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Abstract. This paper presents an approach to building ontologies using Large Language
Models (LLMs), addressing the need in many domains for quality knowledge data
extraction from vast stores of text data. In particular, we focus on extracting terms and
types from text and discovering relationships between types. This work was completed
as part of the 2025 LLMs40OL Challenge, where quality training and testing data, as
well as several defined tasks were provided. Many teams competed to produce the
best output data across many domains. Our methodology involved prompt engineering,
classification, clustering, and vector databases. For the first task, discovering terms and
types, we used two methods, (1) directly tailoring prompts to find the terms and types
separately and (2) an approach that discovered terms and types simultaneously and
then classified them afterwards. For discovering relationships, we used clustering and
vector databases to attempt to reduce the number of potential edges; then, we queried
the LLM for probabilities for each of the potential edges. While our findings indicate
promising results, further work is necessary to address challenges related to processing
large datasets, particularly in optimizing efficiency and accuracy.

Keywords: Term Extraction, Type Extraction, Relationship Discovery,
LLMs40L Challenge, Ontology Construction

1. Introduction

As the amount of scientific knowledge continues to grow, it is becoming increasingly
important to organize information into formats that allow scientists to understand
connections between concepts. Large language models (LLMs) such as ChatGPT
[1], [2], LIama [3], and Gemma [4], have recently gained substantial attention for their
abilities to analyze large quantities of information and help scientists efficiently find
relevant information. In fact, more recent developments have allowed LLMs to perform
logical reasoning [5], which opens up new opportunities for using LLMs as research
assistants and co-pilots [6].

Unfortunately, LLMs are also known for creating false information - a phenomenon
known as “hallucination.” These hallucinations make it difficult to use LLMs, alone, for
making complex and expensive decisions, such as designing new experiments. At
present, these hallucinations force researchers to use highly-manual processes where
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pieces of critical information must be individually verified. To enable more automatic
LLM workflows, hallucinations must be mitigated automatically. Several approaches to
hallucination mitigation have been proposed, including LLM finetuning [7] and retrieval
augmented generation (RAG) [8], [9] workflows.

Additionally, symbolic knowledge representations, such as knowledge graphs and
ontologies, can be used to not only mitigate hallucinations but also help LLMs efficiently
retrieve information that is relevant to a given query [10], [11]. While there are many
different types of symbolic knowledge representations, we believe that ontologies are
particularly well suited for scientific knowledge synthesis, given that they can serve as
templates and enable logical reasoning. By serving as templates, ontologies can help us
automatically detect missing information. And, by enabling logical reasoning, ontologies
can enable automatic fact checking.

Despite the promise of ontologies, the process of creating ontologies has relied on
manual or semi-automated [12] workflows that will not be appropriate for internet-scale
data. Consequently, while ontologies are widely used within specific communities, their
adoption by the wider scientific community has remained relatively small. To enable
efficient generation of internet-scale ontologies, or collections of ontologies, we need
to develop fully-automated workflows. Because of their broad knowledge and their
natural language processing (NLP) abilities, LLMs are prime candidates for ontology
learning. Unfortunately, naive prompting of LLMS for ontology learning (OL) results
in mediocre performance [13]. This work uses the LLM4OL challenge datasets [14]
to explore methods for enabling LLM-powered OL. Specifically, we explore how LLMs
can be used to extract terms and types (LLM4OL Task A) and define non-taxonomic
relationships (LLM4OL Task D).

2. Related Work

There is a large body of literature exploring how to combine LLMs with symbolic
knowledge representations. Much of the literature focuses on combining LLMs with
knowledge graphs, either by using LLMs to build knowledge graphs, using knowledge
graphs to inform LLMs, or some combination thereof. See [15], [16], [17], [18], [19] for
reviews on this topic.

Many recent works have also explored how LLMs can be combined with ontologies
[20], [21]. [22] demonstrated that LLMS could be used to verify ontologies. [23]
considered how competency questions could be used to engineer ontologies. [24]
demonstrated that LLMs and ontological reasoning could be combined to elucidate
deep relationships in data. [25] demonstrated LLMs to align existing ontologies. [26]
used LLMs to augment ontologies. [27] demonstreated that LLMs could be used to
automatically build ontologies, but noted challenges in creating ontological properties.
[28] employed ontology reuse and prompt engineering for ontology learning. [13]
provided strategies for evaluating LLM-generated ontologies.

The most pertinent body of related work comes from previous instantiations of
the LLM4OL challenge. [29] notes that zero-shot learning does not work for ontology
learning. [30] provides results from the most recent competition. Compared to previous
competitions, this year's competition contained different datasets, including adding Task
A (extracting terms and types). Because Task A was added this year, there are no results
from previous year to compare to.

Task D from this year’s competition is equivalent to Task C from last year’s
competition. Two teams worked on Task C last year, silp_nlp and the Phoenixes. The first
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team [31], silp_nlp, prompted the LLM with all potential types and relations and asked
it to return all relationships. The second team [32], the Phoenixes, found which edges
were likely to exist by first finding the cosine distance between nodes and then setting
a threshold to determine which nodes were close enough to have an edge between
them. Then, they queried an LLM to determine whether a relationship actually existed
between those nodes.

We expand on these concepts by first using an LLM to cluster the terms to find
types likely to have connections and then querying the LLM for a probability for each of
these potential connections.

3. Methods
3.1 Task A
3.1.1 Task Overview

Task A - Text20nto of the LLMs40OL 2025 Challenge aims to bridge the gap between
unstructured text and structured ontological knowledge through the extraction of
domain-relevant terminologies and their associated types [33]. This task is divided
into two subtasks: SubTask A1 (Term Extraction), which involves identifying key
domain-specific terms that serve as potential ontology instances, and SubTask A2 (Type
Extraction), which involves extracting the abstract categories or ontology classes to
which the term belongs. The overarching goal is to facilitate the automated construction
of ontologies from raw text, thereby supporting several downstream tasks such as
semantic search, reasoning, and knowledge integration.

3.1.2 Datasets

The organizers of the challenge provided three independent datasets that were specific
to a range of domains. These datasets were Ecology, Scholarly, and Engineering as
shown in Table 1. For Task A, we concentrated on the Scholarly and Engineering
datasets due to their balanced distributions of documents and associated terms/types,
which provided a suitable foundation for evaluation.

3.1.3 Approach Overview

LLM-Centric Classification
'

Basic
Extraction
Prompt

Pattern
Recognition
Prompt

Terms/
Types

Figure 1. Overview of our methodologies for Task A.
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We investigated several procedures for extracting terms and types (as shown in
Figure 1), two of which demonstrated the highest accuracy when evaluated against
the training datasets. The first (LLM-Centric) procedure employed a LLM, leveraging a
predefined pattern recognition prompt. In this approach, terms and types were separately
extracted through distinct LLM prompts. The second (Classification) procedure utilized
a unified, comprehensive prompt to extract both terms and types simultaneously in a
single LLM invocation. Following the extraction phase in the Classification procedure, a
fine-tuned BERT classification model was employed to categorize each phrase as either
a term or a type. For both procedures, we used the Mistral-Small-3.1 LLM due to its
high performance and relatively small number of model parameters [34].

Table 1. Characteristics of the provided datasets for Task A

Train Terms Train Types Train Docs Test Docs

Ecology 44 5734 2000 482
Scholarly 246 260 40 10
Engineering 1143 772 83 21

3.1.4 LLM-Centric Procedure

The LLM-Centric procedure was designed to be generalizable across various domains,
represented by the various Task A datasets, while maintaining acceptable performance.
The operation leverages prompt tuning to encouraging the LLM to recognize patterns
within provided documents.

Terms

To extract the terms, the prompt was constructed using hard prompting, a method
involving the manual creation of tailored prompts [35], [36]. Although this approach can
be labor-intensive during prompt tuning, it proved sufficient for guiding the model toward
recognizing a generalizable syntactic pattern. In particular, the LLM was directed to
identify instances of syndetic coordination which are sentences that present a list of
terms followed by a coordinating conjunction [37]. The model was instructed to extract
all terms appearing within such constructions with the following prompt:
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TASK: Extract all terms that are part of syndetic coordination from the given
text.

DEFINITION: Syndetic coordination is a coordinate construction where
two or more syntactically equivalent elements are linked using coordinating
conjunctions ("and,” “or,” "but,” “nor,” "yet,” "so,” or "for”).

EXAMPLE:

**Input:** "The students studied biology, chemistry, physics, and mathematics
during their final semester.”

“*Qutput:**

biology

chemistry

physics

mathematics

INSTRUCTIONS:
1. Identify all syndetic coordination patterns in the text
2. Extract only the coordinated terms (not the conjunctions)

TEXT:
{text}

FORMAT: Only output one term per line without any other formatting.
Ensure all terms are in the singular form.

This prompt design was informed through manual inspection of the target documents.
Notably, the Scholarly subset contained a high frequency of syndetic coordination
structures, making this approach especially effective for extracting accurate terms from
such sources.

Types

The types were extracted using a simple prompt that instructed the model to identify and
extract types based on its own understanding. Alternative prompting strategies, such as
few-shot examples [38] or the inclusion of explicit definitions, yielded worse results on
the provided training data. The model was instructed using the following prompt:

Extract all the types (classes) from the following text:
{text}

FORMAT: Only output one term per line without any other formatting.
Ensure all terms are in the singular form.

3.1.5 Classification Procedure

This Classification procedure employed LLM prompting followed by a fine-tuned LLM
classifier trained on the provided data. Unlike the LLM-Centric procedure, the LLM
was prompted to extract both terms and types simultaneously using a unified prompt.
This prompt was created by merging the individual prompts previously used in the
LLM-Centric approach as follows:
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TASK: Extract all terms (entities) AND all types (classes) from the given text.

TEXT:
{text}

FORMAT: Output only one term per line with no formatting, bullets, quotes, or
additional text.

Each domain had a subset of rules applied to this base prompt in order for the
model to extract patterns specific to that dataset. The following Scholarly subset of rules
were applied to the base prompt:

- **Case System Recognition**: For case names (dative, genitive, accusative,
etc.), include "case” in the term (e.g., "dative case” not just "dative”)

- **Voice Completion**: For voice terms (active, passive, middle), include "voice”
in the term (e.g., "active voice” not just "active”)

- **Number Specification**: For number/quantity terms that are incomplete,
include the full specification (e.g., "other number” not just "other”)

The following Engineering subset of rules were applied to the base prompt:

- Extract ALL complete noun phrases and technical terms

- Extract ALL compound terms with hyphens, spaces, or parentheses
- Extract ALL units of measurement (with or without prefixes)

- Extract ALL scientific abbreviations and acronyms

- Extract ALL numerical expressions with units

- Extract ALL temperature scales and specialized measurements

- Extract ALL proper nouns and technical names

- Extract both singular and plural forms when they appear

- Do NOT extract partial words, sentence fragments, or incomplete phrases
- Do NOT extract generic words like "various”, "different”, "base”, etc.
- Focus on domain-specific technical terminology

Following the extraction phase, a fine-tuned classification model, bert-base-uncased,
was employed to label each element as either a term or a type. The fine-tuning dataset
was divided into training (80%) and test (20%) sets and stratified, maintaining the
original class proportions. AdamW was utilized as the optimizer with a learning rate of
2 x 107°. Early stopping with patience of 3 epochs was used to prevent overfitting.

This approach resulted in notable performance improvements in domains character-
ized by significant overlap between terms and types. The key advantage of this method
lies in offloading the disambiguation task from the pretrained, but not fine-tuned, LLM.
Instead of requiring the LLM to extract the same element twice, once as a term and once
as a type, the classification model was tuned to classify each entity. We decided to test
2 different strategies for fine-tuning the classification model. The first strategy included
two categories: terms and types. The second strategy included an additional class
labeled neither, which allowed the classification model to exclude some of the incorrectly
predicted terms or types, thereby increasing the precision. The data for training this class
was curated by collecting the incorrectly predicted terms and types from the LLM-Centric
procedure.

Depending on the domain, an additional class was added to the tuning of the
model titled both. This special class was only necessary for domains with overlapping
ground-truth terms and types. This strategy proved particularly effective for the
Scholarly dataset, where such overlaps frequently occurred. In contrast, the Engineering
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domain exhibited only a single overlapping instance, despite having considerably more
documents. Consequently, for this domain, the classification model was fine-tuned
without the both category.

3.2 Task D
3.2.1 Task Overview

Task D - Non-Taxonomic Relation Extraction of the LLMs4OL 2025 Challenge aims
to build non-taxonomic relations between types. This task is divided into three subtasks,
which are also different datasets: SubTask D1 - SWEET (an environmental and
geoscience dataset), SubTask D2 - FoodOn (a food ontology dataset), and SubTask
D3 - GO (a genomic dataset). The goal for each of these datasets is, given lists of the
types and potential relationships, can we match the correct types and relationships.
For example, “erode, equivalentClass, erosion” is found using the types “erode” and
“erosion” and the relationship “equivalentClass”. Many of the edges are directional. For
example, when connecting types with “term replaced by”, “A term replaced by B” gives
a different meaning that “B term replaced by A”. Some edges are symmetric, such as
“equivalentClass”. Most types in the datasets are only connected with one or two other
terms, creating fairly sparse datasets. Table 2 shows the 3 Task D datasets and how
they increase in terms of potential types and number of edges.

Table 2. The number of types and relationships given for each Task D dataset as well as the number of
edges that exist (train answers) for each dataset.

Train Train Train Test Test

Types Relationships Answers Types Relationships
SWEET 662 3 360 297 2
FoodOn 2838 6 1450 1233 4
GO 9622 6 11606 5189 6

3.2.2 Approach Overview

Cluster Probability
Prompt prompt
Types
| Zﬁd Relationships
Types
o Cluster added

Figure 2. Overview of our methodology for Task D

Thresholding
based on
probability

Our approach involved first, reducing the number of potential edges, and second,
determining a probability for whether the edge existed based on LLM output, as seen in
Fig: 2. We reduce the number of potential edges with two of methods, either by using
an LLM to cluster the types (Clustering procedure) or by using a vector database to find
the nearest n types (Vector Database procedure). Once similar types were identified,
we assumed that all edges existed between all similar nodes. We could then use an
LLM to give a probability that a specific edge existed for each of these pairs.

3.2.3 Clustering Procedure

To cluster types, we used 1lama-3.2-90B-Vision-Instruct and the following prompt:
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Cluster all of these types. Give what cluster every type would be in. Format it
as “term, cluster” in csv format. Types: {List of all types}

This gave each node a grouping. Once we had this grouping, we assumed that every
edge existed between all pairs of nodes in the grouping. This format worked best for
the SWEET dataset, as we could run the next step (finding probabilities of each edge)
within a reasonable time. For the FoodOn dataset, we batched the clustering by giving
500 types at a time, and then extracted the names of the clusters and passed those
in for the next cluster. In the data below, we prompted the LLM to create 10 clusters
during the initial step (500 nodes), and included the line, “you may add a few clusters if
necessary” in the prompt for the rest of the batches.

Note that the clustering method reduces the number of potential edges by 1/c,
where c is the number of clusters. The results in this paper are included from prompting
for 10 clusters and including the additions in the next prompts. We found that, without
this, we got very low scores and the cluster names were highly variable. Even with this
prompt, the LLM sometimes produced clusters with the descriptor “None” for some of
the more difficult types.

3.2.4 Vector Database Procedure

Another attempt to reduce the number of potential edges involved vector databases.
We used bert-base-uncased to create the vector database and then queried the vector
database to find the n nearest neighbors, where n = 35 for the SWEET dataset and
n = 500 for the FoodOn dataset.

3.2.5 Probabilities for Edges

Prompting without Examples We asked the LLM to output probabilities that edges
would exist by using the following prompt:

Please provide a list in CSV format how likely each of these connections are.
The potential connections are: connections. Give ONLY the csv format back as
Node1, EdgeType, Node2, probability. Use no extra words and make sure it is
in valid csv form.

Prompting with Examples We tested if we could improve the edge probability estimates
by using few-shot learning by adding several examples to the prompt from the Prompting
without Examples section. Generally, we used one example from each potential
relationship, although we did not include any relationship that had only one edge in the
example data. Additionally, we included one example that was not an edge and gave it a
low probability.
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4. Results
4.1 Task A

Table 3. LLM-Centric training dataset results for Task A using Mistral-Small-3. 1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.7940 | 0.6752 0.9634 Scholarly 0.6790 | 0.5397 0.9154
Engineering | 0.4947 | 0.4504 0.5486 Engineering | 0.3783 | 0.2958 0.5246

Terms Types

Table 4. LLM-Centric testing dataset results for Task A using Mistral-Small-3. 1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.3652 | 0.2530 0.6562 Scholarly 0.5524 | 0.3867 0.9667
Engineering | 0.4360 | 0.5656 0.3547 Engineering | 0.0952 | 0.0526 0.5000

Terms Types

Table 5. LLM-Centric testing dataset results for Task A using Claude Sonnet 4

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.2486 | 0.1503 0.7188 Scholarly 0.3951 | 0.3137 0.5333
Engineering | 0.6072 | 0.8464 0.4735 Engineering | 0.6750 | 0.6136 0.75

Terms Types

Table 6. Classification training dataset results without the neither class for Task A using Mistral-Small-3.1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.7417 | 0.6078 0.9512 Scholarly 0.8256 | 0.7492 0.9192
Engineering | 0.5925| 0.6815 0.5241 Engineering | 0.4642 | 0.4332 0.5000
Terms Types

Table 7. Classification training dataset results with the neither class for Task A using Mistral-Small-3.1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.8553 | 0.8831 0.8293 Scholarly 0.8623 | 0.8963 0.8308
Engineering | 0.6195| 0.7824 0.5127 Engineering | 0.5158 | 0.6626 0.4223

Terms Types

Table 8. Classification test dataset results without the neither class for Task A using Mistral-Small-3.1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.2517 | 0.1622 0.5625 Scholarly 0.4242 | 0.3043 0.7000
Engineering | 0.5011 | 0.6501 0.4077 Engineering | 0.1461 | 0.0816 0.6944

Terms Types
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Table 9. Classification test dataset results with neither class for Task A using Mistral-Small-3.1

F1 Precision| Recall F1 Precision| Recall
Score Score
Scholarly 0.2857 | 0.3333 0.2500 Scholarly 0.5098 | 0.6190 0.4333
Engineering | 0.5588 | 0.8118 0.4260 Engineering | 0.2051 | 0.1481 0.3333
Terms Types

We noticed that the size of the model can have a large impact on the results (compare
Table 4 to Table 5). With Claude Sonnet 4, each metric in the Engineering results was
significantly greater than those generated with the smaller-model (Mistral-Small-3.1).
On the flip side, Claude Sonnet 4 produced lower scores on the Scholarly test dataset.

For the Scholarly dataset, the LLM-Centric procedure outperformed the Classifica-
tion procedure on the test data, as measured using F1 and recall scores. However, the
Classification procedure performed better in terms of precision on the test data. Full
results are shown in Tables 4 and 9. For the Engineering dataset, the Classification
procedure outperformed the LLM-Centric procedure on the test data, as measured using
F1 and recall scores. Again, results are shown in Tables 4 and 9.

We observed that, by including the neither class in the Classification procedure,
classification results were improved, as measured using F1 scores (compare Table 8 to
Table 9 and Table 6 to Table 7). By including the neither class, precision was generally
improved, and recall was generally decreased, as would be expected.

There was a notable decrease in performance between OL performance on the
training and testing datasets (compare Table 3 to Table 4 and Table 7 to Table 9).

4.2 Task D
4.3 Clustering Procedure

The output from just the clustering step can be seen in Table: 10. The purpose of this
step is to keep recall high by finding similar nodes that will undergo a future LLM-based
filtering step. Without undergoing the LLMObased filtering step, we expect precision to
be low. Note that including every possible edge will give a recall score of 1, so the goal of
this step is to keep the recall score high. We can see that the clustering procedure works
well for the SWEET dataset (recall remains high), but clustering results in a low recall
for the GO dataset. Recall for the FoodOn dataset is between recall for the SWEET and
GO datasets.

Table 10. Performance for each dataset from the clustering step for Task D. After clustering, we expect
relatively high recall but low precision.

Dataset | F1 Score | Precision | Recall
SWEET | 0.0024 0.0048 0.7306
FoodOn | 0.00 01 0.0002 0.3169

GO 0.0001 0.0002 0.0975

4.4 Vector Database Procedure

When using the vector database procedure, we performed some initial studies to
determine the number of nearest neighbors that we should use. As shown in Table 11,
for the SWEET dataset, we elected to use 35 neighbors, and for the FoodOn dataset,
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we elected to use 500 neighbors. As in Table 10, this step resulted in a high recall, but
a relatively low precision, because additional filtering needed to be performed by the
LLM. Compared to clustering, vector database methods resulted in lower recall and
comparable precision, and the methods were not scalable to larger datasets (i.e., GO).

Table 11. Performance for each dataset after just the vector database step.

Dataset | F1 Score | Precision | Recall | Number of Neighbors
SWEET | 0.0040 0.0080 | 0.4770 35
FoodOn | 0.0001 0 0.3149 500

4.5 Probability Procedure

LLMs were asked to produce probabilities that there were edges between pairs of
nodes, downselected using clustering or vector database methods. We then thresholded
these probabilities to determine which edges should be assigned to nodes. As shown in
Figure 3, recall, precision, and F1 were all affected by the choice of threshold. Generally,
thresholds less than 0.8 resulted in near-zero precision and F1 scores. By setting the
threshold at 1.0, we maximized precision and F1, although recall suffered.

F1 Score, Precision, and Recall vs. Threshold on SWEET dataset

0.7

0.6

0.5

()
> 0.4+

©
> 0.3

—=— F1 Score
—— Precision
—e— Recall
0.2

0.1

0.0

T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0
Threshold

Figure 3. Effects of different thresholds for LLM-produced probabilities of edges for the SWEET dataset
(Task D).

Figure 4, shows distribution of the edge probabilities estimated by the LLMs. When
the prompt included examples, the LLMs produced more edge probabilities greater than
or equal to 80%, possibly because the provided examples included probabilities that
were closer to 1. Because more edges were assigned higher probabilities of existence,
the precision and F1 scores were negatively impacted by including examples, as shown
in Tables 12 and 13.

Table 12. This table shows the difference in the output with the basic and example on the training dataset.

Dataset | F1 Score | Precision | Recall Prompt Type
SWEET | 0.0528 0.0277 0.5662 | Without Examples
SWEET | 0.0481 0.0251 0.5941 With Examples

5. Discussion
5.1 Task A

The results of these experiments suggest several trends that may impact the per-
formance of LLMs for OL. Firstly, early experiments (data not shown) indicated that
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Figure 4. Histograms of the LLM-generated probabilities that edges existed

Table 13. This table shows the difference in the output with the basic and example on the test dataset.

Dataset | F1 Score | Precision | Recall Prompt Type
SWEET | 0.1448 0.1028 0.245 | Without Examples
SWEET | 0.0604 0.0336 | 0.3046 | With Examples

elaborate prompting strategies negatively impacted performance, possibly by providing
conflicting cues to the LLMs. We found that simpler prompts that defined pattern-like
rules performed better. Secondly, the choice between using the LLM-Centric and
Classification procedures was problem-specific. The Engineering dataset benefited
from the Classification procedure, whereas the Scholarly dataset generally benefited
from the LLM-centric procedure. This difference may be because terms and types are
more difficult to differentiate in the engineering domain, and maximizing performance
requires fine-tuned, domain-specific models. Thirdly, for the Classification Procedure,
the inclusion of the neither class generally improved F1 scores, usually by increasing
precision at the cost of worse recall. Finally, we observed substantial performance
disparities across specific datasets when employing a smaller model in contrast to a
frontier-scale model. In the Engineering dataset, the frontier model vastly outperformed
the smaller model, but the inverse was true in the case of the Scholarly dataset. While
we do not understand the origin of these differences, it is possible that they are caused
by differences in the training data and procedures for these models.

Across the Scholarly and Engineering datasets, we noticed a trend where our
performance on the training datasets noticably outperformed performance on the testing
dataset. Because the testing dataset is private, it is diffcult to draw strong conclusions
based on these observations. It is possible that, even though we used simple prompts,
these prompts may have “overfit” to the training data. The probability of this is increased
somewhat because of the domain-specific prompts that we used. However, we also
noticed some inconsistencies in the ways in which entities were represented in the
training data that may also be present in the testing data. For instance, the Engineering
dataset contained some exceptionally long entities that would be difficult to extract
automatically, such as:

oneDistinctSymbolChangeOrSignallingEventMadeToTheTransmission-
MediumPerSecondInADigitallyModulatedSignalOrALineCode

and
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luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540el2 hertz and that has a
radiant intensity in that direction of 1/683 watt per steradian

Additionally, we observed several inconsistencies between the training documents
and the provided entities in the Scholarly dataset. For example, terms like cjk_compound,
in house register, and non finite appear in the provided terms, whereas their
counterparts in the documents are expressed as cjk compound, in-house register,
and non-finite. Similar discrepancies were found in the ground-truth types; for instance,
clausal arg and post positive arg appear in the training dataset target, but the
documents contain the forms clausal argument and post positive argument. These
minor mismatches, while understandable from a human perspective, can impact model
alignment and evaluation.

5.2 Task D

For Task D, we took the general approach of assuming that all possible edges existed for
all nodes, and then we focused on ways to reduce the number of potential edges. While
we can assume all edges exist and get an ideal recall score, we would like to discover
good ways to reduce the number of edges that we assume. To this end, we investigated
several methods for reducing the number of edges. Firstly, for the naive approach, we
could simply provide every potential edge to an LLM and request a probability that the
edge exists. This, however, gives result in about n xn x e requests that need to be fulfilled
by the LLM, where n is the number of nodes and e is the number of edges. While this
may be feasible for a smaller dataset, like SWEET, which has 662 nodes and 3 edge
types, it quickly becomes unmanageable with FoodOn, which has 2,838 nodes and 6
edge types and even more unmanageable with the GO dataset, containing 9,622 nodes
and 6 edge types.

We used a couple of different methods for trying to reduce the number of
relationships that we needed the LLM to consider: clustering, which reduces the number
of requests by a factor of the number of clusters, and vector database nearest neighbors,
which had the ability to bring the number of requests to O(ne). While we had luck
controlling the precision loss with clustering, the vector database method seemed to
need a large number of neighboring nodes before it was able to attain the same level
of precision. Many of the types used in the FoodOn and GO datasets are scientific
names of specific things. These types may be too specialized for an off-the-shelf vector
database to specify well enough. Creating a vector database with data pertaining to
these datasets may help improve the results of this method. We may be able to improve
clustering methods further by optimizing the number of clusters that LLMs should try to
use.

We found that, by asking the LLM to output probabilities that a given edge exists, we
could significantly improve the recall and F1 scores. This is not surprising, as we would
expect that, by removing the least likely edges, we would do better on the recall and F1
scores. An interesting note, and something we could work on optimizing in the future,
is that the distribution of the probabilities returned by the LLM seems directly related
to the examples given. When more examples are given in the range over 80%, the
LLM returned more predicted probabilities over 80%. Knowing this, we could determine
statistics from the training set, i.e. we know that the graph is generally sparse in these
sets and that there is often only one edge attached to a given node, and use this to
inform the examples or prompt given. In this case, we would focus on giving lots of
negative examples, as we’d expect most of our generated edges not to exist.
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There are many other ways to reduce the number of potential edges to reduce the
load on predicting the edge probabilities. Methods like the vector databases could be
fine-tuned to work better with certain technical data. Using keywords in the dataset,
like “obsolete” in FoodOn or GO can help inform what edges are likely to be seen with
those nodes. We looked mostly at reducing the number of node pairs, but reducing the
expected edges between certain pairs could also reduce the number of edges we need
to specify.

6. Conclusions

The LLMs4OL challenge attempts to break ontology learning into a set of manageable
tasks that can be accomplished by LLMs, complete with data to test methods with. This
paper considers the first and last task of the LLMs4OL challenge, Task A: Term and
Type Extraction and Task D: Non-taxonomic Relationship Extraction.

For Task A, our findings indicate that, for extracting terms and types: 1) prompts
should be kept simple; 2) for certain datasets, a multi-step approach may improve
results by extracting terms and types simultaneously and then classifying them; 3) for
classification-based term and type extraction, results are improved by adding a neither
class that helps remove incorrectly extracted terms and types; and 4) the LLM choice
should be influenced by the documents’ domain.

For Task D, we used methods to reduce the number of likely edges by clustering
or by using vector databases. We then asked an LLM to determine the probability that
each edge existed, using only clustered nodes or nodes that were nearest neighbors
within the vector database. When providing LLMs with examples, the LLMs produced
estimates of edge probabilities that were similar in distribution to provided examples,
leading to lower performance. Additionally, the vector database methods seemed to
need a large number of nearest neighbors to get good scores. Therefore, we focused
on the filtering via clustering and LLM prompting without examples. We were able to run
this on the SWEET dataset and the FoodOn dataset, although the SWEET dataset did
much better than the FoodOn in training and testing.
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