
The Second Bridge on Artificial Intelligence for Scholarly Communication (AAAI-26)

Contributions

https://doi.org/10.52825/ocp.v8i.3172

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 18 Dec. 2025

Synergistic AI Agents
Integrating Knowledge Graphs and Large Language Models for Scholarly

Communication

Bharath Chand1, Sanju Tiwari2,4, Nandana Mihindukulasooriya3, and
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Abstract. Agentic AI is and emerging field of artificial intelligence and it has great impact
on scholarly research. Agentic AI helps to handle large volume of information from
vast corpora. Currently the Agentic AI systems depends on Large Language Models
(LLM) for the tasks of information retrieval and reasoning. LLMs are very effective at
Natural Language Understanding and the iterative reasoning. However, there exist some
inherent limitations for LLMs, which pose challenges for Agentic AI. Provenance tracking,
reasoning challenges, temporal staleness and context dilution are some examples.
Incorporating Knowledge Graphs (KG) along with LLMs can mitigate these challenges,
and can support deeps search in Agentic AI.

In this work, we are exploring the aspects of how KG is well suited for addressing
these challenges, and how KG can complement LLMs in Agentic AI for scholarly
research. Furthermore, we investigate the problem of frequency bias inherent in LLMs.
Frequency bias distorts the outputs in LLMs by biasing towards the most frequent inputs.
We examine how a KG integration can counteract this problem. Overall, through this
work we aim to highlight the potential of Knowledge Graphs for Agentic AI in scholarly
communication.
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1. Introduction

Traditional query-response paradigm is changing with the emergance of Agentic systems
by following an active exploratory workflows that execute various tasks on its own [1].
Beyond generating text content, LLMs in this context are mainly participating in the plan-
act-reflect loop of agents by performing reasoning and taking decisions autonomously[2].

Agentic systems have transformed the traditional query-response paradigm into
active exploratory workflows [1]. In this context, LLMs are not only generating text but also
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participating in the plan-act-reflect loop of agents, which includes performing reasoning
and taking decisions on their own (autonomy) [2]. This shift has profound implications in
transforming scholarly research. The research practices such as querying, screening,
reading, and summarizing, etc when performed by humans are highly time consuming
and are limited by human capacity and attention. Agentic AI promises to automate these
workflows by ingesting large amounts of documents, formulating hypotheses on the
fly, and returning structured outputs quickly. However, scholarly research imposes a
standard that far exceeds consumer-level applications [3]. It demands a higher degree of
assurance regarding provenance, reproducibility, peer review, insight, and so on. Current
agentic systems with LLMs face some challenges in meeting this demand because of
their inherent limitations. Some of these problems are highlighted in [3]. In this work, we
examine how some of these problems can be addressed using Knowledge Graphs as
a complement to LLMs in agentic deep search. The problem of frequency bias is also
examined with the solution provided by Knowledge Graphs.
KGs and language models can complement and improve each other in several different
aspects [4], creating a synergistic interaction where structured symbolic knowledge
enhances the generative and reasoning capabilities of LLMs, and vice-versa. There
is a large volume of KGs in the scholarly data domain already built, such as Open
Research Knowledge Graph (ORKG) [5], Scholarly Data [6], and Scholarly Wikidata [7].
When Knowledge Graphs need to be incorporated with LLM-based agentic systems,
a multi-agent approach is followed [8], [9], where LLM-based agents communicate
with KG-based agents to facilitate their collaboration. Luo et. al. [10] presented a
tutorial to integrate Large Language Models (LLMs) with Knowledge Graphs (KGs)
to advance Artificial General Intelligence (AGI). This tutorial has covered, how KGs
can enhance LLMs and LLMs can improve KG construction and completion along
with the challenges and future research directions. Yang et. al., [11] presented a
descriptive survey of Knowledge Graph–enhanced Pre-trained Language Models
(KGPLMs) by categorizing existing approaches such as during-training, before-training,
and post-training enhancement method. Cai et. al. [12] has proposed a comprehensive
survey to explore the integration of LLMs and KGs by categorizing in three categories:
LLM-enhanced KGs, KG enhanced LLMs and collaborative KGs and LLMs.
In this work, we are not focusing on the implementation of multi-agent systems;
instead, we outline which KG techniques are appropriate for addressing the LLM-agents’
problems. It is summarized in Figure 1, and in the following sections, we discuss these
aspects in detail.

The main contributions of this paper are:

• A study that characterizes the challenges of existing Agentic AI systems in scholarly
communications, especially with respect to knowledge-related aspects.

• Mapping of Knowledge Graph techniques that can mitigate the inherent limits of
LLM-based agents for scholarly communication.

The rest of the paper is organized as follows: Section 2 highlights the challenges in
LLMs, Section 3 discusses possible solutions to these challenges, and finally, Section 4
concludes the paper.

2. Agentic AI with LLM: Challenges for Agents in Scholarly
Communication

In academic research, factual accuracy is crucial for any finding to be considered
credible in scholarship and to withstand peer review and analysis. The probabilistic
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Figure 1. The appropriate Knowledge Graph techniques that can be leveraged to apply to the identified
problems associated with LLM-based agents.

nature of LLMs, with a risk of hallucination, is fundamentally at odds with the demand for
factual certainty. Standard practices, such as RAG, aim to enhance factual accuracy, but
scholarly inquiry requires an even higher degree of assurance than that. An emerging
extention of RAG - Graph RAG improves upon traditional RAG by supplying LLM agents
with graph-structured context. However, in agentic systems, to track the provenance, an
agent must maintain a trail that links LLM-generated statements to their exact source,
using stable identifiers and specific reasoning steps to justify their inclusion.

Apart from the provenance problem, another challenge faced in agentic AI with
LLM is associated with the Chain of Thought process. In agentic AI, LLMs are using a
chain of thought process for reasoning, which is fundamentally sequential in nature. This
constrains the ability of agents to perform reasoning with relational mapping or parallel
execution. Modelling the reasoning process itself requires tree search or symbolic
branching for causal relationships and dependencies.

Handling temporal details is also a challenge to be addressed, A statement or fact
made during a particular period of time may not be true for another time. For example,
The statement ”Pluto is a Planet” is true for 2005. But ”Pluto is a planet” is not true in
2007. It is a Dwarf Planet. Without structural frameworks to account for these temporal
details, the answers can be wrong.

Another problem with LLM agents is Context Dilution. The performance may
deteriorate when the context length of the content stretches beyond the limits. Scientific
articles can contain systematic review appendices or complex figures, which may exceed
the token limits of Language Models. In such cases, the ability to synthesize or deal with
long documents is compromised.

The final challenge we have investigated is Frequency Bias, where hypotheses that
appear more frequently lead to higher inference accuracy in LLM-based text generation
[13], [14]. This leads to a bias towards the most frequently appearing predicates or
concepts, resulting in the omission of critical facts that are rarely mentioned.
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Figure 2. The challenges associated with LLM-based Agentic AI for scholarly communication.

Figure 2 summarizes these challenges we discussed above, and further In Section
3, we discuss the solutions of these challenges in detail. It points out which Knowledge
Graph techniques are appropriate to mitigate these problems.

3. Knowledge Graph Infusion for Agentic AI

In this section, we examine how KG can complement LLMs for overcoming the limitations
of Agentic AI in scholarly communication. Knowledge Graphs offers a wide variety of
techniques that can be used to address these challenges and enhance performance of
agents.

3.1 Provenance

Knowledge Graphs enhanced by labels for nodes and relationships are known as labeled
Property Graphs (LPG). LPG holds these label properties in the form of key-value pairs
and is a powerful Knowledge Graph with its rich and flexible structure. The research
identifiers like DOI or URLS can also be represented as labels of LPG. When the agent
works in either of its execution phases, it can trace this path from the graph. Adapting
this framework will ensure that the agents are not hallucinating non existing content, but
are actually giving outputs that are traceable within the graph.

Provenance from Knowledge Graphs can easily be facilitated through RDF and
Ontologies, like PROV-O Ontology[15]. On the other hand, Labeled Property Graphs
are used with its nodes and edges tagged with labels. For instance, Figure 3 shows
an example of Labelled Property Graph. Here the node with label :Author 1 have
properties like affiliation: "University X". And its relationship is labeled :WROTE

to another node :Paper. The :Paper node is labelled with its :title. Relationships
have label like, year: 2022 also. This granularity makes LPGs well suited for modeling
complex data by providing a machine-readable representation of knowledge, and to
serve as the foundation of an agentic scholarly assistant.

When an Agentic AI interacts with the documents, its agents can create an audit
trail by mapping the LPG nodes for the source of document. It can map sentences or
data tables to citation relationships as well. This allows to trace back any final assertion
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Figure 3. Labeled Property Graph

to its original source and serve as an evidence. This ensures scholarly admissibility and
it mitigates the risks of hallucination and unvetted inputs.

3.2 Reasoning

Real world reasoning tasks like diagnosing systemic failures or planning with multiple
interdependent variables are not linear, but are graphical in nature [16]. Symbolic AI uses
tree searches to evaluate alternative hypotheses in parallel, and to understand the impact
of a single node to the entire system, it maps out causal relationships and dependencies.
Modelling these scenarios demands a structure that can explore branching possibilities.
A linear Chain of Thought process might overlook it or simplify incorrectly. So, beyond the
unstructured text, scientific agents leverage the graph structure of Knowledge Graphs to
ensure the hypotheses are consistent with the known concepts [17].

When an agent queries or reasons over a KG for the next reasoning step, it
is traversing a formally defined graph through the nodes and relations. This makes
branching reasoning and tree exploration grounded in the Knowledge Graph structure.
For example, suppose an agent needs to explore multiple hypotheses (“X causes Y”,
“X correlates with Y”, “Z mediates X�Y”). In that case, a KG enables it to branch into
each path through relationship links, rather than generating each hypothesis through
text prediction. The causal relationships in graph edges naturally support dependency
tracing, which also enables backtracking. However, the sequential Chain of Thought
process is not suitable for backtracking.

Query languages like SPARQL, logical rule engines, and graph algorithms (such
as shortest paths, community detection, and centrality measures) enable an agent
to explore and verify relational knowledge programmatically. The agent can generate
reasoning trees, prune invalid branches using KG constraints, and backtrack when
contradictions appear. In this way, agents can integrate Symbolic AI and scientific
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reasoning workflows. With KG-assisted symbolic reasoning, agents can explore multiple
reasoning paths (including multi-hop paths) simultaneously and backtrack when
constraints are violated.

3.3 Temporal Staleness

The temporal aspect is essential for modelling dynamic domains in scientific discoveries,
where the validity of information changes over time. Training or fine-tuning an LLM to
incorporate every recent change is computationally expensive and slow. Knowledge
Graphs can be used for storing temporal aspects, such as dates, durations, or timelines.
By storing details like this separately from the LLM, only the KG needs to be updated
to represent its corresponding time attribute when a fact changes, without needing to
retrain or fine-tune the LLM.

Commonly, a Knowledge Graph stores information as triples (Subject-Predicate-
Object). Because of this, standard KGs also have a limitation of appending timestamps
beyond the triples [18]. To incorporate time, these triples can be extended with a temporal
attribute with the technique of a ”quad” or a ”reified statement” especially on the KGs
built on RDF standards, like the example shown in Figure 4. Here, Pluto was classified
as a planet according to the fact in 2005. It is not true for 2007. In an RDF quad, both
the triples are reified with their corresponding year. In this way, temporal aspects can be
attributed in a manner decoupled from the core architecture of Large Language Models
(LLMs). For more expressive details, it can incorporate temporal ontologies also [18].

Pluto
is_a

Planet 2005

Pluto
is_a

Dwarf
Planet 2007

Figure 4. A representation of quad reification in RDF with the year when a fact is valid.

3.4 Context Dilution

Research artifacts are often very long and exceed the token limits of even the most
advanced LLMs by means of their content. When these documents are processed in
their entirety, it would require an excessively long sequence of tokens. As the input length
increases, token-level representations compete for limited computational attention. It
leads to a loss of focus on key contextual understanding. This is a process called context
dilution. It reduces the model’s ability to form meaningful insights or maintain coherence
in long sections. This makes it particularly challenging for LLMs to handle literature that
requires cross-referencing of results, interpreting detailed tables, or linking figures to
corresponding text descriptions.

Instead of forcing the LLM to process the entire document text continuously, the KG
can utilize the document’s essential information as a structured network of nodes (entities
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and concepts) and edges (relationships between them). This allows the LLM-powered
agent to reference this structured representation. By querying the KG for specific facts
and relationships, the agent can reduce token usage and mitigate the degradation
caused by context length. This approach enhances scalability by allowing selective
referencing, such as querying specific nodes for relationships between variables, without
reloading the entire content.

One another approach suggested by [19] to tackle this challenge in agentic systems
is to employ a chain of agents (CoA). Yet, the performance can only be as good as
the communication ability of agents and is affected by the latency between agents.
Knowledge Graphs enable agents to selectively reference structured nodes and edges,
rather than relying on the entire document each time, thereby improving scalability and
reducing token-related degradation.

3.5 Frequency Bias Mitigation with Knowledge Graphs

As explained in the paper [14], the authors compute a frequency bias metric and they
measure how frequently the verbal predicate in the hypothesis (“The ash contains iron”)
appears in a large corpus, compared to the predicate in the premise(“The ash is rich with
iron”). In the given example, the predicate “contains” is more common than “is rich with”.
The model is shown to rely on that frequency difference rather than any logical reason.
From a general perspective, we can see that ”the ash is rich with iron” is a more specific
claim (richness) and “the ash contains iron” is a more general claim (containment).

As seen in the example mentioned above, many novel hypotheses or statements
appear very rarely (perhaps only once) [20] in scholarly publications. Since the
Knowledge Graphs are governed by a structured representation of relations (edges) and
entities as unique triples, rather than text, agents can select based on structural attributes
rather than how often particular words/concepts appear in a corpus. Thus, even the rarest
predicates are preserved with full authority. The KG here acts as a structural anchor.
Even a once-mentioned but highly authoritative fact remains accessible. Because the
candidate query results stem from the KG, the agents can counter the frequency bias.

4. Conclusion

In this work, we discuss the applications of Knowledge Graphs in Agentic AI to
complement LLMs. First, we identified four key limitations of LLM-based agents that align
with the requirements for autonomous scientific assistance outlined by [3]. Additionally,
we observed another issue related to frequency bias. We suggest Knowledge Graph
as a complementary framework for LLM-based agents to mitigate these problems. As
we have discussed, various Knowledge Graph techniques can be used to address
the particular issues mentioned. Like, Labeled Property Graphs with the provenance
tracking problem, Symbolic Rule Engines with the Reasoning Problem, Reification with
Temporal Staleness, Targeted Queries with the Context Dilution, and Unique Triple
representation of knowledge with the Frequency Bias, respectively. From the examples
we discussed in this paper, it is clear that the agents can significantly benefit from the
Knowledge Graph and its various features for improving performance, especially in
scholarly communication.
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