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Abstract. Agentic AI is an emerging field of artificial intelligence and it has great impact
on scholarly research. Agentic AI helps to handle large volume of information from vast
corpora. Currently the Agentic AI systems depends on Large Language Models (LLM)
for the tasks of information retrieval and reasoning. LLMs are very effective at Natu-
ral Language Understanding and the iterative reasoning. However, there exist some
inherent limitations for LLMs, which pose challenges for Agentic AI. Provenance track-
ing, reasoning challenges, temporal staleness and context dilution are some examples.
Incorporating Knowledge Graphs (KG) along with LLMs can mitigate these challenges,
and can support deeps search in Agentic AI.

In this work, we are exploring the aspects of how KG is well suited for addressing
these challenges, and how KG can complement LLMs in Agentic AI for scholarly re-
search. Furthermore, we investigate the problem of frequency bias inherent in LLMs.
Frequency bias distorts the outputs in LLMs by biasing towards the most frequent in-
puts. We examine how a KG integration can counteract this problem. Overall, through
this work we aim to highlight the potential of Knowledge Graphs for Agentic AI in schol-
arly communication.
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1. Introduction

Traditional query-response paradigm is changing with the emergance of Agentic sys-
tems by following an active exploratory workflows that execute various tasks on its own
[1]. Beyond generating text content, LLMs in this context are mainly participating in
the plan-act-reflect loop of agents by performing reasoning and taking decisions au-
tonomously[2].
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Agentic systems have transformed the traditional query-response paradigm into
active exploratory workflows [1]. In this context, LLMs are not only generating text
but also participating in the plan-act-reflect loop of agents, which includes performing
reasoning and taking decisions on their own (autonomy) [2]. This shift has profound
implications in transforming scholarly research. The research practices such as query-
ing, screening, reading, and summarizing, etc when performed by humans are highly
time consuming and are limited by human capacity and attention. Agentic AI promises
to automate these workflows by ingesting large amounts of documents, formulating
hypotheses on the fly, and returning structured outputs quickly. However, scholarly
research imposes a standard that far exceeds consumer-level applications [3]. It de-
mands a higher degree of assurance regarding provenance, reproducibility, peer re-
view, insight, and so on. Current agentic systems with LLMs face some challenges in
meeting this demand because of their inherent limitations. Some of these problems
are highlighted in [3]. In this work, we examine how some of these problems can be
addressed using Knowledge Graphs as a complement to LLMs in agentic deep search.
The problem of frequency bias is also examined with the solution provided by Knowl-
edge Graphs.
KGs and language models can complement and improve each other in several differ-
ent aspects [4], creating a synergistic interaction where structured symbolic knowledge
enhances the generative and reasoning capabilities of LLMs, and vice-versa. There is
a large volume of KGs in the scholarly data domain already built, such as Open Re-
search Knowledge Graph (ORKG) [5], Scholarly Data [6], and Scholarly Wikidata [7].
When Knowledge Graphs need to be incorporated with LLM-based agentic systems, a
multi-agent approach is followed [8], [9], where LLM-based agents communicate with
KG-based agents to facilitate their collaboration. Luo et. al. [10] presented a tutorial
to integrate Large Language Models (LLMs) with Knowledge Graphs (KGs) to advance
Artificial General Intelligence (AGI). This tutorial has covered, how KGs can enhance
LLMs and LLMs can improve KG construction and completion along with the chal-
lenges and future research directions. Yang et. al., [11] presented a descriptive survey
of Knowledge Graph–enhanced Pre-trained Language Models (KGPLMs) by categoriz-
ing existing approaches such as during-training, before-training, and post-training en-
hancement method. Cai et. al. [12] has proposed a comprehensive survey to explore
the integration of LLMs and KGs by categorizing in three categories: LLM-enhanced
KGs, KG enhanced LLMs and collaborative KGs and LLMs.
In this work, we are not focusing on the implementation of multi-agent systems; in-
stead, we outline which KG techniques are appropriate for addressing the LLM-agents’
problems. It is summarized in Figure 1, and in the following sections, we discuss these
aspects in detail.

The main contributions of this paper are:

• A study that characterizes the challenges of existing Agentic AI systems in schol-
arly communications, especially with respect to knowledge-related aspects.

• Mapping of Knowledge Graph techniques that can mitigate the inherent limits of
LLM-based agents for scholarly communication.

The rest of the paper is organized as follows: Section 2 highlights the challenges in
LLMs, Section 3 discusses possible solutions to these challenges, and finally, Section
4 concludes the paper.
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Figure 1. The appropriate Knowledge Graph techniques that can be leveraged to apply to the identified
problems associated with LLM-based agents.

2. Agentic AI with LLM: Challenges for Agents in Scholarly
Communication

In academic research, factual accuracy is crucial for any finding to be considered cred-
ible in scholarship and to withstand peer review and analysis. The probabilistic nature
of LLMs, with a risk of hallucination, is fundamentally at odds with the demand for fac-
tual certainty. Standard practices, such as RAG, aim to enhance factual accuracy, but
scholarly inquiry requires an even higher degree of assurance than that. An emerg-
ing extention of RAG - Graph RAG improves upon traditional RAG by supplying LLM
agents with graph-structured context. However, in agentic systems, to track the prove-
nance, an agent must maintain a trail that links LLM-generated statements to their exact
source, using stable identifiers and specific reasoning steps to justify their inclusion.

Apart from the provenance problem, another challenge faced in agentic AI with
LLM is associated with the Chain of Thought process. In agentic AI, LLMs are using
a chain of thought process for reasoning, which is fundamentally sequential in nature.
This constrains the ability of agents to perform reasoning with relational mapping or
parallel execution. Modelling the reasoning process itself requires tree search or sym-
bolic branching for causal relationships and dependencies.

Handling temporal details is also a challenge to be addressed, A statement or fact
made during a particular period of time may not be true for another time. For example,
the statement ”Pluto is a Planet” is true for 2005. But ”Pluto is a planet” is not true in
2007. It is a Dwarf Planet. Without structural frameworks to account for these temporal
details, the answers can be wrong.

Another problem with LLM agents is Context Dilution. The performance may de-
teriorate when the context length of the content stretches beyond the limits. Scientific
articles can contain systematic review appendices or complex figures, which may ex-
ceed the token limits of Language Models. In such cases, the ability to synthesize or
deal with long documents is compromised.
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Figure 2. The challenges associated with LLM-based Agentic AI for scholarly communication.

The final challenge we have investigated is Frequency Bias, where hypotheses that
appear more frequently lead to higher inference accuracy in LLM-based text generation
[13], [14]. This leads to a bias towards the most frequently appearing predicates or
concepts, resulting in the omission of critical facts that are rarely mentioned.

Figure 2 summarizes these challenges we discussed above, and further In Section
3, we discuss the solutions of these challenges in detail. It points out which Knowledge
Graph techniques are appropriate to mitigate these problems.

3. Knowledge Graph Infusion for Agentic AI

In this section, we examine how KG can complement LLMs for overcoming the limita-
tions of Agentic AI in scholarly communication. Knowledge Graphs offers a wide variety
of techniques that can be used to address these challenges and enhance performance
of agents.

3.1 Provenance

Knowledge Graphs enhanced by labels for nodes and relationships are known as la-
beled Property Graphs (LPG). LPG holds these label properties in the form of key-value
pairs and is a powerful Knowledge Graph with its rich and flexible structure. The re-
search identifiers like DOI or URLS can also be represented as labels of LPG. When
the agent works in either of its execution phases, it can trace this path from the graph.
Adapting this framework will ensure that the agents are not hallucinating non existing
content, but are actually giving outputs that are traceable within the graph.

Provenance from Knowledge Graphs can easily be facilitated through RDF and
Ontologies, like PROV-O Ontology[15]. On the other hand, Labeled Property Graphs
are used with its nodes and edges tagged with labels. For instance, Figure 3 shows
an example of Labelled Property Graph. Here the node with label :Author 1 have
properties like affiliation: "University X". And its relationship is labeled :WROTE

to another node :Paper. The :Paper node is labelled with its :title. Relationships
have label like, year: 2022 also. This granularity makes LPGs well suited for modeling
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Figure 3. Labeled Property Graph

complex data by providing a machine-readable representation of knowledge, and to
serve as the foundation of an agentic scholarly assistant.

When an Agentic AI interacts with the documents, its agents can create an audit
trail by mapping the LPG nodes for the source of document. It can map sentences or
data tables to citation relationships as well. This allows to trace back any final assertion
to its original source and serve as an evidence. This ensures scholarly admissibility and
it mitigates the risks of hallucination and unvetted inputs.

3.2 Reasoning

Real world reasoning tasks like diagnosing systemic failures or planning with multi-
ple interdependent variables are not linear, but are graphical in nature [16]. Symbolic
AI uses tree searches to evaluate alternative hypotheses in parallel, and to under-
stand the impact of a single node to the entire system, it maps out causal relationships
and dependencies. Modelling these scenarios demands a structure that can explore
branching possibilities. A linear Chain of Thought process might overlook it or sim-
plify incorrectly. So, beyond the unstructured text, scientific agents leverage the graph
structure of Knowledge Graphs to ensure the hypotheses are consistent with the known
concepts [17].

When an agent queries or reasons over a KG for the next reasoning step, it is
traversing a formally defined graph through the nodes and relations. This makes
branching reasoning and tree exploration grounded in the Knowledge Graph structure.
For example, suppose an agent needs to explore multiple hypotheses (“X causes Y”,
“X correlates with Y”, “Z mediates X�Y”). In that case, a KG enables it to branch into
each path through relationship links, rather than generating each hypothesis through
text prediction. The causal relationships in graph edges naturally support dependency
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tracing, which also enables backtracking. However, the sequential Chain of Thought
process is not suitable for backtracking.

Query languages like SPARQL, logical rule engines, and graph algorithms (such
as shortest paths, community detection, and centrality measures) enable an agent to
explore and verify relational knowledge programmatically. The agent can generate rea-
soning trees, prune invalid branches using KG constraints, and backtrack when contra-
dictions appear. In this way, agents can integrate Symbolic AI and scientific reasoning
workflows. With KG-assisted symbolic reasoning, agents can explore multiple reason-
ing paths (including multi-hop paths) simultaneously and backtrack when constraints
are violated.

3.3 Temporal Staleness

The temporal aspect is essential for modelling dynamic domains in scientific discover-
ies, where the validity of information changes over time. Training or fine-tuning an LLM
to incorporate every recent change is computationally expensive and slow. Knowl-
edge Graphs can be used for storing temporal aspects, such as dates, durations, or
timelines. By storing details like this separately from the LLM, only the KG needs to
be updated to represent its corresponding time attribute when a fact changes, without
needing to retrain or fine-tune the LLM.

Commonly, a Knowledge Graph stores information as triples (Subject-Predicate-
Object). Because of this, standard KGs also have a limitation of appending timestamps
beyond the triples [18]. To incorporate time, these triples can be extended with a tem-
poral attribute with the technique of a ”quad” or a ”reified statement” especially on the
KGs built on RDF standards, like the example shown in Figure 4. Here, Pluto was clas-
sified as a planet according to the fact in 2005. It is not true for 2007. In an RDF quad,
both the triples are reified with their corresponding year. In this way, temporal aspects
can be attributed in a manner decoupled from the core architecture of Large Language
Models (LLMs). For more expressive details, it can incorporate temporal ontologies
also [18].

Pluto
is_a

Planet 2005

Pluto
is_a

Dwarf
Planet 2007

Figure 4. A representation of quad reification in RDF with the year when a fact is valid.

3.4 Context Dilution

Research artifacts are often very long and exceed the token limits of even the most
advanced LLMs by means of their content. When these documents are processed in
their entirety, it would require an excessively long sequence of tokens. As the input
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length increases, token-level representations compete for limited computational atten-
tion. It leads to a loss of focus on key contextual understanding. This is a process
called context dilution. It reduces the model’s ability to form meaningful insights or
maintain coherence in long sections. This makes it particularly challenging for LLMs to
handle literature that requires cross-referencing of results, interpreting detailed tables,
or linking figures to corresponding text descriptions.

Instead of forcing the LLM to process the entire document text continuously, the
KG can utilize the document’s essential information as a structured network of nodes
(entities and concepts) and edges (relationships between them). This allows the LLM-
powered agent to reference this structured representation. By querying the KG for
specific facts and relationships, the agent can reduce token usage and mitigate the
degradation caused by context length. This approach enhances scalability by allow-
ing selective referencing, such as querying specific nodes for relationships between
variables, without reloading the entire content.

One another approach suggested by [19] to tackle this challenge in agentic sys-
tems is to employ a chain of agents (CoA). Yet, the performance can only be as good
as the communication ability of agents and is affected by the latency between agents.
Knowledge Graphs enable agents to selectively reference structured nodes and edges,
rather than relying on the entire document each time, thereby improving scalability and
reducing token-related degradation.

3.5 Frequency Bias Mitigation with Knowledge Graphs

As explained in the paper [14], the authors compute a frequency bias metric and they
measure how frequently the verbal predicate in the hypothesis (“The ash contains iron”)
appears in a large corpus, compared to the predicate in the premise(“The ash is rich
with iron”). In the given example, the predicate “contains” is more common than “is
rich with”. The model is shown to rely on that frequency difference rather than any
logical reason. From a general perspective, we can see that ”the ash is rich with iron”
is a more specific claim (richness) and “the ash contains iron” is a more general claim
(containment).

As seen in the example mentioned above, many novel hypotheses or statements
appear very rarely (perhaps only once) [20] in scholarly publications. Since the Knowl-
edge Graphs are governed by a structured representation of relations (edges) and en-
tities as unique triples, rather than text, agents can select based on structural attributes
rather than how often particular words/concepts appear in a corpus. Thus, even the
rarest predicates are preserved with full authority. The KG here acts as a structural an-
chor. Even a once-mentioned but highly authoritative fact remains accessible. Because
the candidate query results stem from the KG, the agents can counter the frequency
bias.

4. Conclusion

In this work, we discuss the applications of Knowledge Graphs in Agentic AI to com-
plement LLMs. First, we identified four key limitations of LLM-based agents that align
with the requirements for autonomous scientific assistance outlined by [3]. Additionally,
we observed another issue related to frequency bias. We suggest Knowledge Graph
as a complementary framework for LLM-based agents to mitigate these problems. As
we have discussed, various Knowledge Graph techniques can be used to address
the particular issues mentioned. Like, Labeled Property Graphs with the provenance
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tracking problem, Symbolic Rule Engines with the Reasoning Problem, Reification with
Temporal Staleness, Targeted Queries with the Context Dilution, and Unique Triple
representation of knowledge with the Frequency Bias, respectively. From the exam-
ples we discussed in this paper, it is clear that the agents can significantly benefit from
the Knowledge Graph and its various features for improving performance, especially in
scholarly communication.
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