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Abstract. We present the results of the 2nd LLMs4OL 2025 Challenge, a shared task
designed to evaluate the effectiveness of large language models (LLMs) for ontology
learning. The challenge attracted a diverse set of participants who leveraged a broad
spectrum of models, including general-purpose LLMs, domain-specific models, and
embedding-based systems. Submissions covered multiple subtasks such as Text2Onto,
term typing, taxonomy discovery, and non-taxonomic relationship extractions. The
results highlight that hybrid pipelines integrating commercial LLMs with domain-tuned
embeddings and fine-tuning approaches achieved the strongest overall performance,
while specialized domain models improved results in biomedical and technical datasets.
Key insights include the importance of prompt engineering, retrieval-augmented
generation (RAG), and ensemble learning. This paper presents the second benchmark
of LLM-driven ontology learning, serving as an overview of the participants’ contributions
to the challenge. Building on this, this overview presents findings, highlights emerging
strategies, and offers practical insights for researchers and practitioners seeking to align
unstructured language with structured knowledge.

Keywords: Ontology Learning, LLMs4OL Approach, Text2Onto, Generative AI,
Large Language Models

1. Introduction

For decades, researchers have studied the complexities of human language—across
voice, video, and text—driving advances in natural language processing (NLP) and
beyond. These efforts have increasingly expanded into semantic web technologies,
where structuring knowledge into formal, machine-readable representations is essential.
Beneath unstructured language lies a wealth of latent, meaningful knowledge—often
inaccessible without formal structure. Ontologies emerged as a framework to capture
this knowledge, providing digital anchors for organizing information. Yet, manual creation
and curation proved slow, costly, and ill-suited to the vastness, variability, and subtlety of
human language. This bottleneck in traditional ontology engineering persisted despite
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the semantic web community’s foundational contributions, which—through rigorous
methods and reuse—produced a rich ecosystem of resources. Recent advances in
large language models (LLMs) bring new momentum to the vision of machine-readable
knowledge, leveraging their unprecedented ability to process and generate language.

Language, once static in machines, is now dynamic—capable of understanding,
generating, summarizing, and reasoning. The long-standing vision of machines that
could truly comprehend and organize knowledge has become a reality. Yet, this
new found power raises a critical challenge: how do we harness the generative
capabilities of LLMs without sacrificing the precision, consistency, and logical rigor that
ontologies demand? This question drives the LLMs4OL (Large Language Models for
Ontology Learning) challenge series [1], [2], [3], which asks whether LLMs can produce
accurate, structured, and reusable knowledge, contribute meaningfully to ontology
engineering without compromising semantic integrity, and ultimately reshape how we
bridge unstructured text with structured meaning in the era of foundation models.

The LLMs4OL challenge series is based on the following five ontology primitives:
1) Lexical entries L, 2) Conceptual types T , 3) A hierarchical taxonomy HT , 4)
Non-taxonomic relations R within a heterarchy HR, 5) Axioms A for constraints and
rules. This leads to key ontology learning (OL) activities, including corpus preparations,
terminology extraction, term typing, taxonomy construction, relationship extraction, and
axiom discovery. Together, these six tasks constitute the LLMs4OL task framework,
aligning with the previously outlined LLMs4OL conceptual model [2].

The 1st LLMs4OL challenge [2] advanced the use of LLMs in OL, showcasing their
potential for automated knowledge acquisition. It featured two evaluation phases: a
few-shot phase, training on subsets of ontologies before testing on related unseen data,
and a zero-shot phase, introducing entirely new ontologies to assess generalizability.
Three tasks were addressed: Term Typing, Taxonomy Discovery, and Non-Taxonomic
Relation Extraction. Eight teams participated, applying strategies such as prompt
engineering, fine-tuning, and hybrid LLM–rule-based or retrieval-augmented models.
LLMs performed strongly in Term Typing and Taxonomy Discovery, leveraging their
ability to infer hierarchies and generalize across domains, but hybrid approaches
often surpassed pure LLMs in simpler tasks by integrating external knowledge and
structured reasoning. Results were sensitive to dataset diversity, highlighting the need
for robust, well-curated benchmarks. Non-Taxonomic Relation Extraction remained the
most challenging, as LLMs struggled with complex, domain-specific relations requiring
deep semantic understanding beyond surface cues. This indicates that while LLMs
are powerful generalizers, achieving full relational comprehension in OL may demand
structured learning, specialized fine-tuning, or enhanced knowledge retrieval.

To further advance strategies in OL, the 2nd LLMs4OL Challenge @ ISWC 2025
takes a deliberate step back—refocusing attention also on a foundational phase of
the OL pipeline, while maintaining its core paradigm: the Text2Onto task. Text2Onto
serves as a critical building block in the OL process. It involves the extraction of key
terms and candidate types from unstructured text, forming the basis upon which more
structured, formal ontologies can later be constructed in subsequent LLMs4OL tasks.
By emphasizing this early stage, the challenge aims to strengthen the pipeline from
raw language to reusable knowledge. As described in Figure 1, the 2nd LLMs4OL
Challenge at ISWC 2025 comprises four core tasks: Text2Onto, Term Typing, Taxonomy
Discovery, and Non-Taxonomic Relation Extraction. Collectively, these tasks cover
key stages in the OL pipeline—from identifying relevant terms in text to constructing
structured, semantically rich knowledge representations. This year’s challenge attracted
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Figure 1. Overview of the LLMs4OL Challenge tasks and subtasks aligned with the Ontology Learning
workflow. The process progresses from Corpus Preparation and Terminology Extraction to

Conceptualization (including Term Typing, Types Taxonomy, and Relationship Extraction) and ends with
Axiom Discovery. Tasks A to D correspond to major challenge categories—Text2Onto, Term Typing,

Types Taxonomy, and Relation Extraction—each comprising multiple domain-specific and blind subtasks.

11 participating teams (each submitting accompanying papers) from across the globe.
In total, the challenge received approximately 1,000 submissions spanning 26 individual
subtasks, reflecting a strong and growing interest in the intersection of LLMs and
ontology engineering.

Through this work, we aim to contribute to the ongoing discourse on the capabilities
of LLMs in the context of OL, thus in the remainder of this paper, we detail the challenge
tasks, what LLMs are being used, participant contributions, and findings.

2. Challenge Evaluation Overview

2.1 Tasks

The Figure 1 illustrates the tasks and subtasks targeted by the second LLMs4OL
challenge at each stage of the OL process.

Task A – Text2Onto1. Extract ontological terminologies and types from a raw text. This
task focuses on extracting ontological types and terms from unstructured text. Given
an unstructured text corpus/documents, the goal is to identify foundational elements for
ontology construction by recognizing domain-relevant vocabulary and categorizing it
appropriately. We aim to tackle two subtasks:

• SubTask A1 – Term Extraction: Given a set of documents from one domain, extract
all relevant lexical terms L that could form the basis of an ontology.

• SubTask A2 – Type Extraction: Using the same set of documents, identify the
conceptual types T that would serve as ontology classes.

1https://sites.google.com/view/llms4ol2025/task-a-text2onto
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By identifying and extracting these elements (terms and types), the task helps bridge
the gap between unstructured natural language and structured ontological knowledge
steps.

Task B – Term Typing2. Discover the generalized type for a lexical term. Once domain-
relevant terms and types are extracted (as we explored in Task A - Text2Onto), the next
step is to assign a generalized type T to each lexical term L. The term typing task is
defined as ”given a lexical term L, identify the lexical term types T ”. This process involves
mapping lexical items to their most appropriate semantic categories or ontological
classes. For example, in the biomedical domain, the term “aspirin” should be classified
under “Pharmaceutical Drug”. This task is crucial for organizing extracted terms into
structured ontologies and improving knowledge reuse.

Task C - Taxonomy Discovery3. Discover the taxonomic hierarchy between type pairs.
Taxonomy discovery focuses on identifying hierarchical relationships between types,
enabling the construction of taxonomic structures (i.e., is-a relationships). The task is
defined as ”given a list of types T , the task is to extract the hierarchical taxonomy HT

that forms an is-a relationship”. For example, discovering that ”Sedan” is a subclass of
”Car” contributes to structuring domain knowledge in a way that supports reasoning and
inferencing in ontology-driven applications.

Task D - Non-Taxonomic Relation Extraction4. Identify non-taxonomic, semantic
relations between types. This task aims to extract non-hierarchical (non-taxonomic)
semantic relations between concepts in an ontology. The non-taxonomic relation
extraction (or Non-Taxonomic RE) task is defined as a ”given a set of ontological
types T and relationships R, identify (head-type, relation, tail-type) triplets that form
a non-taxonomic (none other than is-a) relationship HR”. Unlike taxonomy discovery,
which deals with is-a relationships, this task focuses on other meaningful associations
such as part-whole (part-of), causal (causes), functional (used-for), and associative
(related-to) relationships. For example, in a medical ontology, discovering that “Aspirin”
treats “Headache” adds valuable relational knowledge that enhances the utility of an
ontology.

2.2 Datasets

The LLMs4OL 2025 challenge introduces a comprehensive benchmark for OL across
diverse domains. The benchmark spans four main tasks—Text2Onto, Term Typing,
Taxonomy Discovery, and Non-Taxonomic RE—each containing multiple subtasks
constructed from real-world ontologies.

Ontologies within LLMs4OL 2025. The ontologies used in LLMs4OL 2025 span
various domains, including biomedicine (OBI, DOID, GO), materials science (MatOnto),
environmental science (SWEET), chemistry (PROCO), agriculture (FoodON, PO),
general web knowledge (Schema.org), and scholarly data (LexInfo, ENVO, OM). Each
ontology provides domain-specific vocabulary and axioms for training and evaluating the
models across tasks such as term identification, typing, taxonomy building, and relation
extraction. Table 1 provides a detailed list of the ontologies, their respective domains,
and descriptions.

Evaluation Phases. All subtasks datasets are divided into two phases: Seen-Eval,
where participants are given training data along with test sets from the same ontology.

2https://sites.google.com/view/llms4ol2025/task-b-term-typing
3https://sites.google.com/view/llms4ol2025/task-c-taxonomy-discovery
4https://sites.google.com/view/llms4ol2025/task-d-non-taxonomic-re
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Table 1. List of ontologies in LLMs4OL 2025 challenge with their respective domains and descriptions.

Ontology Domain Description
Ontology for Biomedical Investigations
(OBI) [4]

Medicine The OBI is a comprehensive, community-driven ontology that provides
a structured framework for representing all aspects of biomedical and
clinical investigations. It facilitates consistent annotation and integration
of experimental data across diverse biomedical disciplines.

Material Ontology (MatOnto) [5] Material Science
and Engineering

The MatOnto is a domain-specific ontology designed to represent
knowledge about materials, their properties, structures, and processing
methods, primarily for use in materials science and engineering applica-
tions.

Semantic Web for Earth and Environment
Technology Ontology (SWEET) [6]

Environment The SWEET is an investigation in improving the discovery and use of
Earth science data, through software understanding of the semantics of
web resources. SWEET is a collection of ontologies conceptualizing a
knowledge space for Earth system science and includes both orthogonal
concepts (space, time, Earth realms, physical quantities, etc.) and
integrative science knowledge concepts (phenomena, events, etc.).

Human Disease Ontology (DOID) [7] Medicine The Disease Ontology has been developed as a standardized ontology
for human disease with the purpose of providing the biomedical
community with consistent, reusable, and sustainable descriptions of
human disease terms, phenotype characteristics, and related medical
vocabulary disease concepts.

Schema.org Ontology (SchemaOrg) [8],
[9]

General
Knowledge

Schema.org is a collaborative, community activity with a mission to
create, maintain, and promote schemas for structured data on the
Internet, on web pages, in email messages, and beyond.

PROcess Chemistry Ontology
(PROCO) [10]

Chemistry PROCO is a formal ontology that aims to standardly represent entities
and relations among entities in the domain of process chemistry.

Food Ontology (FoodON) [11] Agricultural FoodOn, the food ontology, contains vocabulary for naming food mate-
rials and their anatomical and taxonomic origins, from raw harvested
food to processed food products, for humans and domesticated animals.
It provides a neutral and ontology-driven standard for government
agencies, industry, nonprofits, and consumers to name and reference
food products and their components throughout the food supply chain.

Plant Ontology (PO) [12] Agricultural The Plant Ontology (PO) is a structured vocabulary and database
resource that links plant anatomy, morphology, and growth and develop-
ment to plant genomics data.

Gene Ontology (GO) [13] Biology and Life
Sciences

The Gene Ontology (GO) provides structured controlled vocabularies for
the annotation of gene products with respect to their molecular function,
cellular component, and biological role.

Blind-Eval, where systems are being evaluated on a hidden test set from an unseen
ontology with no training data provided. This tests generalization across ontological
domains and structures.

Text2Onto. First, we retrieve ontology elements such as terms, types, and their
associated taxonomic and non-taxonomic relations. These elements are then partitioned
into subsets using the Capacitated Minimum Spanning Tree Problem algorithm, ensuring
that nodes within each subset remain connected through one-hop taxonomic relations,
resulting in more semantically homogeneous text. Once partitioned, synthetic text
is produced through a two-step process: ontology axioms are first verbalized using
templates aligned with axiom structures, and then paraphrased by LLM into natural text
while preserving semantic accuracy. The resulting text documents are then used for
term and type extraction subtasks. The statistics are presented in Table 2.

LLMs4OL Tasks Paradigm. The [3] descibes the dataset construction procedure for
LLMs4OL tasks paradigm [1]. The constructed dataset statistics for tasks B, C, and D
are represented in Table 2. The Task B spans six subtasks—three in the Seen-Eval
phase (B1 to B3) and three in the Blind-Eval phase (B4 to B6). Similarly, Task C includes
11 subtasks—eight seen and three blind. Finally, Task D includes 4 subtasks-three seen
and one blind.
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Table 2. LLMs4OL 2025 challenge, subtasks, domains, participants, and evaluation phases stats. The
”PT” refers to the number of participants per subtask. In the dataset columns, for Task A, L refers to the
number of lexical terms, T refers to the number of types (similarly for Task B and C), and for Task D, R

refers to the number of non-taxonomic relations.

Task SubTask Domain Train Test PT Phase

(A) Text2Onto

A1.2 - Term Extraction Scholarly 40 (L=246) 10 (L=32) 9

Seen
A1.3 - Term Extraction Engineering 83 (L=1,143) 21 (L=547) 9
A2.1 - Type Extraction Ecology 2,000 (T=5,734) 482 (T=994) 7
A2.2 - Type Extraction Scholarly 40 (T=260) 10 (T=30) 8
A2.3 - Type Extraction Engineering 83 (T=772) 21 (T=36) 8

(B) Term Typing

B1 - OBI Medicine 201 (T=46) 87 (T=36) 6
SeenB2 - MatOnto Materials Science & Engineering 85 (T=49) 36 (T=30) 8

B3 - SWEET Ecology and Environment 1,707 (T=177) 732 (T=135) 6
B4 - Blind Ecology - 46 2

BlindB5 - Blind Scholarly - 288 2
B6 - Blind Engineering - 1,953 1

(C) Taxonomy Discovery

C1 - OBI Medicine 8,249 (T=4,237) 3,536 (T=2,821) 5

Seen

C2 - MatOnto Materials Science & Engineering 840(T=653) 361 (T=370) 7
C3 - SWEET Ecology and Environment 11,137(T=7,542) 4,774(T=4,118) 3
C4 - DOID Medicine 28,924 (T=10,254) 12,396 (T=7,411) 2
C5 - SchemaOrg General Knowledge 723 (T=692) 311(T=359) 5
C6 - PROCO Chemistry 1,313(T=790) 563 (T=530) 3
C7 - FoodOn Agriculture 53,020 (T=31,076) 22,723 (T=20,148) 3
C8 - PO Agriculture 2,005 (T=1,444) 860 (T=916) 4
C9 - Blind Ecology - 16,273 1

BlindC10 - Blind Scholarly - 276 1
C11 - Blind Engineering - 1,124 3

(D) Non-Taxonomic RE

D1 - SWEET Ecology and Environment 360(T=662, R=3) 155(T=289, R=2) 3
SeenD2 - FoodOn Agriculture 1,450(T=2,838, R=6) 622 (T=1,233, R=4) 2

D3 - GO Biology and Life Sciences 11,606 (T=9,622, R=6) 4,975 (T=5,189, R=6) 0
D4 - Blind Ecology - 147 1 Blind

2.3 Evaluation Metrics

Each task in the challenge is evaluated using precision (P), recall (R), and F1-score,
defined as follows:

P =
|Correct|
|Predicted|

, R =
|Correct|

|Ground Truth|
, F1 =

2× P × R
P + R

The Task A evaluates string label prediction using Jaccard similarity with a threshold
of 0.8. A prediction is considered correct if it matches a ground truth label above the
threshold, with each label matched at most once. The Task B involves multi-label
classification where each instance can have multiple types. Predicted and true types are
treated as sets, and correctness is determined by the intersection across all instances.
Moreover, Task C focuses on hierarchical relation extraction, where predictions are
parent-child pairs. A match is correct if the predicted pair appears exactly in the ground
truth set. Finally, Task D evaluates triple-based relation extraction, including symmetric
relations (e.g., equivalentClass, sameAs, disjointWith). Triples are normalized, and
symmetric counterparts are added to both prediction and ground truth before computing
the scores.

3. Participant Systems and Results

For the challenge evaluation platform, we used the CodaLab submission platform [14]
(the challenge can be accessed via https://codalab.lisn.upsaclay.fr/competitions/23065),
which provides a standardized environment for managing challenge submissions and
leaderboard tracking. Throughout the duration of the competition, a total of 1,038
submissions were received from 35 participants, who engaged across 26 diverse
subtasks. The Figure 2 illustrates the high level of engagement throughout the
competition, emphasizing the strong interest and widespread participation it attracted. In
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Figure 2. Submissions Statistics

Table 3. Teams performance across various subtasks using the F1-Score metric.

SBU-NLP Alexbek Silp nlp LABKAG IRIS ELLMO DREAM-LLMs Phoenixes T-GreC DaseLab CUET Zenith SEMA
A1.2 0.5870 0.6471 0.4578 0.7000 - 0.3652 - 0.3951 - - - -
A1.3 0.6196 0.4418 0.4302 0.6661 - 0.6073 - 0.2556 - - - -
A2.1 0.6602 0.5895 0.5535 0.5595 - - - 0.4309 - - - -
A2.2 0.6585 0.7586 0.2500 0.8308 - 0.5524 - 0.3913 - - - -
A2.3 0.6585 0.4688 0.2545 0.4694 - 0.6750 - 0.1846 - - - -
B1 0.9425 0.7709 0.8021 - 0.8387 - 0.9080 - 0.8621 - - -
B2 0.5676 0.6053 0.4872 - 0.6667 - 0.5676 - 0.1892 0.3243 - -
B3 0.6935 0.6557 0.3297 - 0.6529 - 0.5927 - 0.5192 - - -
B4 0.7563 0.6560 - - - - - - - - - -
B5 0.9271 0.4722 - - - - - - - - - -
B6 - 0.1715 - - - - - - - - - -
C1 0.3534 0.2943 0.2273 - 0.3972 - - - - - 0.1142 -
C2 0.6621 0.5590 0.4473 0.4836 0.4472 - - - - - - 0.1441
C3 0.4997 0.2549 - - 0.2520 - - - - - - -
C4 - 0.1806 - 0.0016 - - - - - - - -
C5 0.6567 0.3296 0.2609 0.6501 - - - - - - 0.0866 -
C6 0.2146 0.3865 0.2601 - - - - - - - - -
C7 - 0.1171 - 0.0215 - - - - - - - -
C8 0.2702 0.4817 0.2106 0.0357 - - - - - - - -
C9 - - - 0.0485 - - - - - - - -
C10 - - 0.5735 - - - - - - - - -
C11 - - 0.4684 - - - - - - - - -
D1 - - 0.6263 - 0.5323 0.1448 - - - - - -
D2 - - 0.0084 - - 0.0007 - - - - - -
D3 - - - - - - - - - - - -
D4 - - 0.5051 - - - - - - - - -
Mean F1 0.3741 0.3400 0.2751 0.1718 0.1457 0.0902 0.0796 0.0638 0.0604 0.0125 0.0077 0.0055

total, we received 13 paper submissions describing participant systems. One submission
was desk-rejected due to the absence of both the system paper and evaluation results.
Of the remaining 12 teams, 11 team papers are accepted for the 2nd LLMs4OL
challenge proceedings, with their evaluations concluded and included in the final rankings.
Additionally, the DaseLab team [15] submitted their system for evaluation on SubTask
B2 – MatOnto and achieved a ranked position within that challenge. However, since no
accompanying system description paper was submitted, their contribution is reflected
solely in the leaderboard of SubTask B2 and not considered in the overall analysis of the
LLMS4OL Challenge. This underscores the importance of both technical contributions
and accompanying documentation for full inclusion in challenge outcomes.

3.1 Leaderboard

The Table 3 represents the finalized leaderboard for participants based on F1 scores. It
highlights that the SBU-NLP team achieved the highest mean F1 score (0.3741), followed
by Alexbek (0.3400), while the rest of the teams scored lower. Some teams attempted a
wide range of subtasks, while others only submitted to a limited set, which explains the

7



Babaei Giglou et al. | Open Conf Proc 6 (2025) ”LLMs4OL 2025: The 2nd Large Language Models for Ontology Learning Challenge
at the 24th ISWC”

skew in the mean F1 scores. Moreover, LABKAG stood out several A-series subtasks
(e.g., A1.2 with 0.7000, A2.1 with 0.6661, and A2.2 with 0.8308, the highest in the
Text2Onto). SBU-NLP performed strongly in B-series subtasks, with near state-of-the-art
F1 in B1 (0.9425) and B5 (0.9271). IRIS had competitive scores in the B-series (e.g., B1
at 0.8387) and even stood out at B2 (0.6667). Alexbek has participated well in Task C
with nearly 4 top rankings in Task C. The D-series tasks attracted fewer submissions.
While some subtasks had F1 scores above 0.9 (e.g., B1, B5), others had scores close
to zero (e.g., C4, C9, D2), showing the varying difficulty levels across the benchmark.

3.2 Contributions

SBU-NLP. The SBU-NLP [16] team participated in Tasks A, B, and C, employing
prompt engineering. This team study demonstrated that prompt-based strategies,
utilizing LLMs to enable effective, scalable, and domain-independent automated ontology
construction, successfully overcome LLM context window limitations through careful
prompt engineering and sampling techniques like stratified random sampling, simple
random sampling, and chunking. A significant finding was that batch-prompted LLMs
frequently matched or outperformed non-batch models across various subtasks, with
Claude Sonnet 4 (Batch) [17] consistently achieving top F1 scores in Task B across all
domains and blind test sets, and showing considerable gains in Task C subtasks like
MatOnto and Schema.org. Conversely, for the OBI subtask, the research revealed that
pretrained sentence embedding models [18] (e.g., BGE-M35 [19], all-mpnet-base-v26,
all-MiniLM-L6-v27, and Stella8 [20]) performed comparably to a simpler token overlap
baseline, suggesting that embedding-based methods may not always offer substantial
advantages in highly lexically overlapping structured ontology tasks. These results
highlight promising directions for optimizing resource usage in knowledge representation
tasks by leveraging LLMs without computationally expensive training pipelines. The
experiments utilized several state-of-the-art LLMs, including Gemini-2.5-Flash [21],
Grok-3 [22], Grok-3-mini [22], DeepSeek-V3 [23], GPT-4o-mini [24], and Claude Sonnet
4 [17].

Alexbek. The Alexbek team [25] presents a unified, modular, and lightweight LLM-based
framework for OL, demonstrating its success in Tasks A, B, and C without requiring
large-scale finetuning. A core finding is the high effectiveness of few-shot prompting
combined with retrieval-augmented generation (RAG) [26], which consistently boosted
performance across tasks, particularly in Task A for joint term and type extraction, where
chained term and type exemplars proved superior. For Task B, a dual strategy involving
RAG for known domains and a zero-shot classifier for unseen domains was highly
effective, with an ensemble of embedding models outperforming baselines. In Task C,
the study successfully modeled hierarchical relationships through a simple yet effective
dedicated cross-attention layer applied to type embeddings, which was trained on frozen
embeddings or with lightweight LoRA finetuning [27]. The system consistently achieved
top-ranking results across various subtasks and domains, highlighting its adaptability,
generalizability, and robustness even in blind settings. However, limitations were noted
in domains with sparse lexical cues or fine-grained semantic distinctions, leading to
reduced precision. The LLMs central to this study included Qwen3-Embedding-4B [28]
for generating embeddings across Tasks A, B, and C, all-mpnet-base-v2, and BGE-

5https://huggingface.co/BAAI/bge-m3
6https://huggingface.co/sentence-transformers/all-mpnet-base-v2
7https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
8https://huggingface.co/NovaSearch/stella en 1.5B v5

8

https://huggingface.co/BAAI/bge-m3
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/NovaSearch/stella_en_1.5B_v5


Babaei Giglou et al. | Open Conf Proc 6 (2025) ”LLMs4OL 2025: The 2nd Large Language Models for Ontology Learning Challenge
at the 24th ISWC”

Large9 [29] as components of the ensemble classifier for zero-shot term typing, and a
lighter Qwen3-0.6B [30] encoder utilized with LoRA adapters for taxonomy discovery

silp nlp. The silp nlp team [31] presented a clustering-enhanced methodology grounded
in LLMs for OL across all four tasks. A key finding is the efficacy of combining lexical
and semantic clustering with adaptive prompting and domain-adapted transformer
models to achieve robust and scalable OL. For Task A, both heuristic-guided direct
extraction and RAG (specifically called as a RAE –Retrieval-Augmented Extraction) were
employed, with RAG dynamically enriching prompts with domain-specific exemplars to
enhance term-type extraction. Task B utilized a multi-stage hybrid approach combining
deterministic lexical clustering with LLM-based semantic disambiguation, including
an expert persona and few-shot examples in prompts. In Task C, semantic-based
clustering was preferred for its ability to capture conceptual similarity, followed by LLM-
based relation extraction within clusters. For Task D, a fully LLM-centric knowledge
discovery method and a hybrid method combining semantic embeddings and algorithmic
clustering were developed for non-taxonomic relation extraction. Despite overall success,
lower F1-scores in subtasks with domain-specific jargon (e.g., Scholarly and SWEET
ontologies) highlighted limitations in contextual understanding and the need for deeper
domain alignment. The LLMs used in the study included proprietary LLMs from Grok,
Gemini-2.5-flash (for Tasks A, C, and D’s domain inference), and Gemini-2.5-pro (for
Task B and Task D’s high-precision relation extraction). Additionally, domain-specialized
transformer models such as MaterialsBERT [32] and BioBERT [33] were employed for
generating semantic embeddings.

LABKAG. The LABKAG [34] studied the effectiveness of prompt design as a primary
strategy for structured knowledge acquisition, without relying on fine-tuning or external
knowledge. The study consistently demonstrated that incorporating in-domain examples
and providing richer context within prompts significantly enhances performance for
challenge tasks. For Task A, in-domain few-shot prompts consistently outperformed
generic one-shot prompts for entity extraction, notably improving recall, and providing
full document context during entity classification led to substantial F1 score increases.
An additional term expansion step was crucial for boosting recall in the Engineering
subset of Task A, although it reduced precision. Conversely, the inclusion of noise in
examples or input consistently degraded performance, underscoring the importance of
careful prompt selection based on data characteristics. For Task C, which focused on
identifying taxonomic hierarchies, the study found that a greater number of in-context
examples (few-shot) generally improved performance. To manage challenges with long
input lists in Task C, pre-processing strategies like length-based chunking were adopted
to address token limits, and category regrouping (classifying terms into semantically
coherent groups) consistently improved output quality by filtering irrelevant terms and
enhancing intra-group coherence. The LLMs used in the study were Qwen3-8B for Task
A, which was deployed and run locally without additional training or parameter updates,
and GPT-4o-mini, along with Gemini 2.5 Pro for evaluating performance in Task C.

IRIS. The IRIS team’s [35] demonstrates that model-agnostic data manipulations
significantly enhance the performance of LLMs in OL, specifically Task B, C, and D.
After careful curation of inputs through input-enrichment techniques and a pruning
technique yields substantial performance improvements are yielded. These techniques
show synergistic benefits when applied together. For Task B, data augmentation (using
rule-based generators, Wiktionary, and GPT-4o mini synonyms) combined with automatic

9https://huggingface.co/BAAI/bge-large-en-v1.5
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definition mining (from Wikipedia, Wiktionary 10, domain APIs, or GPT-4o fallback) was
found to substantially boost performance, particularly in addressing rare-class sparsity
and limited lexical variety. For Tasks C and D, similarity-based candidate filtering (using
all-MiniLM-L6-v2 Sentence-BERT embeddings) was deemed indispensable, drastically
improving F1-scores by pruning the search space and reducing noise. While type
definitions alone offered little benefit in these latter tasks, they provided further gains
when combined with filtering, acting as a fine-grained booster once the search space
was denoised. These three data-layer heuristics collectively address issues of rare-class
sparsity, context deficit, and quadratic explosion without altering the model architecture
or hyperparameters. The primary LLM used for the core classification tasks (B, C, and D)
was a fine-tuned DeBERTa-v3-large [36] encoder. Additionally, GPT-4o was employed
as a fallback for automatic definition mining when other web sources failed, and the
all-MiniLM-L6-v2 Sentence-BERT model was used for generating embeddings in the
similarity-based candidate filtering for Subtasks C and D.

ELLMO. The ELLMO team [37] for Task A found that simpler prompts defining pattern-like
rules performed better than elaborate strategies. The optimal approach (introduced LLM-
centric vs. classification) was problem-specific, with the Engineering dataset benefiting
from the classification approach, while the Scholarly dataset generally benefited from
the LLM-centric approach. For the classification approach, including a ”neither” class
significantly improved F1 scores by boosting precision, despite a general decrease in
recall. The choice of LLM was also critical, as performance differences were observed
across datasets when comparing smaller models to large-scale LLMs, where Claude
Sonnet 4 outperformed Mistral-Small-3.111 on the Engineering dataset. However, for the
Scholarly dataset, this was not true as it showed that Mistral-Small-3.1 outperformed
w.r.t. Claude Sonnet 4. For Task D, the primary approach involved reducing the number
of potential edges using either clustering or vector databases, followed by querying an
LLM for edge probabilities. It was found that clustering performed well for the SWEET
dataset but yielded low recall for the GO dataset. Vector database methods resulted in
lower recall and were not scalable to larger datasets compared to clustering. A crucial
insight was that asking the LLM to output probabilities for edge existence significantly
improved recall and F1 scores. However, providing examples in the prompt influenced
the distribution of LLM-generated probabilities, sometimes leading to lower performance
if examples caused the LLM to assign too many high probabilities. The LLMs utilized in
this work included Mistral-Small-3.1 for Task A, Claude Sonnet 4 for comparative testing
in Task A, and Llama-3.2-90B-Vision-Instruct12 for clustering in Task D. The authors
also noted a substantial performance decrease between training and testing datasets,
possibly due to overfitting or inconsistencies in the test data.

DREAM-LLMs. The DREAM-LLMs team [38] introduces a deliberation-based reasoning
ensemble approach with multiple LLMs for Task B in low-resource domains within
subtasks B1, B2, and B3. They found that relying on a single LLM in low-resource
environments is often insufficient due to domain-specific knowledge gaps and limited
exposure to specialized terminology, resulting in inconsistent and biased predictions.
To overcome this, DREAM-LLMs involves crafting few-shot prompts and independently
querying several LLMs, with each model providing a predicted label and a brief
justification. A promising contribution is the deliberation step, where one LLM reviews
the predictions and explanations from the others to make a final decision, effectively
mitigating individual model biases and outperforming standard prompting approaches.

10https://www.wiktionary.org/
11https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503
12https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
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This collaborative reasoning was found to not only enhance predictive accuracy but
also encourage weaker models to align their outputs with stronger counterparts, thereby
improving decision consistency in low-resource settings. The specific LLMs utilized in
this work were ChatGPT-4o, Claude Sonnet 4, DeepSeek-V3, and Gemini-2.5-Pro.

Phoenixes. The Phoenixes team [39] methodology centers on the effectiveness of
Chain-of-Thought (CoT) Few-Shot Prompting strategies in Text2Onto subtasks. The
study demonstrates that combining reasoning-based prompting with instruction-tuned
models can effectively support Text2Onto tasks across diverse domains without
task-specific fine-tuning, enabling models to perform step-by-step reasoning and
contextual interpretation. Performance varied by domain, with the approach showing
particular strength in domains with clearer conceptual structures like Ecology and
Scholarly communication, compared to more complex fields like Engineering, where
models generally struggled. Qwen2.5-72B-Instruct13 [40] often emerged as a strong
performer, achieving the highest F1 score for term extraction in the Scholarly domain
(0.3950) and outperforming other models in type extraction for the Ecology dataset
(F1 score of 0.4309). LLaMA-3.3-70B-Instruct14 [41] demonstrated high recall across
various subtasks and domains, indicating its capability in identifying a broader
set of relevant terms and types. The LLMs evaluated were Qwen2.5-72B-Instruct,
Mistral-Small-24B-Instruct-250115 [42], and LLaMA-3.3-70B-Instruct across Ecology,
Scholarly, and Engineering datasets.

T-GreC. The T-GreC team [43] investigates the effectiveness of combining embeddings
with k-nearest neighbors (k-NN) for Task B. They found that embeddings derived
from fine-tuned transformer models can be highly effective for k-NN classification.
The RoBERTa-base [44] model achieved the highest F1 score of 0.862 using k-NN
with embeddings, notably exceeding its direct fine-tuning performance of 0.827. A
dramatic improvement was observed with DeBERTa-v3-base, which performed extremely
poorly in direct fine-tuning (F1 score of 0.022) but achieved a high F1 score of
0.850 with k-NN using its embeddings, suggesting it generates high-quality semantic
embeddings despite issues with LoRA fine-tuning. Furthermore, simple character-level
data augmentation (insertion, deletion, swapping, or substitution) significantly improved
performance for PubMedBERT [45] on the OBI dataset. However, a crucial limitation
discovered was that these strategies, including augmentation and embedding-based
k-NN, failed to generalize effectively to the MatOnto and SWEET datasets, underscoring
their dataset-dependency.

CUET Zenith. The CUET Zenith team [46] proposed a hybrid methodology for taxonomy
discovery, focusing on biomedical (OBI) and general-purpose (SchemaOrg) knowledge
domains. A key finding is that the judicious integration of classical machine learning
with LLMs yields efficient and scalable solutions for ontology structure induction. For
Subtask C1, a hybrid approach combining semantic clustering of Sentence-BERT
embeddings with few-shot prompting using Qwen3-14B was introduced. For Subtask C5,
the team introduced a cascaded validation framework that harmonizes deep semantic
representations from sentence transformer all-mpnet-base-v2 embeddings, ensemble
classification via XGBoost, and a hierarchical LLM-based reasoning pipeline. This
framework involved a two-tier LLM validation system for medium-confidence predictions,
employing TinyLlama-1.1B for binary validation and GPT-4o for probabilistic verification,
resulting in the highest F1-score of 0.0866 for this subtask. Notably, smaller LLMs
like TinyLlama-1.1B, when optimally coupled with XGBoost, were found to outperform
13https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
14https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
15https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
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Table 4. LLMs4OL 2025 challenge participants’ methods.
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1 SBU-NLP [16]

Gemini-2.5-Flash
DeepSeek-V3-0324
Claude Sonnet 4
Grok-3-mini
GPT4o-mini
Grok-3
BGE-M3
all-mpnet-base-v2
all-MiniLM-L6-v2
stella en 1.5B v5

Prompt Engineering
Embeddings

�

2 Alexbek [25]

Qwen3-Embedding-4B
all-mpnet-base-v2
bge-large-en-v1.5
Qwen3-0.6B

RAG
Prompt Engineering
Few-Shot Prompting
Finetuning

�

3 silp nlp [31]

Grok
Gemini-2.5-Pro
MaterialsBERT
BioBERT

Prompt Engineering
RAG
Clustering
Emeddings

�

4 LABKAG [34]
GPT-4o-mini
Gemini-2.5-Pro
Qwen3-8B

Prompt Engineering
Few-Shot Prompting
Embeddings

�

5 IRIS [35]
DeBERTa-v3-large
GPT-4o
all-MiniLM-L6-v2

Data Augmentation
Finetuning
Embeddings

�

6 ELLMO [37]

Mistral-Small-3.1
BERT
LLaMA-3.2-90B-Vision-Instruct
Claude Sonnet 4

Finetuning
Prompt Engineering
Embeddings
Clustering

�

7 DREAM-LLMs [38]

GPT-4o
Claude Sonnet 4
DeepSeek-V3
Gemini 2.5 Pro

Prompt Engineering
Ensemble Learning

�

8 Phoenixes [39]
Qwen2.5-72B-Instruct
Mistral-Small-24B-Instruct-2501
LLaMA-3.3-70B-Instruct

Prompt Engineering �

9 T-GreC [43]

PubMedBERT
BioBERT
DeBERTa-v3-base
RoBERTa-base

Data Augmentation
Embeddings
Finetuning

�

10 DaseLab [15] GPT-3.5-Turbo Finetuning �

11 CUET Zenith [46]

all-mpnet-base-v2
TinyLlama-1.1B
GPT-4o
Qwen3-14B
Mistral-7B
BioBERT

RAG
Ensemble Learning
Prompt Engineering

�

12 SEMA [47] LLaMA 3.1–8B
Data Augmentation
Finetuning

�

larger counterparts in some configurations, and strategic threshold-gated LLM validation
significantly reduced inference costs while maintaining precision. The LLMs utilized in
this work included Qwen3-14B, TinyLlama-1.1B, GPT-4o, Mistral-7B, and BioBERT.

SEMA. The SEMA team [47] participated in task C of the challenge, specifically
focusing on the MatOnto subtask. They introduced prompt-decoupled based finetuning,
which does the finetuning with one prompt format and testing it with a semantically
equivalent but structurally different one. They found that prompt decoupling can improve
generalization and mitigate overfitting to specific phrasings. The study also found that
a 6:1 false-to-true ratio for contrastive negative sampling was optimal, providing the
best balance for training signal and label imbalance, while higher ratios led to reduced
performance. Furthermore, domain-specific system prompts (e.g., ”expert in material
science”) consistently outperformed generic ones, suggesting that expert framing can
guide the model towards more domain-sensitive interpretations. The LLMs utilized in
this work included LLaMA-3.1–8B, which was fine-tuned using LoRA adapters.

3.3 LLM Usage

Participants leveraged a mix of large and smaller generative models, embedding models,
and domain-specific models:

Larger LLMs. The challenge experienced an extensive use of general-purpose
instruction-tuned and chat models, including GPT variants (GPT-3.5-Turbo, GPT-4o,
GPT-4o-mini), Claude Sonnet 4, Gemini models (Gemini-2.5-Pro, Gemini-2.5-Flash),
Grok models (Grok-3, Grok-3-mini), LLaMA variants (LLaMA-3.2-90B-Vision-Instruct,

12
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LLaMA-3.3-70B-Instruct), Mistral (Mistral-Small-3.1, Mistral-Small-24B-Instruct-2501),
Qwen3 variants (14B), and DeepSeek-V3-0324. These models demonstrated the
highest engagement among participants for ontology learning tasks. Overall, teams that
extensively used large instruction-tuned LLMs consistently achieved higher F1 scores
across multiple subtasks.

Smaller LLMs. The smaller LLMs, including LLaMA variants (TinyLlama-1.1B, LLaMA
3.1–8B) and Qwen3 variants (0.6B, 8B), are used due to their resource-efficiency, which
makes them suitable for low-resource finetuning, but they require careful adaptation to
match the performance of larger models.

Embedding Models. Several participants leveraged embedding and vector represen-
tation models, including all-mpnet-base-v2, all-MiniLM-L6-v2, bge-large-en-v1.5, and
Qwen3-Embedding-4B. These models were primarily used for semantic similarity compu-
tations, RAG, and clustering of ontology concepts, providing structured representations
to support LLM-based reasoning.

Domain-specific Models. Domain-specific models such as PubMedBERT, BioBERT,
MaterialsBERT, DeBERTa-v3-base, DeBERTa-v3-large, and RoBERTa-base were em-
ployed to capture specialized knowledge in biomedical, materials, and engineering
domains. Their use highlights the importance of leveraging pre-trained knowledge from
relevant fields to improve ontology learning performance in highly technical datasets.

4. Observations and Lessons Learned

Table 4 provides an overview of the methods employed by the LLMs4OL 2025 challenge
participants. Across all submissions, LLMs were combined with a diverse set of strategies
such as prompt engineering, RAG, embeddings, clustering, ensemble learning, data
augmentation, and fine-tuning. We observe that:

• Hybrid Solutions. The top-ranked teams (SBU-NLP, Alexbek, and silp nlp) relied
on multi-model pipelines that integrated state-of-the-art commercial LLMs (e.g.,
Gemini-2.5, Claude Sonnet 4, GPT-4o) with open-source models (e.g., Qwen3,
BioBERT, MaterialsBERT, all-mpnet-base-v2). These systems demonstrated the
importance of hybrid solutions, where instruction-based prompting and embeddings
were combined with retrieval or clustering to handle the variety of ontology tasks.

• Domain Adaptation through Finetuning and Augmentation. Teams in the mid-
ranking group (e.g., LABKAG, IRIS, ELLMO, DREAM-LLMs) favored finetuning and
embeddings, often targeting domain-specific subtasks. For instance, IRIS used
DeBERTa-v3-large and MiniLM embeddings with data augmentation, while ELLMO
combined finetuning with clustering and multimodal LLMs (e.g., LLaMA-3.2-90B-
Vision-Instruct). These approaches show a tendency to balance general-purpose
prompting with domain adaptation using finetuning or data augmentation.

• Resource-efficient Models with Specialized Task Design. Lower-ranked sub-
missions, such as CUET Zenith and SEMA, often emphasized specialization,
focusing on a narrow set of tasks or using lightweight models (e.g., TinyLlama,
PubMedBERT) enhanced with RAG. While less competitive overall, these efforts
highlighted the potential of resource-efficient models when combined with targeted
task designs.

Overall, there is a clear methodological spectrum: 1) High-performing systems
integrated multiple LLMs with prompt engineering, RAG, and embeddings. 2) Middle-
performing systems leaned on finetuning, ensemble strategies, and data augmentation.
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3) Specialized teams showcased efficient or domain-specific models with focused
methods. This diversity underlines not only the flexibility of LLMs in ontology learning
tasks but also the importance of strategic method integration over reliance on a single
modeling paradigm.

The contributions reveal several important lessons, summarized below:

• Prompt engineering remains a cornerstone. Carefully designed prompts, few-
shot prompting, step-by-step reasoning via CoT prompting, and domain framing
consistently boost performance (SBU-NLP, LABKAG, Alexbek, Phoenixes).

• LLM ensembles improve low-resource domain performance. Combining multiple
models with deliberation mitigates individual biases (DREAM-LLMs).

• RAG enhances adaptability. Using RAG helps LLMs generalize to unseen domains
and sparse lexical settings (Alexbek, silp nlp, CUET Zenith).

• Domain-specific embeddings complement LLMs. Embeddings like Sentence-BERT,
BGE-M3, and BioBERT help in semantic clustering and k-NN classification (T-GreC,
silp nlp, SBU-NLP, LABKAG, IRIS, T-GreC).

• Data augmentation and enrichment improve results. Synonym expansion, definition
mining, and input pruning help tackle rare-class sparsity (IRIS, T-GreC, SEMA).

• Smaller LLMs can compete effectively. With LoRA finetuning, smaller models can
rival larger ones in performance and cost-efficiency (CUET Zenith, Alexbek).

• Clustering can aid non-taxonomic relation extraction. Lexical or semantic clustering
reduces search space and improves scalability (ELLMO, silp nlp).

• Context window management matters. Long documents require chunking, stratified
sampling, or batching to maintain LLM performance (SBU-NLP, LABKAG).

• Batch prompting is efficient. Batch-prompted LLMs can match or outperform non-
batched approaches while reducing computation (SBU-NLP).

• Ensembling reduces errors. Cascaded LLM validation and voting schemes mitigate
mistakes from individual models, especially in hierarchical or low-resource tasks
(DREAM-LLMs, CUET Zenith).

5. Conclusion

The LLMs4OL 2025 Challenge demonstrates that LLMs are already capable of
contributing meaningfully to ontology learning, but no single approach suffices across
all tasks. General-purpose LLMs proved valuable for broad coverage, while domain-
specific models captured specialized knowledge, and embeddings supported semantic
similarity computations. The most successful systems combined these components
in hybrid pipelines, balancing instruction-following abilities with domain adaptation
and retrieval-based strategies. Despite these advances, results also reveal limitations:
performance varied across subtasks, robustness issues emerged, and resource-efficient
finetuning remained a challenge. Overall, the challenge highlights the potential of
LLMs to accelerate ontology engineering while underscoring the need for continued
research into scalable, interpretable, and domain-sensitive approaches. Future work will
extend evaluation datasets, improve reproducibility, and foster collaborations between
the semantic web and NLP communities to realize the vision of autonomous ontology
learning.
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