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Abstract. This paper presents the participation of the silp_nlp team in the LLMs40L 2025
Challenge, where we addressed four core tasks in ontology learning: Text20nto (Task
A), Term Typing (Task B), Taxonomy Discovery (Task C), and Non-Taxonomic Relation
Extraction (Task D). Building on our experience from the first edition, we proposed
a clustering-enhanced methodology grounded in large language models (LLMs),
integrating domain-adapted transformer models such as pranav-s/MaterialsBERT,
dmis-lab/biobert-v1.1, and proprietary LLMs from Grok. Our framework combined lexical
and semantic clustering with adaptive prompting to tackle entity and type extraction,
semantic classification, hierarchical structure discovery, and complex relation modeling.
Experimental results across 18 subtasks highlight the strength of our approach,
particularly in blind and zero-shot scenarios. Notably, our model achieved multiple
first-rank scores in taxonomy discovery and non-taxonomic relation extraction subtasks,
validating the efficacy of clustering when coupled with semantically specialized LLMs.
This work demonstrates that clustering-driven, LLM-based approaches can advance
robust and scalable ontology learning across diverse domains.

Keywords: Ontology Learning, Large Language Models, Prompt Engineering,
Clustering, Knowledge Representation

1. Introduction

The first iteration of the Large Language Models for Ontology Learning (LLMs4OL)
Challenge marked a significant step toward leveraging large language models (LLMs) for
automated ontology learning (OL). It demonstrated the potential of LLMs in extracting,
classifying, and structuring domain-specific knowledge. The challenge included three
core tasks: Term Typing, Taxonomy Discovery, and Non-Taxonomic Relation Extraction,
and was evaluated in both few-shot and zero-shot settings. Participants explored a wide
range of strategies, including prompt engineering, fine-tuning, and hybrid models that
integrated LLMs with rule-based and retrieval-augmented techniques. Code of this work
is available here' . Results highlighted that while LLMs perform well on hierarchical
tasks like Term Typing and Taxonomy Discovery, they struggle with semantically
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complex relation extraction, where hybrid or knowledge-enriched methods yield better
performance.

Building upon our previous participation, we took part in the second iteration of the
LLMs4OL Challenge [1], which introduced a more comprehensive benchmark composed
of four tasks: (A) Text20nto, (B) Term Typing, (C) Taxonomy Discovery, and (D) Non-
Taxonomic Relation Extraction. These tasks together aimed to facilitate the transition
from unstructured text to structured ontologies, encompassing entity and class extraction,
semantic typing, hierarchical classification, and semantic relation modeling.

In this work, we propose a clustering-based methodology that leverages the
representational strengths of state-of-the-art LLMs to address the complexity of these
ontology learning tasks. Specifically, we employed domain-specialized transformer
models such as pranav-s/MaterialsBERT [2], dmis-1lab/biobert-vi.1 [3], and LLMs
from grok.co and grok. com [4]. These models were selected for their domain alignment
with the sub-tasks of the challenge, allowing us to form semantically coherent clusters
of terms and types. Our approach aimed to bridge lexical variation and domain-specific
semantics by combining deep contextual embeddings with unsupervised clustering and
adaptive prompting strategies.

The results across multiple subtasks confirm that clustering-driven representations,
powered by specialized LLMs, can effectively enhance performance in both taxonomic
and non-taxonomic relation inference. Furthermore, our comparative evaluation across
biomedical, material science, and environmental datasets illustrates the adaptability of
the proposed framework for diverse ontology learning domains.

Details of the primary tasks: Text20nto, Term Typing, Taxonomy Discovery, and
Non-Taxonomic Relation Extraction are described below.

1.1 Task A: Text20nto

Task A (Text20nto) involves the extraction of foundational ontological elements from raw
unstructured text. It is divided into two subtasks: Term Extraction (A1), which identifies
domain-specific vocabulary essential for populating ontologies, and Type Extraction
(A2), which categorizes these terms into abstract classes, thus structuring knowledge
representation for subsequent reasoning and semantic integration.

1.2 Task B: Term Typing

Task B focuses on assigning generalized semantic categories to previously extracted
lexical terms. This task uses ontologies such as OBl (Biomedical Investigations),
MatOnto (Materials Science), and SWEET (Earth and Environmental Science) to map
terms accurately into their semantic classes, thereby structuring knowledge effectively
and enabling enhanced reuse across diverse applications.

1.3 Task C: Taxonomy Discovery

In Task C, the goal is to discover hierarchical (is-a) relationships between pairs of types,
essential for building structured taxonomic ontologies. This task spans multiple domains,
leveraging specific ontologies like OBI (biomedical investigations), MatOnto (materials
science), SWEET (environmental science), DOID (medical diseases), SchemaOrg (web
knowledge), PROCO (chemical processes), FoodOn (food science), and PO (plant
biology) to support robust hierarchical inference and knowledge management.
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1.4 Task D: Non-Taxonomic Relation Extraction

Task D addresses the extraction of semantic relations beyond taxonomic hierarchies.
It aims to identify meaningful associations like functional, compositional, and causal
relationships, significantly enriching ontology utility. Subtasks involve identifying relations
within specific ontologies such as SWEET (environmental and geoscience concepts),
FoodOn (food ingredients and preparation methods), and GO (genomic relationships),
addressing the previously identified challenge of LLMs in capturing deeper semantic
nuances.

2. Literature Survey

[5] present domain-specific continual learning and prompt-tuning strategies for large
language models (Llama-3-8B, GPT-3.5) in ontology learning tasks, demonstrating
that knowledge-enriched training improves open-source model performance, though
commercial models still outperform on benchmarks for term typing and taxonomy
discovery.

[6] participated in the LLMs40L 2024 Challenge, proposing prompt-based and
classical machine learning techniques for ontology learning tasks, including term
classification, taxonomy induction, and relation extraction. Leveraging LLMs such
as GPT-40 and Llama-3, their methods achieved top-2 ranks in multiple subtasks,
highlighting the promise of generative models for automated ontology construction.

[7] propose “semantic towers,” an extrinsic, hierarchical knowledge representation for
ontology population and alignment. Through comprehensive experiments on WordNet
and GeoNames, results demonstrate that, while intrinsic knowledge from LLMs achieves
higher baseline accuracy, semantic towers improve semantic alignment and classification
robustness, especially in low-resource and ambiguous scenarios.

[8] proposed a fine-tuned GPT-3.5 approach for term typing in ontology learning,
evaluated in the LLMs40OL 2024 challenge across diverse datasets: WordNet, GeoN-
ames, and UMLS. Their methodology involved dataset-specific prompt engineering and
few-shot fine-tuning, yielding top leaderboard ranks in most cases. Results show LLMs
can robustly identify and categorize ontology terms across domains, though challenges
remain for highly ambiguous datasets such as GeoNames.

[9] introduce a soft prompt-tuning LLM framework for term typing in ontology
learning, outperforming baselines on standard datasets but facing challenges in domains
with complex class structures.

[10] address taxonomy discovery in ontologies by modeling parent-child extraction
as a classification task. They compare fine-tuned BERT-Large and LLaMA 3 70B models,
demonstrating that prompt quality and fine-tuning substantially impact performance.
LLaMA slightly outperforms BERT, but both models achieve competitive results on the
GeoNames dataset.

[11] present a hybrid method combining rule-based approaches with BERT models
for ontology term typing and taxonomy extraction, demonstrating that the integration
outperforms standalone large language models for LLMs4OL benchmark tasks.

[12] propose a RAG-based pipeline for automated ontology learning using LLMs,
demonstrating promising results in term typing and relationship extraction, but highlight-
ing limitations in specialized domains and the importance of model fine-tuning.
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3. Methodology
3.1 Methodology for Task A: Text-to-Ontology (Text20nto)

Our approach targets three specialized domains—ecology, engineering, and schol-
arly—and leverages the inferential capabilities of the large language model (LLM)
gemini-2.5-flash. The overall pipeline is organized into three primary phases:

1. Corpus Preparation and Representation
2. Hierarchical Relation Extraction
3. LLM Inference and Knowledge Consolidation

3.1.1 Corpus Preparation and Representation

Domain-specific corpora were provided in JSON Lines (. jsonl) format, where each
record contains a unique document identifier, title, and textual body. These corpora were
uniformly processed across methods.

For Method B, we constructed a knowledge-enriched training set by explicitly
associating each training document with validated term-type (ontology) mappings. This
yielded a structured, searchable exemplar database that supports semantic retrieval in
subsequent steps.

3.1.2 Hierarchical Relation Extraction Strategies

We developed two complementary strategies to extract term-type (hyponym-hypernym)
relationships from text using the LLM, distinguished primarily by their approach to
contextual guidance:

Method A: Heuristic-Guided Direct Extraction

This method applies a static, domain-agnostic prompt to extract term-type pairs directly
from documents filtered via a keyword heuristic. Documents containing lexemes such
as type(s), subtype(s), or their capitalized forms—common in definitional or taxonomic
contexts—were selected for analysis.

For each candidate document, the prompt included:

« Clear instructions to identify and extract terms alongside their corresponding types.

» A one-shot example demonstrating the expected input-output JSON format.

* A strict constraint preventing the generation of any terms or types not present in
the source text to minimize hallucination.

» An explicit domain description (ecology, engineering, or scholarly) included
in every prompt to contextualize the model’s inference process.

Method B: Retrieval-Augmented Extraction (RAE)

Adopting the Retrieval-Augmented Generation (RAG) paradigm, this method dynamically
enriches prompts with highly relevant, domain-specific exemplars retrieved from the
annotated training corpus.

The retrieval process involves:
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1. Text Vectorization: Concatenating the title and body of each document, the entire
corpus was vectorized using the Term Frequency-Inverse Document Frequency
(TF-IDF) algorithm.

2. Similarity Computation: For each test document, cosine similarity was computed
against all training document vectors.

3. Best-Match Retrieval: The highest scoring training document was selected as the
exemplar for prompt augmentation.

The final prompt provided to the LLM consisted of:

» The full text and verified term-type pairs of the retrieved training exemplar.

» The full text of the target test document.

* Instructions to perform term-type extraction following the exemplar’s format.

+ An explicit domain description clarifying the domain of the terms (ecology,
engineering, or scholarly) to enhance contextual understanding.

3.1.3 LLM Inference and Knowledge Consolidation

Both methods submitted their respective prompts to the gemini-2.5-flash model,
configured to respond using the application/json MIME type. This structured output
format ensures consistency and facilitates reliable parsing for evaluation.

The extracted term-type pairs were consolidated across documents and methods,
enabling comprehensive evaluation of coverage, accuracy, and cross-domain general-
ization.

3.2 Methodology for Task B: Term Typing

The objective of this task was to assign semantic categories (e.g., property, material,
unit) to a given list of technical terms from the material science domain. We designed
a multi-stage hybrid approach combining deterministic lexical clustering with Large
Language Model (LLM) based semantic disambiguation. The workflow consisted of
three phases:

1. Data Preprocessing and Normalization
2. Lexical Clustering and Candidate Type Propagation
3. LLM-based Semantic Disambiguation and Final Classification

3.2.1 Lexical Clustering and Candidate Type Propagation

Terms were modeled as nodes in an undirected graph, where edges represented shared
word tokens between terms. Connected components identified via Depth-First Search
defined lexical clusters, computed separately for training and test sets.

For each test term, the best matching training cluster was selected based on maximal
lexical overlap. The union of semantic types within this cluster formed a candidate type
pool for that term. For test clusters, candidate pools of member terms were merged to
form a final candidate type list. Terms lacking lexical matches defaulted to the full set of
training types to maximize recall.
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3.2.2 LLM-based Semantic Disambiguation and Final Classification

We employed the gemini-2.5-pro LLM to perform fine-grained semantic classification,
selecting appropriate types from candidate pools.

The prompt engineered for the LLM included:

» Assignment of an expert persona knowledgeable in material science properties,
materials, and units.

* Explicit scoping of domain knowledge relevant to the task.

» Constrained classification instructions requiring selection solely from the candidate
type pool.

* Specification of structured JSON output mapping terms to their assigned types.

» A dynamic domain description embedded in each prompt, providing contex-
tual information about the relevant domain to guide and focus the model’s
reasoning process.

» Few-shot examples illustrating the expected input-output format.

This multi-stage approach leverages lexical signals for recall and LLM semantic
reasoning for precision, yielding robust term typing aligned with domain expertise. The
model’s structured JSON outputs were parsed to produce the final results.

3.3 Methodology for Task C: Taxonomy Discovery

The goal of this task was to automatically construct a taxonomic hierarchy, defined by
parent-child (superclass-subclass) relationships, from a flat list of Schema.org types.
We designed a hybrid multi-stage framework combining unsupervised clustering and
Large Language Model (LLM)-based relation extraction.

3.3.1 Phase 1: Coarse-Grained Term Clustering

We explored two clustering strategies:

+ Lexical-Based Clustering: Using a training set of known parent-child pairs, we
constructed a lexical scaffold via a Union-Find graph algorithm connecting parents
to children. Test terms were assigned to clusters by lexical overlap with these
scaffolds or seeded new clusters when no overlap existed.

+ Semantic-Based Clustering (Preferred): Terms were embedded into a high-
dimensional vector space using domain-specific transformer models (e.g., SCIBERT,
BioBERT). The K-Means algorithm, with cluster count chosen by the Elbow Method
[13] on Within-Cluster Sum of Squares (WCSS), partitioned terms into semantically
coherent clusters.

3.3.2 Phase 2: Fine-Grained Relation Extraction via LLM

Each cluster was processed independently to improve precision. A carefully engineered
prompt to gemini-2.5-flash instructed the model to:

» Recognize that terms belong to the Schema.org vocabulary and understand its
hierarchical semantics.

+ Extract explicit parent-child (superclass-subclass) relationships within the cluster.

* Follow structured JSON output formatting, listing pairs as objects with parent and
child keys.
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» Use provided illustrative examples to guide accurate relationship extraction.

3.3.3 Phase 3: Consolidation

The extracted parent-child pairs from all clusters were aggregated to form a complete
taxonomic hierarchy. This final structure represents the inferred superclass-subclass
organization of the original term list.

Note: The semantic clustering strategy is preferred due to its ability to capture conceptual
similarity beyond surface lexical overlap, leading to more coherent clusters and improved
hierarchical inference.

3.3.4 Methodology for ask D: Non-Taxonomic Relation Extraction

The task of non-taxonomic relationship extraction aims to identify and formalize complex
connections (e.g., causal, part-whole, functional) between entities in a given domain.
We developed two distinct, multi-stage methodologies to address this challenge,
particularly in scenarios where the domain may not be explicitly defined beforehand. The
primary approach, Method A, is a fully LLM-centric framework that performs sequential
knowledge discovery, from domain inference to relation extraction. The secondary
approach, Method B, is a hybrid framework that combines semantic embeddings and
algorithmic clustering with subsequent LLM-based reasoning.

3.3.5 Method A: LLM-Centric Knowledge Discovery and Relation Extraction

This primary methodology leverages a series of targeted LLM prompts to progressively
build context and extract relationships, simulating a human expert’s reasoning process
when confronted with a new domain. The process is divided into three sequential phases.

3.3.6 Phase 1: Automated Domain Inference

The process begins with the challenge of an uncontextualized set of entities. Given a
list of terms and a list of potential relationship types, the first objective is to identify the
underlying knowledge domain.

1. Input: A list of terms and a list of candidate relationship names.

2. Process: We prompt a large language model (gemini-2.5-flash) to act as a
knowledge representation expert. The model is instructed to analyze the collective
semantics of the terms and relations to deduce their common theme or scientific
field.

3. Output: The model generates a structured JSON object containing a con-
cise ‘domain_name* (e.g., "Food Science and Production”) and a detailed ‘do-
main_description‘. This description outlines the general area of study, the nature of
the concepts, and the typical function of the relationships. This inferred context is
critical, as it serves as the foundational knowledge base for all subsequent steps.

3.3.7 Phase 2: LLM-Inferred Semantic Clustering

With the domain now explicitly defined, the next phase aims to group the terms into
semantically coherent clusters. This step reduces the problem space from an all-pairs
comparison to a more focused, intra-cluster analysis.
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1. Input: The list of terms, the list of candidate relationships, and the domain context
(name and description) generated in Phase 1.

2. Process: A new prompt is sent to the LLM. This prompt provides the full domain
context and instructs the model to act as an ontology reasoner. The LLM is tasked
with building an implicit knowledge graph where terms are nodes. It evaluates every
pair of terms, and if its internal knowledge of the identified domain suggests a valid
connection exists via one of the specified relationship types, an undirected edge is
formed. The model then identifies the connected components of this graph.

3. Output: The model returns a list of lists, where each inner list represents a cluster
of semantically related terms. Terms with no inferred connections form their own
singleton clusters.

3.3.8 Phase 3: Intra-Cluster Relation Triplet Generation

This final phase performs the high-precision task of explicitly defining the relationships
within the semantically-related groups identified in the previous step.

1. Input: Each individual term cluster and the list of candidate relationships, again
contextualized by the domain description.

2. Process: To ensure the highest degree of reasoning, we employ a more powerful
model (gemini-2.5-pro) for this task. For each cluster, a new prompt instructs the
model to examine all possible pairs of terms *within that cluster*. Using its domain-
specific knowledge, it generates all valid relationship triplets (‘head’, ‘relation’, ‘tail‘)
that can be formed using the provided list of relationships.

3. Output: The model returns a list of relationship triplets for each cluster. These are
then aggregated into a single, comprehensive list of all non-taxonomic relationships
discovered in the corpus.

3.4 Method B: Hybrid Semantic Clustering and Relation Extraction

This secondary methodology provides an alternative path for the initial clustering phase,
replacing LLM-inferred grouping with a combination of pre-trained embedding models
and unsupervised machine learning algorithms.

3.4.1 Phase 1: Semantic Vectorization

This phase converts the list of terms into a numerical representation that captures their
semantic meaning.

1. Input: A list of terms.

2. Process: We utilize a domain-specific, pre-trained transformer model (e.g.,
BioBERT for biological terms, RecipeBERT for food-related terms) to generate a
high-dimensional vector embedding for each term. This process maps terms with
similar meanings to points that are close to each other in vector space.

3.4.2 Phase 2: Unsupervised Algorithmic Clustering

With the terms represented as vectors, we apply a standard clustering algorithm to
group them based on semantic proximity.

1. Input: The term embeddings generated in the previous step.
2. Process: We employ the K-Means clustering algorithm. To determine the optimal
number of clusters (k), we use the Elbow Method, which analyzes the Within-
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Cluster Sum of Squares (WCSS) across a range of k£ values to find the point of
diminishing returns.

3. Output: The algorithm partitions the terms into & distinct clusters based on the
similarity of their semantic embeddings.

3.4.3 Phase 3: LLM-based Intra-Cluster Relation Identification

This final step is analogous to Phase 3 of Method A. Having obtained clusters through
algorithmic means, we now use an LLM for the final, high-precision extraction of
relationship triplets within each cluster, following the same prompting and reasoning
strategy described in Section 1.1.3.

4. Results and Analysis

We evaluated our clustering-driven, LLM-enhanced framework across four major
ontology learning tasks defined in the LLMs4OL 2025 challenge. Table 1 summarizes
the F1-scores and rankings achieved in each subtask.

Table 1. F1-scores and Rankings for Each Sub-task in LLMs40L 2025

Task Sub-task F1-score | Rank
Term Extraction A1.2 - Scholarly 0.4578 4
Term Extraction A1.3 - Engineering 0.4302 6
Type Extraction A2.1 - Ecology 0.5535 4
Type Extraction A2.2 - Scholarly 0.2500 7
Type Extraction A2.3 - Engineering 0.2545 5
Term Typing B1 - OBI 0.8021 5
Term Typing B2 - MatOnto 0.4872 5
Term Typing B3 - SWEET 0.3297 7
Taxonomy Discovery C1 - OBl 0.2273 3
Taxonomy Discovery C2 - MatOnto 0.4473 4
Taxonomy Discovery C5 - SchemaOrg 0.2609 4
Taxonomy Discovery C6 - PROCO 0.2601 1
Taxonomy Discovery C8-PO 0.2106 3
Taxonomy Discovery C10 - Blind 0.5735 1
Taxonomy Discovery C11 - Blind 0.4684 1
Non-Taxonomic Relation Extraction | D1 - SWEET 0.6263 1
Non-Taxonomic Relation Extraction | D2 - FoodOn 0.0084 1
Non-Taxonomic Relation Extraction | D4 - Blind 0.5051 1

Our model consistently ranked among the top performers, particularly in subtasks
requiring generalization across unseen domains (e.g., C6—C11 and D1-D4). Notably,
our semantic clustering coupled with transformer-based embeddings (e.g., BioBERT,
MaterialsBERT) enabled accurate identification of taxonomic and non-taxonomic
relationships. The strong performance in blind subtasks (C10, C11, D4) underscores
the adaptability of our LLM-inference framework to unknown domains.

However, subtasks involving domain-specific jargon (e.g., A2.2 — Scholarly and B3
— SWEET) exhibited lower F1-scores, revealing limitations in contextual understanding
and type assignment precision, even with clustering assistance. These results affirm
that clustering offers structural benefits, but domain adaptation remains essential for
enhanced type inference.
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Overall, our system demonstrated robustness and competitive performance across
varied ontology learning tasks, validating the efficacy of combining clustering with
domain-aware prompting and transformer-based semantic models.

5. Conclusion

In this paper, we presented a clustering-based ontology learning framework built
atop domain-specialized large language models to address the four primary tasks
of the LLMs40OL 2025 challenge. Our method integrates lexical structure with semantic
embeddings and prompt-based inference, enabling scalable ontology construction
across tasks such as term and type extraction, term typing, taxonomy discovery, and
relation modeling.

The experimental results confirm that clustering-driven representations, when cou-
pled with transformer-based LLMs, can yield competitive performance across subtasks
and domains. We observed significant success in blind and generalization-focused
subtasks, where structured clustering improved model reasoning and reduced noise
in domain inference. However, performance in linguistically complex domains—like
scholarly or SWEET ontologies—indicates a need for deeper domain alignment and
robust context modeling.

Future work will explore fine-tuning with curriculum learning, enhancing prompt
personalization, and integrating symbolic reasoning or external knowledge graphs to
address limitations in semantic disambiguation. Overall, this study reinforces the promise
of combining unsupervised structuring with LLM-based reasoning for automated and
domain-adaptive ontology learning.
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