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Abstract. This report presents an approach that combines large language models’
(LLMs) embedding with k-nearest neighbors (k-NN) for the term-typing task on the OBI
(Ontology for Biomedical Investigations) dataset. We investigate the effectiveness of
transformer models namely PubMedBERT, BioBERT, DeBERTa-v3, and RoBERTa with
k-NN classification using the embedding of each respective model. Our experimental
results demonstrate that fine-tuned LLMs not only have the capability to do term typing
on their own but also can learn effective embeddings that are exploitable by k-NN for
solving the task, with RoBERTa achieving the highest F1 score of 0.827 and k-NN using
embedding from the model with score of 0.862. The study reveals that embeddings
from transformer models, when used as semantic representations for similarity-based
method, improve classification accuracy in this specific case.
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1. Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in natural
language understanding and classification tasks. In the biomedical domain, transformer-
based models such as PubMedBERT [1] and BioBERT [2] have shown effectiveness
in processing specialized biomedical texts. However, beyond their direct classification
capabilities, these models also generate contextual embeddings that encode semantic
information from the text. This raises an important question: can these embeddings
be effectively utilized by traditional machine learning approaches to achieve high
classification performance?

The integration of neural representations with classical machine learning algorithms
presents a work around for improving classification performance. Among these
algorithms, k-nearest neighbors (k-NN) stands out for its simplicity and effectiveness,
particularly when paired with high-quality feature representations [3]. In this work,
we leverage k-NN to classify terms by measuring similarity in the embedding space
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generated by transformer-based language models. The semantically rich embeddings
produced by these models enable k-NN to identify nearest neighbors that share
meaningful contextual similarity, thereby increasing the likelihood of assigning the correct
term to a new instance based on its proximity to known labeled examples.

This report investigates the capability of transformer-based language models for
term-typing task stated in [4]: their direct classification performance through fine-tuning
and their ability to generate effective embeddings for k-NN classification. We evaluate
four transformer models including PubMedBERT, BioBERT, DeBERTa-v3 [5], and
RoBERTa [6] on the OBI dataset, comparing their performance as standalone classifiers
against their effectiveness as embedding generators for k-NN classification.

2. Related Works

From the LLMs4OL 2024 challenge [7], many teams participated in the Term Typing
task using a variety of techniques, including fine-tuning, prompting, retrieval-augmented
generation (RAG), prompt-tuning, machine learning, and rule-based strategies. These
methods leveraged large language models (LLMs) in different ways to handle the
challenges last year. Notably, silp nlp [8] used several machine learning techniques like
Random Forest, Logistic Regression, and XGBoost for Term Typing task and got high
score on several subtasks.

In many classification tasks, traditional methods like k-Nearest Neighbors (k-NN)
have shown competitive performance, particularly when combined with strong feature
representations. By utilizing embeddings from pretrained language models, k-NN can
potentially serve as a robust non-parametric classifier for text that requires no additional
training while still capturing semantic similarities in the embedding space [9].

3. Methodology

Figure 1. Overview of our methodology. (Left) The training pipeline includes data augmentation,
fine-tuning, and k-NN with embeddings. (Right) Term-typing process using the trained model.
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The methodology consists of three main components (shown in Figure 1): data
augmentation, pre-trained language models and fine-tuning, and using k-NN with
embedding generated from LoRA-adapted model.

Data augmentation: The used OBI dataset is given by the 2nd LLMs4OL Challenge
[10]. The original dataset is then used for making augmented dataset. Because of the
simplicity of terms in the OBI dataset, we chose to perform augmentation by randomly
inserting, deleting, swapping, or substituting a character in each term. In our experiment,
we randomly applied augmentation three times for each term in the original dataset. We
assume that these augmentations could help the model learn the representation of each
term more effectively.

Pre-trained language models and fine-tuning: We use several pre-trained
encoder-only transformer models which build context-aware representations of the
input, making them ideal for our text classification task. The models include:

• PubMedBERT (microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract):
Pretrained from scratch on PubMed abstracts using an uncased vocabulary,
optimized for biomedical NLP tasks.

• BioBERT (dmis-lab/biobert-base-cased-v1.1): Initialized from BERT-base and
further pre-trained on PubMed and PMC corpora, retains cased vocabulary for
biomedical entity preservation.

• DeBERTa-v3-base (microsoft/deberta-v3-base): Enhances DeBERTa with dis-
entangled attention and ELECTRA-style pretraining; provides improved contextual
representation across multiple tasks.

• RoBERTa-base (roberta-base): Robustly optimized variant of BERT using
dynamic masking, larger batch sizes, and more training data, serves as a strong
general-purpose encoder baseline.

For each model, we fine-tune all the models using Low-Rank Adaptation (LoRA)
technique [11] with the augmented dataset. We also fine-tune PubMedBERT with the
original dataset to see the effect of the augmentation.

Using k-NN with embedding generated from LoRA-adapted model: We extract
embedding from the last hidden layer of each LoRA adapted model to use with k-NN
model. We only use original dataset embedding to ensure the quality of the vectors
being used for k-NN training. The k-NN uses cosine similarity as the distance metric,
with k=1 due to the small dataset with lots of similarity between terms. With good quality
embedding, k-NN is assumed to predict the closest type to the embedding of the input
term.

4. Experiments and Results

We evaluate the performance of transformer-based language models on the OBI
term-typing task using two approaches: direct fine-tuning with LoRA adaptation and
k-NN classification using embeddings from LoRA-adapted models. We only do single
label classification to make it simple for the model without considering the confidence
score threshold. Table 1 presents the F1 scores for both approaches across different
transformer models.

Impact of Data Augmentation: The comparison between PubMedBERT perfor-
mance on original and augmented datasets demonstrates the effectiveness of our
character-level augmentation strategy. PubMedBERT shows consistent improvement
with data augmentation, achieving F1 scores of 0.816 (vs. 0.770 on original) for direct
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Table 1. F1 scores of each model using as a classification model (LLM) and using as encoder for k-NN
model (k-NN with embedding)

Model LLM k-NN with embedding
PubMedBERT (OBI original) 0.770 0.747
PubMedBERT (OBI augmented) 0.816 0.804
biobert-base-cased-v1.1 0.793 0.816
deberta-v3-base 0.022 0.850
roberta-base 0.827 0.862

fine-tuning and 0.804 (vs. 0.747 on original) for k-NN classification. This indicates
that the simple character-level modifications (insertion, deletion, swap, substitution)
effectively help the model learn more robust representations of biomedical terms.

Direct Fine-tuning Performance: Among the transformer models evaluated,
RoBERTa-base achieved the highest F1 score of 0.827 when used as a direct classifier
through LoRA fine-tuning. BioBERT and PubMedBERT (augmented) also showed strong
performance with F1 scores of 0.793 and 0.816, respectively. Notably, DeBERTa-v3-base
performed extremely poorly in direct fine-tuning (F1 = 0.022), suggesting that the LoRA
adaptation may not be suitable for this particular model architecture on the OBI dataset,
possibly due to overfitting or incompatibility with the fine-tuning approach.

k-NN with Embedding Performance: The k-NN approach using embeddings
from LoRA-adapted models revealed interesting patterns. RoBERTa-base achieved
the highest performance with an F1 score of 0.862, which notably exceeds its direct
fine-tuning performance (0.827). This suggests that RoBERTa’s learned representations
are highly effective for similarity-based classification and that the k-NN approach with
k=1 and cosine similarity is well-suited for capturing term relationships in the embedding
space.

The most dramatic improvement was observed with DeBERTa-v3-base, which
achieved an F1 score of 0.850 with k-NN despite its poor direct fine-tuning performance.
This indicates that while DeBERTa-v3 may struggle with the LoRA fine-tuning process,
it generates high-quality embeddings that encode meaningful semantic information for
biomedical terms. BioBERT also showed improvement with k-NN (0.816 vs. 0.793),
while PubMedBERT models showed slight decreases when using k-NN compared to
direct fine-tuning.

Embedding Quality Analysis: The superior performance of k-NN with certain mod-
els (RoBERTa, DeBERTa-v3, BioBERT) suggests that these transformer architectures
learn embedding representations that effectively capture semantic similarities between
biomedical terms. The use of k=1 in our k-NN approach appears justified given the small
dataset size and high similarity between terms in the OBI dataset. The cosine similarity
metric effectively captures the semantic relationships encoded in the high-dimensional
embedding space.

These results demonstrate that transformer embeddings can serve as powerful
feature representations for traditional machine learning approaches, sometimes outper-
forming the models’ own fine-tuned classification capabilities in the case of OBI dataset
provided.

MatOnto and SWEET: We also do experiments on other datasets provided by the
2nd LLMs4OL challenge, MatOnto and SWEET. We train RoBERTa, which gives us the
best result on the OBI dataset, with both the original and augmented version of both
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Table 2. F1 scores of RoBERTa using as a classification model (LLM) and using as encoder for k-NN
model (k-NN with embedding) on MatOnto and SWEET dataset

Dataset RoBERTa k-NN with embedding
MatOnto original 0.108 0.027
MatOnto augmented 0.189 0.027
SWEET original 0.519 0.062
SWEET augmented 0.504 0.060

the datasets. The experiment setting stays the same as the previous one of OBI, using
RoBERTa as the classifier and the embedding with k-NN (k=1).

From the results in Table 2, we can conclude that our augmentation methods do
not suit the MatOnto and SWEET datasets as effectively as they did for OBI. In fact,
for MatOnto, the RoBERTa model performed very poorly overall, with an F1 score of
only 0.108 and 0.189 on the original dataset and augmented dataset accordingly with
no improvement when using augmented data or k-NN classification. The embeddings
extracted for k-NN classification yielded even worse performance (F1 = 0.027).

For the SWEET dataset, direct fine-tuning of RoBERTa resulted in moderate
performance (F1 = 0.519 on the original and 0.504 on the augmented version), while
k-NN classification severely underperformed. This gap between direct classification and
embedding-based classification suggests that although the model can be adapted to
the task to some extent through LoRA fine-tuning, the embeddings extracted may not
effectively encode semantic similarity among SWEET terms. The poor performance of
k-NN could stem from two main factors: (1) the model may fail to produce meaningful
and discriminative embeddings for this domain, and (2) the use of a low k-value (k=1)
may not be robust enough given the diversity or imbalance in the label distribution.

Overall, these findings suggest that the effectiveness of transformer-based em-
beddings for k-NN classification is highly dataset-dependent. While the OBI dataset
benefited greatly from both augmentation and embedding-based k-NN, the same
strategies fail to generalize to MatOnto and SWEET, underscoring the need for tailored
adaptation and deeper understanding of dataset-specific characteristics.

5. Conclusion and Limitations

This paper presents a study on combining large language models (LLMs) with k-NN for
term-typing in the OBI dataset. Our experiments demonstrate that embeddings derived
from fine-tuned transformer models can be highly effective for k-nearest neighbors
(k-NN) classification, sometimes even outperforming the models’ own direct classification
capabilities.

Key findings include: (1) Domain-specific models such as PubMedBERT and
BioBERT serve as strong baselines for biomedical text classification tasks; (2) Simple
character-level data augmentation improves model robustness and classification
performance in OBI dataset, and (3) Combining LLM embeddings with k-NN leads
to notable gains in classification accuracy, particularly in models like DeBERTa-v3, which
struggled in direct fine-tuning with OBI dataset.

However, there are important limitations to this study. Firstly, all evaluations were
conducted under the constraints of the LLMs4OL 2025 challenge, which included limited
evaluation quota. This restricted the ability to perform broader, more comprehensive
testing of multiple fine-tuning strategies and validation runs. Secondly, we only consider
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single label classification, meaning that our method is not suitable for the scenario where
there exist more than one types for a specific term. Finally, our method performs well
with only a specific dataset (OBI) and badly on the others.

Future work should expand this approach to other datasets and tasks in ontology
learning and consider scaling k-NN for larger datasets and test the effect of k-value
systematically [12]. Exploring alternative similarity metrics, integrating ensemble
strategies, and improving interpretability of classification results. Other augmentation
methods should also be considered to scale-up the dataset in a more meaningful way as
the current simple method does not apply well with MatOnto and SWEET dataset. The
future work should also try implementing this method with newer models like Qwen3
or Nomic-AI-based embedding models to observe whether newer embedding-based
models have the same behavior as those used in this paper or not.

Despite these limitations, this study provides evidence that LLM embeddings can
serve as strong semantic representations for hybrid classification approaches and may
complement or even outperform direct fine-tuning methods in certain cases.
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