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Abstract. Taxonomy discovery, the identification of hierarchical relationships within
ontological structures, constitutes a foundational challenge in ontology learning. Our
submission to the LLMs4OL 2025 challenge, employing hybrid architectures to
address this task across both biomedical (Subtask C1: OBI) and general-purpose
(Subtask C5: SchemaOrg) knowledge domains. For C1, we have integrated semantic
clustering of Sentence-BERT embeddings with few-shot prompting using Qwen-3 (14B),
enabling domain-specific hierarchy induction without task-specific fine-tuning. For C5,
we have introduced a cascaded validation framework, harmonizing deep semantic
representations from sentence transformer all-mpnet-base-v2, ensemble classification
via XGBoost, and a hierarchical LLM-based reasoning pipeline utilizing TinyLlama and
GPT-40. To address inherent class imbalances, we have employed SMOTE-based
augmentation and gated inference thresholds. Empirical results demonstrate that our
hybrid methodology achieves competitive performance, confirming that the judicious
integration of classical machine learning with large language models yields efficient and
scalable solutions for ontology structure induction. Code implementations are publicly
available.

Keywords: Ontology Learning, Taxonomy Discovery, Large Language Models, Hybrid
Architectures, Biomedical Ontologies .

1. Introduction

Ontology Learning (OL) constructs the foundational aspect for structuring the raw and
textual data in the field of artificial intelligence. The first edition of the LLMs4OL challenge,
introduced at ISWC 2024 [1], provided a structured and competitive framework for
assessing how effectively large language models can be applied to core ontology
learning tasks. As a logical extension of the groundwork laid in previous years, the
2nd LLMs4OL challenge @ ISWC 2025 [2] was organized with the goal of expanding
our knowledge of the potential of large language models for ontology learning® Our
team CUET Zenith has participated in Task C: Taxonomy Discovery, which focuses on
identifying hierarchical (is-a) relationships between ontological type pairs. The objective
of this task is to identify taxonomic links within given datasets. Among the given datasets

https://sites.google.com/view/lims4ol2025/home


https://doi.org/10.52825/ocp.v6i.2896
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/https://orcid.org/0009-0009-6161-9687
https://orcid.org/https://orcid.org/0009-0005-0656-1153
https://orcid.org/https://orcid.org/0009-0001-7437-1109
https://sites.google.com/view/llms4ol2025/home

llman et al. | Open Conf Proc 6 (2025) "LLMs40L 2025: The 2nd Large Language Models for Ontology Learning Challenge at the
24th ISWC”

we have chosen the SubTask C1: OBl that focuses on biomedical investigation types
using the Ontology for Biomedical Investigations (OBI) and SubTask C5: SchemaOrg
that focuses on general-purpose web knowledge concepts using the widely adopted
SchemaOrg vocabulary.

For Subtask C1, We propose a hybrid approach that integrates semantic similarity-
based clustering using sentence transformer embeddings with few-shot prompting
from large language models (LLMs). Among the various approaches evaluated,
the combination of the all-MiniLM-L6-v2 sentence embedding model [3] and Ag-
glomerativeClustering [4] yielded strong result for identifying taxonomic relationships.
Additionally, the use of Qwen3-14B [5] through the unsloth fine-tuning framework [6]
significantly enhanced performance in zero-shot prediction scenarios.Implementation of
this architecture can be found in our GitHub repository?.

For Subtask C5, we propose a hybrid framework for Schema.org taxonomy discovery
that synergistically integrates semantic embedding techniques with cascaded language
model validation. The methodology employs:

» Semantic Representation: all-mpnet-base-v2 embeddings capturing ontological
semantics [7].

» Feature Synthesis: Engineered vectors combining embedding operations and
lexical patterns [8].

» Ensemble Classification: XGBoost architecture with imbalance compensation [9].

» Cascaded Verification: Two-tier LLM validation combining binary assessment and
probabilistic scoring [10],[11].

This architecture balances precision with computational efficiency through strategic
validation gating. Implementation available in our github repository [12] .

2. Related Work

Ontology Learning (OL) is a foundational challenge in artificial intelligence and
knowledge engineering, aiming to automate the acquisition of structured knowledge
from unstructured data. Early OL approaches relied heavily on expert-driven methods
or statistical techniques like lexico-syntactic pattern mining and clustering [13], [14]. As
demands for scalability and domain adaptation grew, machine learning techniques such
as TF-IDF classifiers and hierarchical clustering were adopted to automate taxonomy
induction and term typing [15].

Recent advances in language modeling have introduced new paradigms for OL
through Large Language Models (LLMs). The LLMs4OL initiative [1] explores this
potential across multiple subtasks such as term typing, taxonomy discovery, and relation
extraction. These tasks have seen growing adoption of hybrid architectures that combine
embedding-based retrieval with transformer-based inference.

Prior studies have demonstrated the effectiveness of LLMs in taxonomy induction,
often leveraging hybrid architectures that balance classical methods and generative
reasoning. The SKH-NLP system at LLMs4OL 2024 [16] explored BERT and LLaMA-3
for binary taxonomic relation classification on the GeoNames ontology, highlighting
the comparative strengths of fine-tuned and zero-shot LLM performance. Similarly,
participants in Subtask B [17], [18] have leveraged combinations of classical classifiers
and generative prompting to approximate is-a hierarchies across domains. These

2https://github.com/Mehreen1103/LLMs40L-2025_Task-C
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approaches have informed our model design by validating the complementary roles of
embeddings, lexical signals, and language model reasoning.

Building on these insights, our submission addresses Subtask C5 (Schema.org) and
Subtask C1 (OBI). For C1, a biomedical ontology, domain-aligned clustering and prompt
engineering were used to adapt sentence embeddings to medical hierarchies. For C5,
which emphasizes general-purpose web concepts, we designed a hybrid system that
blends sentence transformer-based similarity with XGBoost classification, followed by
cascaded LLM-based filtering using TinyLlama and GPT-40. This combination balances
precision and coverage across domain-diverse ontological hierarchies.

3. Dataset
3.1 Dataset SubTask-C1

For subtask C1 the training dataset contains a json file carrying is-a relationships and a
text file stating the unique ontology one per line. Each entry in the training pair includes
an ID, parent, and child field. The test data set only contains the list of the type of
ontology. The table showing the statistics of the dataset is given in the table 1.

The JSON file containing labeled parent child is-a pairs in the following format:

L
{
"ID": "TR_bb9941a6",
"parent": "hemoglobin assay",
"child": "cooximitery arterial blood hemoglobin assay"
1,
]
Table 1. Subtask C1 Dataset Statistics
Dataset | File Name Number of Entries
Training ob},tra%n,palrs .json 8,249 pairs
obi_train types.txt 4,237 types
Test obi_test_types.txt 2,821 types

3.2 Dataset for SubTask-C5

For subtask C5, the training dataset includes a JSON file with labeled is-a relationships
and a text file listing unique ontology types. Each training entry specifies an ID, parent,
and child type. The test dataset provides a list of unseen ontology types for which parent
types must be predicted. The dataset is publicly available [19]. Dataset statistics are
summarized in Table 2.

The training JSON file contains is-a pairs in the following format:

[
{
"ID": "TR_56ac8cd6",
"parent": "Enumeration",
"child": "WarrantyScope"
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]
Table 2. Subtask C5 Dataset Statistics
Dataset | File Name Number of Entries
Training schemaorg,tra}n,palrs .json 723 pairs
schemaorg train types.txt 692 types
Test schemaorg_test_types.txt 359 types

4. Methodology
4.1 Data Augmentation

The training corpus for the BestTaxonomyClassifier comprises labeled (parent, child)
pairs from the Schema.org ontology, each denoting a valid is-a subclass relationship. To
reframe the task as binary classification, an equal number of negative instances were
systematically constructed using domain-aware heuristics.

Two complementary strategies were adopted to synthesize negative examples:

1. Reversed Pairs: Approximately one-third of the negatives were created by inverting
the direction of positive pairs (e.g., Movie — CreativeWork becomes CreativeWork
— Movie), thereby violating the inherent asymmetry of subclass relations.

2. Manipulated Pairs: The remaining two-thirds were generated by replacing the
original parent with a randomly sampled alternative from the type vocabulary. To
preserve semantic invalidity, candidate substitutions that were valid, substring-
contained, or lexically similar were excluded.

Each pair was encoded using contextual sentence embeddings (all-mpnet-base-v2)3,
enriched with lexical overlap and pairwise similarity features. To address minor class
imbalance post-stratified split, the Synthetic Minority Over-sampling Technique (SMOTE)
was employed. A quantitative summary of the augmentation and balancing process is
presented in Table 3.

Table 3. Data Augmentation and Class Balancing Summary

Component Count

Positive Pairs (Original) 723

Negative Pairs (Total) 723
— Reversed 241
— Manipulated 482

Training Set (Before SMOTE) | 1446
Training Set (After SMOTE) 2875
— Positive Samples 1425
— Negative Samples 1450

4.2 Overview of the proposed model
4.2.1 Proposed model for subtask C1

Our proposed hybrid approach combines sentence embedding, clustering, and few-shot
prompting using large language models. This three-stage pipeline integrates both

Shttps://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 1. Overview of the proposed model

semantic grouping and hierarchical reasoning to enable effective extraction of parent-
child is-a relationships.

Since the dataset is large and contains a vast number of ontology types, we first
encode each term into a high-dimensional vector representation using Sentence-BERT.

Step 2: Agglomerative Clustering

In the next stage, we perform agglomerative hierarchical clustering to organize
semantically similar ontology types into clusters. In this process, we define the affinity
metric as cosine similarity, which measures the angular distance between the embedding
vectors of terms. We have used a threshold value that controls the granularity of the
clustering and effectively groups related ontology types based on their semantic proximity
in the embedding space.

Step 3: Few-shot Prompting with Qwen-3

In the final stage of our pipeline, each semantically coherent cluster obtained from the
agglomerative clustering step is passed into a large language model using a few-shot
prompting strategy. We utilize Qwen-3 for this purpose, accessed through the Unsloth*
framework in 4-bit quantized mode for memory-efficient inference using the Qwen3
model. To help the model understand the task of identifying parent-child is-a relationships
from a set of ontology terms, we provide a carefully constructed prompt consisting of five
example pairs. These examples illustrate the pattern of parent and child term formation
commonly found in biomedical ontologies. The prompts are given below:

System Prompt:

You are an experienced biology ontologist.

Given a list of ontology terms, return all is-a (parent-child) relationships.
Your output must be only a list of dictionaries, like:

{"parent”: "hemoglobin assay”, "child”: "cooximetry arterial blood hemoglobin
assay”}

{"parent”: "signal conversion function”, “child”: "signal amplification function”}

{"parent”: “exclusion criterion”, "child”: "chemotherapy treatment exclusion
criterion”}

“https://github.com/unslothai/unsloth
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{"parent”: "automatic tissue processor”, “child”: "Leica Peloris rapid tissue
processor”}

{"parent”: "cytometry assay”, "child”: "cerebrospinal fluid mesothelial cell
count assay”}

Never explain. Never add commentary. Output only the list.
User Prompt (example):

Here is the list of terms: hemoglobin assay, cooximetry arterial blood
hemoglobin assay,

automatic tissue processor, Leica Peloris rapid tissue processor,
cytometry assay, cerebrospinal fluid mesothelial cell count assay.

Only output the JSON list of parent-child dictionaries as shown above.

The model processes each cluster independently. If a cluster contains more than
100 terms, we randomly sample a subset of 100 to maintain prompt length within the
token limit of the model. The output is parsed using regular expressions to extract valid
JSON objects representing is-a pairs. These pairs are finally stored and formatted for
evaluation.

4.2.2 Proposed Hybrid Model for Taxonomy Discovery (Task C5)

Our methodology integrates semantic embedding techniques with cascaded large
language model validation to discover taxonomic relationships in SchemaOrg. The
approach employs a multi-stage pipeline combining feature engineering, ensemble
classification, and hierarchical LLM verification to identify parent-child relationships with
high precision.The pipeline is illustrated in Figure 2 and is structured to balance high
precision with computational efficiency through gated validation.

Feature Engineering -
(Concat, ‘S’
— Diff, —

Hadamard, Cosine,

Semantic
Schema. 4
(E LD ¢ Embedding

Data (all-mpnet-base- Top-k Candidate

v2) Lexical Generation (k=30,
) 5=0.4)
SMOTE + XGBoost
GPT-40 Probabilistic
Probability Scoring (tg=0.6)
Threshold (p)
Medium (0.4-
High (20.75 0.75)

High-Confidence TinyLlama Binary LLM-Validated

Predictions Check Predictions

‘ Final Prediction ‘

Assembly

Figure 2. Architecture of the proposed hybrid taxonomy discovery model for Subtask C5 (Schema.org).
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Step 1: Semantic Embedding and Feature Synthesis

We begin by encoding all ontology terms (training and test) into 768-dimensional em-
beddings using the all-mpnet-base-v2 Sentence Transformer [20]. These embeddings
capture deep semantic relationships between ontology concepts. For each candidate
parent—child pair, we construct a 3,076-dimensional feature vector by concatenating:

+ Parent and child embeddings

» Element-wise difference and Hadamard product

+ Cosine similarity between embeddings

* Lexical indicators: shared token count, prefix match, suffix match

This representation fuses both semantic similarity and lexical structure, enabling
the downstream classifier to capture diverse relationship cues.

Step 2: Candidate Generation and SMOTE-Balanced Ensemble Classification

Candidate pairs are generated by selecting, for each test type, the top-k most
semantically similar training types (k = 30) based on cosine similarity, retaining only
those above a similarity threshold 7, = 0.4. To mitigate class imbalance, we have
applied SMOTE [21] oversampling on the training set before fitting an XGBoost [22]
classifier (100 estimators, max depth=6, log-loss optimization). The classifier outputs
probability scores indicating confidence in parent-child relationships, with key operational
thresholds:

« Similarity threshold (7, = 0.4) for candidate generation.
* ML confidence thresholds (7., = 0.4, 7,4, = 0.75) for validation gating.

Step 3: Cascaded LLM-Based Verification

Medium-confidence predictions, defined as 7, < p < Thign (With 755, = 0.4 and 73,4, =
0.75), are routed through a two-tier validation cascade explicitly designed to balance
reasoning accuracy with computational efficiency.

1. Lightweight Binary Reasoning via TinyLlama-1.1B: A compact instruction-
tuned LLM is employed as the first filter. The model receives a constrained few-
shot prompt containing five manually curated Schema.org parent—child exemplars
drawn from diverse domains (e.g., creative works, products, places, and actions).
It must respond strictly with true or false, enabling rapid rejection of semantically
implausible relations while preserving those with structural plausibility. This stage
is computationally inexpensive and minimizes downstream processing load.

Determine whether the child is a subclass of the parent in Schema.org.
Answer only "true" or "false".

Parent: CreativeWork -+ Child: Movie -+ Answer: true
Parent: Event -+ Child: Volcano -+ Answer: false
Parent: Place -+ Child: City -+ Answer: true

Parent: Product -+ Child: Smartphone -+ Answer: true
Parent: Action -+ Child: DanceAction -+ Answer: true

Parent: {parent}
Child: {child}
Answer:
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2. Probabilistic Scoring via GPT-40: Pairs that pass the TinyLlama check undergo
fine-grained probabilistic assessment using GPT-40. The model is prompted with a
Schema.org-specific likelihood query constrained to return a single numeric value
in [0, 1]

On a scale from O to 1, how likely is ’{child}’ a subtype of ’{parent}’
in Schema.org? Just float.

This transforms LLM reasoning into a quantitative metric that can be thresholded.
Only pairs with scores > 7, = 0.6 are accepted, ensuring a high precision boundary
for ambiguous cases.

Efficiency Controls: Because LLM inference dominates runtime cost, validation calls
are capped at 1,000 pairs per run. Candidates are prioritised by highest classifier
uncertainty, ensuring that computational resources are spent on the most borderline
cases. This gating strategy reduces LLM invocation volume by approximately 78%
compared to naive validation of all candidates.

Rationale: The cascade leverages complementary strengths: TinyLlama serves as a
low-latency semantic plausibility filter, while GPT-40 delivers high-accuracy, probabilistic
reasoning for the remaining challenging cases. This design allows the system to scale
to large Schema.org type sets without sacrificing the precision required for reliable
taxonomy discovery.

System Prompt:

You are an experienced web ontologist specializing in Schema.org
vocabulary.

Given a list of Schema.org types, return all is-a (parent-child) relationships.
Your output must be only a list of dictionaries, like:

{"parent”: "MovieSeries”, "child”: "TVSeason”}

{"parent”: "MedicalDevice”, "child”: "Dentist”}

{"parent”: "DrugPrescriptionStatus”, "child”: "DrugPregnancyCategory”}

Never explain. Never add commentary. Output only the list.
User Prompt (example):
Here is the list of terms: MovieSeries, TVSeason, MedicalDevice, Dentist,
DrugPrescriptionStatus, DrugPregnancyCategory.
Only output the JSON list of parent-child dictionaries as shown above.

Final Prediction Assembly

The model combines:

* High-confidence classifier predictions (p > 0.75).
+ Cross-verified LLM validations (0.4 < p < 0.75).
» Candidate generation restricted to top-% (k = 30) training types per test type.

This hybrid approach ensures comprehensive coverage of potential taxonomic
relationships while maintaining precision through multi-stage verification.This gated
verification ensures that computationally expensive LLM reasoning is applied only where
it is most impactful, while high-confidence cases are resolved purely via the classifier.
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Our method advances beyond embedding-only or pure-LLM baselines through a joint
semantic—lexical feature space, adaptive thresholding, and a two-stage LLM cascade
(TinyLlama for binary plausibility, GPT-40 for probabilistic verification) under a strict call
budget. This design yielded our best C5 score (F1 = 0.0866), a 12.3% gain over pure
embedding-based models.

5. Results and Analysis

5.1 Results and Analysis for Subtask C1

We present the results in a tabulated form that we have submitted for the Subtask C.1
— OBl of the LLMs40L 2025 challenge. Multiple approaches were explored, including
cosine similarity-based filtering, prompt-based large language models (LLMs), and hybrid
architectures combining the two. Table 4 shows the performance of these methods in
terms of precision, recall, and F1-score as reported by the official Codalab leaderboard.

Table 4. Results for Subtask C.1 — OBI. The F1-score is the main metric used for ranking.

ID Method Fi-score Precision Recall
1 ST + Clustering + Qwen-3 0.1142 0.2463  0.0744
2  Sentence Transformer + Cosine Similarity 0.0771 0.0951 0.0648
3 BioBERT + Cosine Similarity+ + Llama (Zeroshot)  0.0712 0.0830 0.0615
4 BERT + LLaMA Zero-shot 0.0039 0.0052 0.0030

The results demonstrate that employing large language models in isolation, whether
combined solely with cosine similarity or clustering yields suboptimal performance. For
example, the zero-shot LLaMA based approaches, even when augmented with BioBERT
or BERT filtering, exhibit comparatively lower F1-scores, which can be attributed to
the absence of structured contextual information. Likewise, unsupervised similarity
based techniques such as cosine similarity or clustering effectively capture surface-level
semantic relationships and reduce the calculation complexity.

In contrast, the integration of these methodologies within a hybrid framework,
which leverages both the semantic grouping capabilities of sentence embeddings
and clustering alongside the contextual reasoning power of few-shot prompting with
large language models, significantly enhances performance. This combined approach
facilitates better generalization across diverse ontology terms, as reflected by the
superior F1-score attained by the proposed method.

5.2 Results for Subtask C5

We present a novel hybrid architecture for Subtask C5 — Taxonomy Discovery in
the LLMs4OL 2025 challenge. Our approach synergistically integrates semantic
embeddings, machine learning classifiers, and large language models (LLMs) to address
the hierarchical relationship prediction task in the SchemaOrg ontology. The core
innovation lies in a multi-stage filtering pipeline: (1) Semantic candidate generation
using Sentence Transformers and cosine similarity thresholds, (2) ML-based probability
estimation with XGBoost/MLP classifiers leveraging lexical and embedding features, and
(3) LLM validation through constrained prompting with Mistral-7B and GPT-40. Table 5
summarizes our top-performing configurations evaluated on the official Codalab platform.
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Table 5. Results for Subtask C.5 — Schema.org. The F1-score is the main metric used for ranking.

ID | Method Fi-score | Precision | Recall
1 XGBoost + Sentence Transformer + | 0.0866 0.0637 0.1350
TinyLlama-1.1B + GPT-40
2 | MLP + Sentence Transformer + Mistral-7B + | 0.0848 - —
GPT-40
3 | XGBoost + Sentence Transformer + Mistral-7B 0.0818 - -
(AWQ) + GPT-4o

4 | Hybrid RAG (DPR + Mistral-7B) + GPT-40 0.0695 - -
5 | Two-stage XGBoost/LogReg + Mistral-7B + | 0.0762 - -
GPT-40

The highest performance (ID 1, F1=0.0866) was achieved through an optimized
ensemble combining XGBoost with lexical features (shared tokens, prefix/suffix
checks) and a cascaded LLM verification system. Key innovations include:

+ SMOTE-augmented training data for class imbalance mitigation

* Dynamic thresholding (7sim = 0.4, L = 0.4, 7gpt = 0.6)

» Context-aware few-shot prompting with Schema.org-specific examples
« Computationally efficient filtering limiting LLM calls to <1000 pairs

Notably, smaller LLMs (TinyLlama-1.1B in ID 1) outperformed larger counterparts
when coupled with XGBoost, suggesting optimal task-model alignment outweighs pure
scale. The poorest performance (ID 5) occurred when excessive reliance on LLM-based
scoring diluted structural signals. These results confirm that hybrid architectures where
embeddings provide semantic grounding and LLMs handle ontological reasoning strike
the optimal balance for taxonomy discovery, improving over pure embedding-based
methods by 12.3% in F1-score.

6. Conclusion and Future Work

Our hybrid framework demonstrates that cascaded validation architectures effectively
balance precision and computational efficiency in ontology learning. Our validation
cascade paradigm provides a template for resource-constrained LLM deployment in
knowledge-intensive tasks beyond ontology learning. Key innovations include:

» Domain-optimized prompting strategies for OBI (C1) and SchemaOrg (C5).

» Threshold-gated LLM validation reducing inference costs by ~78% versus full
pairwise evaluation.

» Feature engineering combining syntactic patterns with deep semantic representa-
tions.

Future work will explore:

1. Dynamic threshold optimization via reinforcement learning.
2. Cross-ontology transfer learning.

3. Graph neural networks for structural consistency.

4. Few-shot adaptation to emerging ontologies.

Data availability statement

All datasets are publicly available via the LLMs4OL 2025 repository. Implementations of
C1 and C5 are archived respectively at [23] [12].
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