capturing and interpreting domain-specific
language, often dense with specialized terminology, is central to ontology learning.
When combined with data sparsity and extreme class imbalance, it requires substantial
manual curation and deep domain expertise [3]. Recent advances in Large Language
Models (LLMs) offer a concrete way to mitigate existing problems in OL. First, extensive
pre-training equips LLMs with wide cross-domain lexical coverage, providing them
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with a comprehensive overview across a wide range of domains. Second, fine-tuning
can specialize these models to a new domain, easing the bottleneck posed by highly
technical terminology. Third, proper tuning of OL tasks allows an LLM to acquire new
ontology concepts from only a handful of labeled examples, mitigating data sparsity and
extreme class imbalance [4].

Ontology learning consists of four steps: corpus preparation, terminology extraction,
conceptualisation (which is split into term typing, taxonomy discovery, non-taxonomic
relation extraction), and axiom discovery [1]. The Large Language Models for Ontology
Learning (LLMs40OL) challenge [1] benchmarks how well LLMs can perform on different
OL tasks in few- and zero-shot settings. The second iteration of LLMs4OL 2025
examines the capabilities of LLMs in 4 OL subtasks [5]:

» Subtask A— Text20nto: extract domain terms and types from raw texts;

» Subtask B—Term Typing: assign the most specific type to a given term;

» Subtask C— Taxonomy Discovery: predict taxonomic is-a links between types;

» Subtask D—Non-Taxonomic Relation Extraction: identify other semantic relations
between type pairs.

All subtasks are officially scored with Precision, Recall, and F1-score using
predefined training and test splits.

However, the advantages mentioned above of LLMs materialise only when the input
provides sufficient context - exactly what the LLMs4OL Challenge deliberately withholds
to stress-test models. Our own inspection of the LLMs4OL 2025 data revealed the three
bottlenecks listed below:

* (i) rare-class sparsity — many types appear only once or twice in the training
data;

« (ii) context deficit — terms and types are given without explanatory definitions,
leaving the model to infer semantics from lexical form alone;

« (iii) quadratic explosion — a naive solution to subtasks C and D scores all type
pairs to decide whether any relation holds has complexity O(|7'|?), where T is a
set of all types, even though almost all pairs do not have any relations.

The three outlined limitations suggest that an effective pipeline for OL must (i)
augment training data, (ii) enrich the context-poor input with term and type definitions,
and (iii) prune implausible type pairs for taxonomy discovery and non-taxonomic relation
extraction. To address these limitations, we propose the following research question:
To what extent do (i) data augmentation techniques, (ii) term and type definition
mining, and (iii) candidate type filtering improve LLMs’ capabilities for term typing,
taxonomy discovery, and non-taxonomic relation extraction? To address this question,
we decompose it into two task-specific research questions, since subtask B is dominated
by a different set of bottlenecks than subtasks C and D:

* RQ1 (Term Typing). To what extent do data augmentation and term definition
mining improve precision, recall, and F1-score of an LLM-based classifier for term
typing?

* RQ2 (Taxonomy Discovery & Non-Taxonomic RE). How do similarity-based
candidate filtering and type definition mining improve precision, recall, and F1-score
of an LLM-based classifier for taxonomy discovery and non-taxonomic relation
extraction?

To address our research questions, we concentrated on subtasks B, C, and D, as
they collectively represent the conceptualisation phase of OL. Regarding ontologies, we
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decided to focus on biomedical investigations OBI [6], and Earth and material science
ontologies presented by MatOnto [7] and SWEET [8]. We concentrate on OBI, MatOnto,
and SWEET because the biomedicine, materials, and Earth science domains share
deep hierarchies and highly specialised vocabularies, providing a coherent test case for
our data enrichment study. Each subtask is evaluated independently of each other on
different ontologies.

The rest of the paper is organised as follows. Section 2 presents an overview of the
existing ontology learning approaches and positions our study within the recent LLM-
based information extraction frameworks. Section 3 presents details of our methodology.
Section 4 reports on exact data sources, licensing conditions, and preprocessing scripts
to ensure full reproducibility. Section 5 reports precision, recall, and F1-score in every
ablation required to answer RQ1 and RQ2 and analyses the results, highlighting the
impact of each technique on data-scarce and imbalanced scenarios. Finally, Section 6
summarises the main findings, outlines limitations, and sketches avenues for extending
LLM-assisted ontology learning in future work.

2. Related Work

Early ontology learning systems exploited rule-based or shallow statistical cues mined
from corpora and thesaurus. Classic pipelines such as Text20nto [9] combined
lexico-syntactic patterns with TF—IDF heuristics to induce concepts and taxonomic
links from domain text. Prior to the rise of LLM-based methods, automatic and
semi-automatic OL pipelines relied on three main paradigms according to Asim et al.
[10]: (i) linguistic (rule- or pattern-based) techniques that harness handcrafted lexicons,
part-of-speech tags, and parsing; (ii) statistical techniques that mine corpus-level
co-occurrence and frequency statistics of ontology terms and types; and (iii) logical
techniques—most notably inductive logic programming—that induce formal axioms from
previously extracted artifacts. All three paradigms are highly dependent on manually built
resources and meticulous task-specific feature engineering, keeping domain experts in
the loop.

LLMs inherit broad factual and common-sense knowledge from the data they are
pre-trained on, can be guided with a handful of in-context examples, and even act as
agents that can query, retrieve, or even self-generate supplementary evidence. All these
traits can potentially address the data scarcity and context-deficit problems of OL stated
above, as shown by Du et al. [11]. Recent case studies, for example, Lippolis et al.[12],
showed that in some domains proprietary models are capable of producing ontologies
of sufficient quality to meet the requirements of ontology engineers. However, relying
on such proprietary systems is often impractical, given data-security concerns and the
need to tailor models to specialised domains and project-specific requirements.

Unified information extraction (UIE) introduced by Lu et al. [13] demonstrated
capabilities in various OL-related tasks such as the extraction of entities and relations
by using a single structured extraction language and training a sequence-to-sequence
model to generate the corresponding structured outputs based on that schema. This
approach established a state-of-the-art baseline in 13 datasets but still relied on
supervised fine-tuning, a process that demands heavy manual curation. Wang et al.
[14] introduced a modification of UIE - called InstructUIE - to overcome the need for a
fixed schema, using natural language instructions, pairing each prompt (task description
+ answer options list + input text) with the desired output. ChatUIE, introduced by Xu
et al. [15], pushed the idea further. A ChatGLM backbone had three-stage training:
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supervised fine-tuning, reward-model learning, and PPO reinforcement learning, plus a
generation-constraint matrix that blocks tokens not present in the source, mitigating type
confusion and sample imbalance across Named Entity Recognition (NER), Relation
Extraction (RE), and Event Extraction (EE) datasets.

The LLMs40OL 2024 challenge explored a wide spectrum of LLMs - from compact
BERT to proprietary GPT-3.5 and open source LLaMA-3-70B - combined with strategies
such as lightweight fine-tuning, retrieval-augmented prompting, and prompt engineering
[4]. These approaches achieved strong precision, recall, and macro-F1 on several
ontologies, yet they left certain domains only partially resolved, underscoring the need for
systematic, model-agnostic add-ons such as data augmentation, definition enrichment,
and similarity-based filtering.

3. Methodology

This section explains the details of our solutions for subtasks B-D. We begin by formally
defining the three challenge subtasks, i.e., term typing (B), taxonomy discovery (C), and
non-taxonomic relation extraction (D), so that the notation is fixed for the remainder of
the paper. We also describe the training and test data for these subtasks. This section
is divided into two parts according to the research questions. Section 3.1 presents
Subtask B, by first describing the baseline solution and then the two data enrichment
techniques (i.e., data augmentation and term and type definition mining). Section 3.2
treats Subtasks C and D together, covering the baseline solution first and then describing
similarity-based candidate filtering.

The term typing can be formally defined as the following. Let 7 be the set of
ontology-specific types and let a natural language text x denote an input term string. Term
typing asks a model to output a subset Y C 7 that contains all types applicable to . The
term typing training data provides only term-to-type mappings, with no accompanying
definitions, and the test set consists solely of term strings.

The taxonomy discovery and non-taxonomic relation extraction ask whether a
specified semantic relation holds for a given pair of ontology types. For taxonomy
discovery, the relation is fixed: given an ordered pair of child and parent, denoted by
¢,p € T, decide whether the taxonomic link isChildOf(c, p) is true. For non-taxonomic
relation extraction, the relation is part of the query: given a triple for head, relation, and
tail denoted by (h,r,t) with h,t € T and r € R, where R is a set of all possible
relations, determine whether the relation r(h,t) holds. The training data for these
subtasks provides a list of all training types, without any definitions, a list of all type
pairs/triples, and a list of all training relations for the non-taxonomic relation extraction.
The test data consists of a list of all types and, for non-taxonomic relation extraction, a
list of test relations.

3.1 Subtask B: Term Typing

We consider term typing as multi-label classification. For every type ¢t € T, the model
decides independently of the other types whether ¢ applies to the input term. For a
baseline solution, we only use the original challenge term—type pairs without any data
augmentation or term definitions. Further, we add two data enrichment techniques to
the baseline solution: data augmentation for additional term-to-type mappings and term
definition mining for additional context. Figure 1 shows the overall workflow for term
typing that combines these two enrichment techniques into a single pipeline. The pipeline
augments the original training data with additional term-to-type mappings and enriches
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each term with automatically mined definitions before fine-tuning a DeBERTa-v3-large
classifier introduced by He et al. [16]. A development set is used to calibrate the decision
threshold, which determines the minimum prediction probability required for a type
to be assigned to a term during inference. The following subsections describe each
component in detail.

4 "
) Data Term Definition Model 4 N
Terms Augmentation Mining Training Types
1. ch202 1. Rule-based 1. Wikipedia 1. DeBERTa- 1. organic comp.
2.antique | generators —p{ Summary > —» 2. age
9 2. Wiktionary v3-large
3. oxygen 2. Wiktionary Qlossary fine-tuning 3. elemgnt
4. base ;Yg‘;'l’jrﬂﬂﬁ 3. Domain APls 2. Threshold 4. chemical state
: ° 4. GPT-40 Tuning
\_ Y, synonyms definitions \_ J/

Figure 1. Overview of the term typing pipeline. First, the data augmentation step adds additional
term-to-type mappings. Then, term definition mining enriches each term with automatically mined
definitions. Finally, the DeBERTa-v3-large classifier is fine-tuned on term-to-type mappings and threshold
is tuned on held-out set.

3.1.1 Baseline Solution

Input encoding. We use a DeBERTa-v3-large encoder and fine-tune its parameters
rather than keeping the encoder frozen. We choose the DeBERTa model because it
balances performance and computational cost and has strong benchmarks in language
understanding tasks. Although this choice is purely plug-and-play and has proven
effective in our setting, a comparison with domain-specific models (e.g., BioBERT or
SciBERT) would be a valuable direction for future work to assess potential gains in
specialised domains. Each input term string z is fed into the encoder, which outputs a
hidden vector i € R?. This vector is then passed through a task-specific linear layer that
produces logits, one per ontology type:

L(z) = (Ly,..., L) € R, (1)

Probability layer and decision rule. Sigmoid activations give posteriors per type
o; = o(L;). Collecting the posteriors of each type in a vector o(z) = (o1,...,017),
we obtain a prediction vector for any threshold 7 (by default = = 0.5) by using the

element-wise rule
y(x) = [Houx) =], € {0,137 )

Because the number of types that can apply to a term varies across ontolo-
gies—some assign several types, others only one or two, we calibrate the probability
threshold on a held-out development set. To ensure that the calibration reflects the true
label distribution, the development set is constructed to preserve the overall frequency of
each type, so that both common and rare types are proportionally represented. In cases
where some labels occurred too infrequently to allow stratified splitting, we used random
splitting while ensuring representative coverage of the frequent types. Specifically, we
hold out 10% of the training data for threshold calibration only and do not include it in
any further training. This setup helps prevent information leakage and ensures that the
selected threshold generalizes to unseen data:

T = arg max F1l-score (ydev, ydev) ) (3)
7€{0.05,0.10,...,0.50}

5
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Here, Y. € [0,1]™*I71 is the matrix of predictions for the m terms from the
development split, and ygev € {0, 1}™*I7! is the corresponding ground-truth label matrix.

At test time, every type whose probability exceeds 7* is assigned to the term; if none
do, the type with the highest probability is returned so that each term receives at least
one label.

Loss and optimisation. For a batch of B terms, we form the binary label matrix

Y € {0,1}2*I71 where y,; = 1 if the b-th term is assigned the i-th type, and 0 otherwise.

We then minimize a class-weighted binary cross-entropy loss:
B 7]

1
L= 23> wilpilogon+ (1 —yw)log(l —on)],  wi=

b=1 i=1

N —fi
fi

(4)

where f; is the number of positive occurrences of type i in the training data and
N the total sample count, so that rare classes receive a larger gradient weight. Hyper-
parameters for term typing were shared across all experiments. These parameters are
AdamW optimiser, learning rate 2 x 10~°, batch size 16, max length 512 if definitions
enabled, else 128, and 10 epochs.

3.1.2 Data Augmentation

The original training splits are extremely small - many types have no more than two
positive examples — so the baseline model suffers from both rare-class sparsity and
limited lexical variety. We therefore enlarge the data by generating additional entries for
every training term using the methods explained below. This increases the size of the
dataset without any manual annotation and gives the encoder more lexical evidence
from which to learn.

A manual inspection of the OBI, MatOnto, and SWEET ontologies revealed recurring
lexical patterns specific to each domain (e.g. Sl units in all ontologies, chemical formulae
in SWEET, company suffixes, and biomedical acronyms in OBI). Based on these
observations, we created a small catalogue of rule-based generators that rewrote a term
while preserving its meaning. Only rules relevant to a given ontology were activated, so
unnecessary noise is avoided. In addition to rule-based techniques, we use Wiktionary
to collect synonyms for each term and the GPT-40 API [17] to generate additional lexical
variants. For every term in the original training split, we apply these methods and add all
newly obtained terms to the training data, assigning them the same type labels as the
original term. The menu of augmentation techniques is listed below, and their ontology
coverage is summarised in Table 1; global statistics before and after augmentation
appear in Table 2.

* Rule-based generators

— Unit swaps (MatOnto, SWEET, OBI) — swaps written-out units and S| symbols
using manual written map: natural language name <« Sl unit; metres per
second <+ m/s; square metre <> m?.

— Chemical swaps (SWEET) — replaces chemical names with formulas
and vice-versa using molecular name < molecular formula map; carbon
dioxide <+ CO,; ozone <> Os.

— Simple tweaks (MatOnto) — simple spelling changes: plural <~ singular
(crystals <> crystal); case variants (Basalt <> basalt); hyphen « space
(iron-ore <> iron ore).
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— Organisation & number rewrites (OBl) — company-suffix removal and
Roman <« Arabic numbers swap; Advanced Instruments, Inc. <> Advanced
Instruments; Phase II <> Phase 2.

— Acronym map (OBIl) — map biomedical acronyms and what they stand for;
OWL <> Web Ontology Language, FCS <+ fetal calf serum.
» Wiktionary synonyms (all) — up to ten short synonyms for a term from the
Wiktionary, if available (hurricane — cyclone).
* GPT-40 synonyms (all) — prompted OpenAl GPT-40 model with prompt: “List

up to 3 short English synonyms (< 3 words) for ‘X" e.g. diesel particulate
matter — diesel soot.

Table 1. Which augmentation modules are applied to each ontology.

Ontology Unit Chem Tweaks Org./Numb./Acr. Wikt. GPT

MatOnto v — v — v v
OBI v — — v v v
SWEET v v — — v v

Table 2. Training—set sizes before and after augmentation.

Ontology Original Augmented

MatOnto 85 544
OBI 201 835
SWEET 1.558 9.158

To evaluate how the data augmentation impacts term typing, we simply replace the
training file with the augmented one; the model, loss, hyperparameters, and threshold
calibration described in Section 3.1.1 remain unchanged.

3.1.3 Automatic Definition Mining (Terms & Types)

All inputs (whether terms for subtask B or types for subtasks C and D) are context-free.
This means that a bare term must be mapped to its correct ontology type(s), or two
types must be linked to each other. By adding a short definition, we expose an LLM
encoder to learn not only terms and types but also their meaning. During training, this
extra context helps the model learn finer distinctions among similar strings; at test time,
it lets the model compare new terms and types to previously seen ones through their
textual descriptions.

In our study, we do not make a distinction between the definitions of mining for terms
and for types. The same pipeline applies uniformly across all subtasks and ontologies, as
both cases involve retrieving a short informative definition for a single string - regardless
of whether that string denotes a term or a type — using the same sources, query
logic, and integration method. The LLMs4OL challenge rules explicitly forbid using the
reference ontologies themselves (or any artifacts derived from the ontology) for external
knowledge. Our mining pipeline therefore queries only open, non-ontology resources -
general encyclopedias, lexical dictionaries, and domain-specific public APIs — so that
every definition is legally obtained and reproducible.

We use a simple, fixed-order list of sources for querying - given an input string, we
consecutively query the list below until the definition is retrieved. Wikipedia comes first
because its concise lead sentences cover most labels, are easy to find in bulk, and
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convey the core meaning without unnecessary details. If Wikipedia has no entry, we try
Wiktionary as it has a wider coverage, and only then the more specialised domain APIs,
whose answers can be longer or sometimes inconsistent. More specifically, our term
and type definition mining pipeline looks as follows:

— Wikipedia summary The first sentence of a lead paragraph extracted using the
REST endpoint /page/summary/{term).

— Wiktionary glossary First English definition line returned by the Wiktionary API
/page/definition/(term).

— Domain APIs (ontology-specific)

+ OBI: MeSH scope notes?, PubChem compound descriptions®, UniProt protein-
function lines*.

+ SWEET & MatOnto: USGS mineral glossary®, NOAA weather glossary®, ADS
“Universal glossary” abstracts’.

— GPT-40 fallback If all web sources fail we use OpenAl API for GPT-40 model to
generate a definition, e.g. “Give a one-sentence definition of the earth-science
term {X)".” This synthesises a concise description while avoiding ontology jargon.

When we study the impact of definitions in term typing, we add the mined definitions
to the term, separated by [DEF] token, e.g.:

[TERM] diesel particulate matter [DEF] Soot and other fine particles produced by diesel
engines.

Definition mining is compatible with data augmentation. If we use both of them
together, we attach the same mined definition to the original term and to every synonym,
abbreviation, or reformatted spelling produced by the augmentation script. This yields two
complementary signals: lexical variety from the new surfaces and semantic grounding
from the shared glossary. We expect the combination to be especially helpful for rare
terms, where the model now sees multiple spellings and an informative definition during
training and at inference time. Other components of the training pipeline are not modified.

3.2 Subtasks C ( Taxonomy Discovery) & D ( Non-Taxonomic Relation Extraction)

We treat both taxonomy discovery and non-taxonomic relation extraction subtasks as
binary classification. For taxonomy discovery, the label is y = 1 if the taxonomic link
isChildOf(c, p) holds for a given pair (¢, p) and y = 0 otherwise; for the non-taxonomic
relation extraction, the label is y = 1 if the non-taxonomic relation r(k, t) holds for a triple
(h,r,t) and y = 0 otherwise.

For taxonomy discovery and non-taxonomic relation extraction, we cannot use the
setting of multi-label classification, as we did in term typing. In term typing, we predict
from a fixed label set T, so a single multi-label head is natural. Here, the set of valid
answers depends on the query. For illustration, consider taxonomy discovery. For a given

2clinicaltables.nlm.nih.gov
3pubchem.ncbi.nim.nih.gov
“uniprot.org

Smrdata.usgs.gov
Sforecast.weather.gov/glossary.php
"ui.adsabs.harvard.edu
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child type, any of the remaining |7| — 1 types can serve as a potential parent. When
we examine a different child, its candidate-parent set likewise includes the first child we
analysed. A global multi-label layer would therefore either need (i) a separate output
vector for every query type, or (ii) an enormous, mostly zero vector that enumerates
every possible pair or triple - both of which are impractical and heavily skewed toward
negatives. By scoring each candidate pair or triple independently, we keep a single,
compact output (two logits), while still allowing the model to handle unseen types at test
time.

Figure 2 presents the complete workflow for these subtasks. Both of them share
the same pipeline except for the output format (pairs vs. triples). The baseline approach
trains a binary DeBERTa-v3-large classifier on positive and negative examples of
linked types and applies threshold tuning on a development set. To further improve
performance, we incorporate two enrichment strategies: (i) similarity-based candidate
filtering, which restricts the search space to the K most semantically similar types using
sentence embeddings and nearest-neighbour retrieval; and (ii) type definition mining,
which injects short textual descriptions from external sources. The next subsections
describe each component in detail.

(" h Candidate Type Definition Model / \
Types Filtering Mining Training Pairs
1. animal 1. Wikipedia
' 1. all-MiniLM-L6&- summa 1. DeBERTa- 1. (human, mammal)
2. mammal 3 ry : .
3. reptile ] v2 embeddings 2. Wiktionary > v3-large g 2. (reptile, animal)
4' h p 2. K-nearest glossary fine-tuning 3. (mammal, animal)
- uman neighbours per 3. Domain APls 2. Threshold
type 4. GPT-40 Tuning
\_ J definitions \ _/
4 . L
h Candidate Type Definition Model 4 N\
Types Filtering Mining Training
Triples
1. deficit o 1. Wikipedia
2. excess | 1 aII-MmlLMI-LS-_} summary _— 1‘;332?2RT3' | 1. (deficit, disjointWith, excess)
3. basal vz embeddings 2. Wiktionary ) g. 2. (basal, equivalentClass, bottom)
4. bottom 2. K-nearest glossary fine-tuning
’ neighbours per 3. Domain APls 2. Threshold
type 4. GPT-4o Tuning
\_ Y, definitions \ /

Figure 2. Workflow for Taxonomy discovery and Non-taxonomic Relation Extraction. Unlike Term typing,
both these subtasks are provided with raw types as input. Both pipelines use similarity-based
candidate filtering to reduce the search space for potential pairs/triples and apply type definition
mining technique to enrich type representations before fine-tuning a DeBERTa-v3-large classifier and
calibrating thresholds. The only one difference between tasks is the output-pairs of isChildOf relation for
taxonomy discovery and triples for non-taxonomic relation extraction.

3.2.1 Baseline Solutions

Input encoding and decision rule. We again fine-tune the DeBERTa-v3-large model.
However, this time, inputs are wrapped in a tagged string as follows:

Task C:  [CHILD] c ([DEF] d.) [PARENT] p ([DEF] dp)

Task D: [HEAD] h ([DEF] dj;) [RELATION] r
[TAIL] ¢ ([DEF] d;),
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where each [DEF] line is optional and provides the definition d of the corresponding
type (see Section 3.1.3). The encoder output vector feeds a two-logit head L = (Lg, L,) €
R2.

Soft-max gives class posteriors o. = exp(L.)/ >_; exp(L;). We obtain a prediction
for a given input string by comparing the posterior of class 1 with a threshold :

y =Hoi(z) = 7} (5)

We calibrate a single threshold 7* per ontology in its development split. This split
is constructed by holding out 10% of the pairs / triples from the training set, which are
reserved only for threshold calibration and are not used in training:

*

T = arg max F1-score (yde\,, ydev), (6)
7€{0.05,0.10,...,0.95}

Here, yq4ev is @ binary vector of model predictions and yqe, is @ binary vector of
ground-truth labels on the development set.

Negative sampling. The training files contain only positive instances, yet a binary
classifier also needs negative samples. Using all unseen combinations as negatives is
infeasible since an exhaustive crawl would require scoring O(|7|?) child—parent pairs for
subtask C and O(|T|*|R|) head—relation—tail triples for subtask D. For example, in the
SWEET ontology, fewer than 0.0002% of all possible pairs actually hold the taxonomic
relation, yielding a large and imbalanced dataset. Instead, for each original training
sample, we generate a small, fixed batch of £ synthetic negatives using the task-specific
rules described below:

» Task C k=9: keep ¢ and replace p with a random non-ancestor p'.
» Task D k=19: keep h and corrupt exactly one slot (h, ' t), or (h,r,t').

In principle, the optimal number of negative samples per positive k£ could vary
depending on the ontology domain and the presence or absence of definition lines in the
prompt. A detailed search for the optimal value per task per ontology was not feasible
within our time budget, so we fixed them once for the entire study: nine negative samples
for subtask C and 19 negative samples for subtask D. These values strike a practical
balance between class balance and training time and are applied unchanged to all three
ontologies and to every ablation setting.

Loss and optimisation. A class-weighted cross-entropy

Loe=—% ) (wryslogayy + wo(l — ys)log opp) (7)
b

where B is the batch size, y, € {0, 1} is the ground-truth label for the b-th instance
(1 for positive, 0 for negative), and 0,1, 0o are the predicted probabilities for the positive
and negative classes, respectively. The class weights are set as w; = k and wy = 1,
where k controls the penalty applied to false negatives. We keep the hyper-parameters
from Subtask B: AdamW optimiser, learning rate 2x107°, batch size 16, max length 512
if definitions are enabled, otherwise 128 and 10 epochs.

Inference. Let Tist be the set of ontology types that occur anywhere in the test split
and let |Tiest| = n.

» Taxonomy Discovery. We enumerate every ordered child—parent pair (¢, p) with ¢, p €
Test and ¢ # p (n(n — 1) pairs in total). Each pair is placed in the template shown
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above and passed through the encoder, resulting in the posterior of the positive class
o1(c,p). The link isChildOf(c, p) is accepted if o1(¢c,p) > 7*. Because decisions are
independent, a child can receive multiple parents, mirroring the polyhierarchy allowed
in the training data.

» Non-Taxonomic Relation Extraction. Let Rist be the set of relations to evaluate. For
every ordered type pair (h,t) with h,t € Tiest, h # t, @and for every r € Riest, We form
a candidate triple (h,r, t) that is also cast into template shown above and processed
through encoder; the search space is n(n — 1)|Ryest|- The relation r(h, t) is predicted
to be true when o4 (h,r,t) > 7.

Using definitions (+Def regime). When we use the type definition enrichment
technique, we first retrieve a one-sentence glossary for every type using the pipeline of
Section 3.1.3 and then append that glossary to the corresponding [CHILD], [PARENT],
[HEAD] or [TAIL] line in the input template. All other components, that is, the DeBERTa
encoder, the negative sampling scheme, the class weighted loss, and the calibrated
decision threshold,remain exactly as in the vanilla configuration. Only the text presented
to the model will be changed.

3.2.2 Similarity-based Candidate Filtering

Random negative sampling produces arbitrary pairs or triples, allowing the model to
easily separate positives. To create harder negatives and reduce the test time search
space, we prune the set of all available types to the K most semantically similar types,
based on the assumption that similar types are more likely to be linked. Every type is
embedded with all-MiniLM-L6-v2 Sentence-BERT model®, yielding a 384-dimensional
vector, and the resulting vectors are indexed in FAISS.® For a given type ¢ we define

Nigt) = {t®, .. 15O, (8)

its K nearest neighbours in this embedding space, computed within the current
split so that training never sees test embeddings and vice versa. We fix K = 100 for
all experiments. This is a pragmatic compromise given our time constraints, although
a search for an optimal K could improve the results. When enabled, the NV (t) types
modify two steps of the baseline solutions:

» Negative sampling: corrupt pairs/triples only with elements from Nx (¢).
* Inference: compare a child (or head/tail) only to its K neighbours, reducing the
search to O(K |T|).

The rest of the baseline pipeline is intact.

4. Data availability Statement

All raw task datasets (training and test splits for OBI, MatOnto, and SWEET) are released
by the organisers of the LLMs40OL Challenge 2025. External resources that we used
for augmentation and definition mining, i.e. Wikipedia and Wiktionary REST endpoints,
USGS/NOAA/ADS glossaries, MeSH, PubChem, and UniProt APls, are open-access
services that can be queried without restriction.

We publish every derivative artefact generated (i.e., augmented training sets for
term typing, mined type definitions, and all configuration / training scripts) in a dedicated

8211-MinilM-L6-v2
SFAISS
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GitHub repository, mentioned in the abstract, at the time of publication, enabling full
reproduction of the reported results.

5. Experiments and Results

All results are evaluated with the official LLMs4OL evaluation script provided by the
organisers. For every subtask, the script returns micro-averaged precision, recall and F1-
score, i.e. the counts of true/false positives and negatives are aggregated globally over
the whole test file before the three metrics are calculated. All results of our experiments
are collected from the challenge leaderboard platform and summarised in Tables 3-5.
No alternative scoring or post-processing is applied on our side.

5.1 Term typing (Subtask B) — RQ1

Table 3. Sub-task B: micro-averaged scores on the official test splits. Highest value per ontology and
metric is bolded. Settings: V - Vanilla baseline (no A, no D), A - using data augmentation, D - using term
definitions, A+D - both techniques.

Ontology Setting F1-score Precision Recall

v 0.491 0363  0.759
oB| A 0.839 0788  0.897
D 0.528 0390  0.816
A+D 0.828 0.828  0.828
Vv 0.097 0065  0.189
A 0.500 0465  0.541
MATONTO | 0.312 0.300  0.324
A+D 0.667 0.614  0.730
Vv 0.543 0463  0.657
A 0.557 0505  0.621
SWEET | 0645  0.640 0650
A+D 0.653 0588  0.735

Across the three ontologies, the weakest scores are for the vanilla setting (V). This
is expected due to the limited data available for training. In OBl and MatOnto, the largest
single gain comes from data augmentation (A), whereas on SWEET, adding mined term
definitions (D) has a greater impact. Combining the two signals (A+D) usually helps
surpass the individual variants on MatOnto and SWEET, and only falls slightly below
using augmented data on OBI.

In summary, each enrichment outperforms the vanilla setting, and in two of
the three ontologies, the joint use of augmentation plus definitions yields the best
overall performance, giving an answer to RQ1 that these enrichment techniques could
substantially boost performance on term typing.

5.2 Taxonomy discovery (Subtask C) — RQ2

Similarity-based filtering is the dominant factor in taxonomy discovery. Replacing random
corruptions with neighbour-based negatives (F) lifts the micro-F1-score from near zero
to practical levels in the three ontologies: +0.33 in OBI, +0.43 in MatOnto and +0.18 in
SWEET. The gain is more obvious if we measure the difference in recall (e.g. 0.71 vs.
0.01 on MatOnto), indicating that pruning the search to semantically plausible parents
helps the model recover true edges that would otherwise be swamped by noise.
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Table 4. Subtask C: micro-averaged scores on the official test splits. R: random negatives; F: similarity
filter; D: type definitions; F+D: both filter and definitions. Best value per ontology/metric in bold.

Ontology Setting F1-score Precision Recall

R 0.006 0.056  0.003
oBI F 0.333 0240  0.544
D 0.006 0.065  0.003

F+D 0.397 0315 0537

R 0.020 0098  0.011

0.447 0.327  0.709

MATONTO | 0.025 0.106  0.014
F+D 0.396 0269  0.745

R 0.002 0.014  0.001

F 0.182 0139  0.263

SWEET | 0.000 0.000  0.000
F+D 0.252 0.289  0.224

Type definitions (D) offer a little gain on their own when the list of candidates is
still dominated by random negatives. However, once filtering is applied, the definitions
increase the results further. The (F+T) setting achieves the best overall F1-score in OBI
(0.40) and SWEET (0.25), mainly through precision gains of 7-15 pp, while in MatOnto it
trades a small drop in precision for still higher recall. Thus, semantic filtering is essential
for taxonomy discovery, and type-definition glossaries act as a fine-grained booster once
the search space has been denoised, jointly answering RQ2.

5.3 Non-taxonomic relation extraction (Subtask D) — RQ2

Table 5. Sub-task D (SWEET). R: random negatives; F: similarity filter; D: type definitions; F+D: both filter
and definitions. Highest value per metric in bold.

Setting F1-score Precision Recall

R 0.058 0.051 0.066
F 0.391 0.260 0.788
D 0.000 0.000 0.000
F+D 0.532 0.426 0.709

For subtask D only the SWEET ontology was evaluated. The pattern observed in
subtask C is also observed in subtask D for SWEET. Filtering the candidate space (F) is
indispensable, lifting micro-F1-score from 0.06 to 0.39 and, notably, pushing the recall
to 0.79. Type definitions (D) alone cannot overcome the noise in a random candidate
list, but when they are added on top of the filter (F+D) they deliver a further jump to the
best overall score (F; = 0.53, precision 0.43). Thus, semantic filtering is the foundation;
definitions provide an extra boost once the search space has been cleaned. This finding
on non-taxonomic relation extraction additionally contributes to RQ2.

6. Conclusion

We showed that three simple, ontology-agnostic data—layer heuristics, i.e., data
augmentation for term typing, automatic definition mining for terms and types, and
semantic-based candidate filtering for taxonomy discovery and non-taxonomic relation
extraction, substantially improve a single DeBERTa-v3 model across all LLMs4OL
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subtasks. For term typing, both data augmentation and term definition mining outperform
the vanilla setting, and their combination gives the best F1 score on two out of three
ontologies.

For taxonomy discovery and non-taxonomic relation extraction, candidate filtering
is essential, lifting F1-score from almost zero to 0.18-0.45; adding type definitions on
these cleaner candidate lists yields further gains, confirming that definitions help once
noise is reduced.

In general, the three data enrichment techniques attack different bottlenecks: rare-
class sparsity, context deficit, and quadric explosion, and thus combine well without
changing model architecture or hyperparameters.

A more fine-grained evaluation requires a systematic ablation study of our data
enrichment toolbox. Future work should therefore (i) examine how individual components:
different synonym sources or definition APls—affect performance; (ii) tune the key
hyperparameters per ontology, in particular the neighbour-list length K for candidate
filtering and the negative-to-positive ratio k; (iii) refine the augmentation and definition
pipelines with deeper domain analysis for each ontology.
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