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We are pleased to present the proceedings of the “1st Large Language Models for 
Ontology Learning Challenge (LLMs4OL 2024)”, held at the 23rd International Se-
mantic Web Conference (ISWC). This challenge marks a significant a dvancement in 
utilizing Large Language Models (LLMs) for Ontology Learning (OL)—a key Semantic 
Web component that facilitates the automatic extraction of structured knowledge from 
unstructured data. The challenge features three main tasks: Term Typing (identifying 
categories for terms), Taxonomy Discovery (uncovering hierarchical relationships), and 
Non-Taxonomic Relation Extraction (identifying other meaningful relationships between 
terms). Each task is designed to test different facets of ontology construction and to 
encourage the exploration of innovative techniques. This challenge seeks to foster col-
laboration, inspire innovation, and expand the capabilities of LLMs in OL. The proceed-
ings include a collection of innovative solutions and insights from global participants, 
highlighting the crucial role of LLMs in enhancing the web with structured knowledge. 
We believe the outcomes of this challenge will propel further advancements in OL and 
its applications on the semantic web.

We would like to extend our gratitude to all the participants for their invaluable contri-
butions, which their solutions and dedication have greatly enriched this challenge. Our 
sincere thanks also go to the conference organizers and committee for their efforts in 
hosting this event. We are deeply appreciative of the reviewers for their evaluations 
and feedback. Their reviews have been instrumental in enhancing the quality of the 
submissions. We would like to specifically acknowledge:

• Dr. Amin Keshavarzi (Postdoctoral Researcher, L3S & TIB, Germany)
• Mostafa Rahgouy (Lead Project Coordinator, Auburn University, USA)
• Sahar Tahmasebi (Doctoral Researcher, TIB, Germany)
• Milad Molazadeh Oskuee (Lead NLP Researcher, Iran)
• Aida Usmanova (Doctoral Researcher, Leuphana Universität Lüneburg, Germany)
• Emetis Niazmand (Doctoral Researcher, TIB, Germany)
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online.
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Abstract: This paper outlines the LLMs4OL 2024, the first edition o f t he Large Lan-
guage Models for Ontology Learning Challenge. LLMs4OL is a community develop-
ment initiative collocated with the 23rd International Semantic Web Conference (ISWC) 
to explore the potential of Large Language Models (LLMs) in Ontology Learning (OL), a 
vital process for enhancing the web with structured knowledge to improve interoperabil-
ity. By leveraging LLMs, the challenge aims to advance understanding and innovation 
in OL, aligning with the goals of the Semantic Web to create a more intelligent and user-
friendly web. In this paper, we give an overview of the 2024 edition of the LLMs4OL 
challenge1 and summarize the contributions.

Keywords: LLMs4OL Challenge, Ontology Learning, Large Language Models

1 Introduction

The Semantic Web aims to enrich the current web with structured knowledge and meta-
data, enabling enhanced interoperability and understanding across diverse systems. 
At the core of this endeavor is Ontology Learning (OL), a process that automates the 
extraction of structured knowledge from unstructured data [1], essential for construct-
ing dynamic ontologies that underpin the Semantic Web. The emergence of Large 
Language Models (LLMs) like GPT-3 [2] and GPT-4 [3] has revolutionized natural lan-
guage processing (NLP), demonstrating remarkable performance across tasks such as 
language translation, question answering, and text generation. These models are par-
ticularly adept at crystallizing existing textual knowledge from a vast array of sources, 
making them potentially valuable for OL, where the goal is to extract a shared concep-
tualization of concepts and relationships from diverse inputs [4]. The introduction of 
LLMs has thus opened up new avenues of research, including the exploration of their 
potential in automating the OL process.

In our prior work published in the ISWC 2023 research track proceedings titled 
“LLMs4OL: Large Language Models for Ontology Learning” [5], marked a notable di-
rection towards employing LLMs in OL, demonstrating their potential in automating 
knowledge acquisition and representation for the Semantic Web. Based on this re-
search, the The 1st Large Language Models for Ontology Learning Challenge at

1https://sites.google.com/view/llms4ol
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Ontology Learning
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Figure 1. The LLMs4OL task paradigm is an end-to-end framework for ontology learning. The three
OL tasks that empirically validated in the LLMs4OL 2024 challenge, based on our prior re-
search [5], are depicted within the blue arrow, aligned with the greater LLMs4OL paradigm.

the 23rd ISWC 2024 (1st LLMs4OL Challenge @ ISWC 2024) was introduced as a
call for community development. With the LLMs4OL challenge, we aimed to catalyze
community-wide engagement in validating and expanding the use of LLMs in OL. This
initiative is poised to advance our comprehension of LLMs’ roles within the Semantic
Web, encouraging innovation and collaboration in developing scalable and accurate
ontology learning methods.

LLMs4OL consists of three OL tasks, Task A – Term Typing, Task B – Taxonomy
Discovery, and Task C – Non-Taxonomic Relation Extraction. While participation in all
three tasks in the LLMs4OL 2024 challenge is stipulated as desirable, but not manda-
tory. Thus participants choose to enroll only in Task A or B or C, or Task A and B, or
Task A and C, or Task B and C. Furthermore, participants are required to implement
LLM-based solutions, we did not impose any restrictions on the LLM prompting meth-
ods. For instance, they can choose to bring in additional context information from the
World Wide Web to enrich the training and test instances. To thoroughly explore the
potential of LLMs for OL, we structured the challenge around two distinct evaluation
phases: (1) Few-shot testing phase and (2) Zero-shot testing phase. Through this
work, we aim to contribute to the ongoing discourse on the capabilities of LLMs, par-
ticularly in the context of OL, and to provide insights into their potential for enhancing
the Semantic Web. Thus, in the remainder of this paper, we detail the challenge tasks,
what LLMs are being used, participant contributions, and findings.

2 LLMs4OL 2024 Tasks

In the LLMs4OL 2024 challenge, we have organized three main tasks which are cen-
tered around the ontology primitives [6] that comprise the following: 1. a set of strings
that describe terminological lexical entries L for conceptual types; 2. a set of concep-
tual types T ; 3. a taxonomy of types in a hierarchy HT ; 4. a set of non-taxonomic
relations R described by their domain and range restrictions arranged in a heterarchy
of relations HR; and 5. a set of axioms A that describe additional constraints on the
ontology and make implicit facts explicit.

To address these primitives, the tasks for OL [7] are: 1) Corpus preparation – collect-
ing source texts for building ontology. 2) Terminology extraction – extracting relevant
terms from the texts. 3) Term typing – grouping similar terms into conceptual types.
4) Taxonomy construction – establishing “is-a” hierarchies between types. 5) Rela-
tionship extraction – extracting semantic relationships beyond “is-a” between types. 6)
Axiom discovery – finding constraints rules for the ontology. These tasks constitute the
LLMs4OL task paradigm as depicted in Figure 1. Assuming the corpus preparation
step is done by reusing ontologies publicly released in the community, we introduced
the following three main tasks for the first edition of the LLMs4OL challenge.
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Table 1. LLMs4OL 2024 challenge, subtasks, domains, number of participants per subtasks, and evalu-
ation phases.

Task SubTask Domain Participants Phase

A

A.1 - WordNet lexicosemantics 7

Few-shot

A.2 - GeoNames geographical locations 5
A.3 - UMLS - NCI

biomedical
5

A.3 - UMLS - MEDCIN 4
A.3 - UMLS - SNOMEDCT US 4
A.4 - GO - Biological Process

biological
5

A.4 - GO - Cellular Component 5
A.4 - GO - Molecular Function 5
A.5 - DBO general knowledge 2

Zero-shot
A.6 - FoodOn food 2

B

B.1 - GeoNames geographical locations 5

Few-shot
B.2 - Schema.org web content types 3
B.3 - UMLS biomedical 3
B.4 - GO biological 1
B.5 - DBO general knowledge 2

Zero-shot
B.6 - FoodOn food 1

C
C.1 - UMLS biomedical 2

Few-shot
C.2 - GO biological 0
C.3 - FoodOn food 0 Zero-shot

2.1 Task A – Term Typing

The Table 1 shows 10 subtasks for Task A across 6 distinct domains such as lexi-
cosemantics, geographical locations, biomedical, biological, general knowledge, and
food domains. This task is defined as ”discover the generalized type for a given lexical
term”. For this task, for each ontology, participants are given training instances defined
as following formalism.

fTaskA
prompt(L) := [S?]. ([L], [T ])

Where S is an optional context sentence (if available in the source ontology), L is the
lexical term prompted for, and T is the conceptual term type. In the test phase, types
are hidden, and participants predict them for given terms using their trained models.

2.2 Task B – Taxonomy Discovery

After grouping terms under a conceptual type, in Task B, the goal is for given types
”discover the taxonomic hierarchy between types”, where the hierarchy between types
is defined with an ”is-a” relationship. Participants receive training instances for 6 distinct
subtasks (described in Table 1) as :

fTaskB
prompt(a, b) := (Ta, Tb)

Where Ta is the parent (superclass) of Tb, and Tb is the child (subclass) of Ta. The
goal is to train a system to correctly identify the taxonomy between type. The training
dataset will include term types and taxonomically related type pairs. In the test phase,
participants work with just term types and must use their trained models to identify
correct taxonomic relationships (type pairs). The types for the training and test phases
are mutually exclusive. Furthermore, for the testing phase participants are required
to post-process their outputs to return type pairs that follow the order of superclass-
subclass related types.
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2.3 Task C – Non-Taxonomic Relation Extraction

Nonetheless, the ”is-a” relations are not the only relations in ontologies. So, Task C
aims to ”identify non-taxonomic, semantic relations between types”. Training instances
are given for three subtasks C.1 - UMLS, C.2 - GO, and C.3 - FoodOn as:

fTaskC
prompt(h, r, t) := (Th, r, Tt)

Where, Th and Tt are head and tail taxonomic types, respectively, and r is the non-
taxonomic semantic relation between them, chosen from a predefined set R of seman-
tic relations. Participants aimed to train a system to identify pairs of types, and then
classify pairs of types into semantic relations. The training phase involves types, re-
lations, and triples of semantic relations; the test phase requires applying the trained
system to predict semantically related triples from given types and the set of relations.

The caveat here is that we do not expect participant systems to infer a semantic
relation but rather establish semantically related types and classify their relation from
a known set of predetermined relations. This implies that any manual ontology spec-
ification task predetermines which semantic relations hold for the given ontology. In
an alternative scenario, where participants might have had to infer the semantic re-
lation, we realize that the possibilities of semantic relations might have been rather
vast. Hence we posit a more realistic task design by predetermining the possible set of
semantic relations.

3 Evaluation

There are two main evaluation phases for the challenge, which are the following:

• Few-shot testing phase. Each ontology selected for system training will be di-
vided into two parts: one part will be released for the training of the systems and
another part will be reserved for the testing of systems in this phase.

• Zero-shot testing phase. New ontologies that are unseen during training will be
introduced. The objective is to evaluate the generalizability and transferability of
the LLMs developed in this challenge.

For evaluation, we used the challenge datasets [8] – available at challenge GitHub2

repository – with standard evaluation metrics used for all tasks. Given G(i) as a set of
ground truth labels for sample i, and P(i) as a set of predicted labels for sample i, the
precision P , recall R, and F1-score F1 are being calculated as follows:

P =

∑
i |G(i) ∩ P(i)|∑

i |P(i)|
, R =

∑
i |G(i) ∩ P(i)|∑

i |G(i)|
, F1 =

2× P ×R

P +R

With precision, we assessed the percentage of the returned related pairs, while recall
was used to measure the proportion of correct pairs that were accurately retrieved.
In the end, the F1-score was calculated as the harmonic mean of precision and re-
call, serving as a comparison metric for the participants’ submissions. We used Co-
dalab3 [9] submission platform to organize participants submissions and scoring.

4 Participant Systems and Results

The LLMs4OL 2024 challenge has inspired diverse solutions, showcasing the grow-
ing potential of LLMs for OL tasks. Using the Codalab submissions platform, for this

2https://github.com/HamedBabaei/LLMs4OL-Challenge-ISWC2024
3https://codalab.lisn.upsaclay.fr/competitions/19547
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Table 2. LLMs4OL 2024 challenge participants methods. ∗ refers to the subtask that did not make the
submission to the leaderboard but was reported in the paper. MF refers to ”Molecular Function”,
CC refers to ”Cellular Component”, and BF refers to ”Biological Process”. NCI, SNOMEDCT US, and
MEDCIN are from ”UMLS”.
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DSTI [10] Flan-T5
GTE-Large

Fine-tuning
RAG � ∗

DaSeLab [11] GPT-3.5-Turbo Fine-tuning �

RWTH-DBIS [12] GPT-3.5-Turbo
LLaMA-3-8B

Prompting
Fine-Tuning �

SKH-NLP [13] LLaMA-3-70B
Sentence-BERT

Prompting
Fine-Tuning �

TheGhost [14]

BLOOM-1B7
BLOOM-3B

BLOOM- 7B1
LLaMA-7B

LLaMA-2-7B
LLaMA-3-8B
BioMistral-7B

OpenBioLLM-8B

Prompt-Tuning �

silp nlp [15]

GPT-4o
Mixtral-8x7B
LLaMA-3-8B

BERT
Sentence-BERT

Prompting
Fine-Tuning

ML
�

Phoenixes [16] Mistral-7B
Sentence-BERT RAG �

TSOTSALearning [17] GPT-4
BERT

RAG
Rules �

challenge we set a limit of 10 submissions per day and a total of 30 submissions per
subtask. We received 272 total submissions from 14 participants. In final, this chal-
lenge attracted the interest of the final eight research teams, as demonstrated by the
various approaches they submitted for the subtasks. Each subtask of the competi-
tion depicted a rigorous field inherent to OL, which helped facilitate breakthroughs in
finding generalized types (Task A), identifying taxonomic hierarchies (Task B), and ex-
tracting non-taxonomic relations (Task C), further scaffolding future AI advancements.
Notably, teams employed varied strategies to tackle subtasks, such as fine-tuning,
prompt-tuning, and retrieval-augmented generation (RAG). These approaches were
used to analyze OL tasks across domains like lexicosemantics, geographical locations,
biomedical concepts, and more (see Table 1 for subtasks and domains involved in this
challenge). The summary of explored LLMs and subtasks are presented in Table 2 and
in the following we will detail contributions and findings.

4.1 Participants Contributions

The results for Task A are presented in Table 3, for Task B in Table 5, and for Task C in
Table 4.

DSTI [10]. DSTI fine-tuned Flan-T5-Small [18] model for SubTasks A.1 - WordNet
and A.2 - GeoNames. Obtained F1-score of 0.9716 for SubTask A.1 and ranked as a
second team. But for GeoNames they did not submit the model to the leaderboard due
to the larger nature of GeoNames dataset that required more computational resources.
They introduced two approaches for OL. The first approach is fine-tuning LLMs using
the zero-shot prompting method, the second approach is using a RAG pipeline using
the General Text Embeddings (GTE)-Large [19] model as a retriever and fine-tuned
LLM as a retriever. Due to the computational resources they preferred to use the Flan-
T5-small model, and the results showed the effectiveness of their approach.
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Table 3. Task A - Term Typing Results for SubTasks

SubTask Team Name F1-Score Precision Recall

A.1 (FS) - WordNet

TSOTSALearning 0.9938 0.9938 0.9938
DSTI 0.9716 0.9716 0.9716
DaseLab 0.9697 0.9689 0.9704
RWTH-DBIS 0.9446 0.9446 0.9446
TheGhost 0.9392 0.9389 0.9395
Silp nlp 0.9037 0.9037 0.9037
Phoenixes 0.8158 0.7689 0.8687

A.2 (FS) - GeoNames

DaseLab 0.5906 0.5906 0.5906
Silp nlp 0.4433 0.7503 0.3146
RWTH-DBIS 0.4355 0.4355 0.4355
TSOTSALearning 0.2937 0.2937 0.2937
TheGhost 0.1489 0.1461 0.1519

A.3 (FS) - UMLS - NCI

DaseLab 0.8249 0.8161 0.8340
Silp nlp 0.6974 0.8792 0.5779
TheGhost 0.5370 0.4450 0.6769
RWTH-DBIS 0.1691 0.1821 0.1579
Phoenixes 0.0737 0.0562 0.1070

A.3 (FS) - UMLS - MEDCIN

Silp nlp 0.9382 0.9591 0.9181
DaseLab 0.9373 0.9379 0.9366
TheGhost 0.5328 0.4183 0.7336
RWTH-DBIS 0.4566 0.4607 0.4526

A.3 (FS) - UMLS - SNOMEDCT US

DaseLab 0.8829 0.8810 0.8848
Silp nlp 0.7552 0.8583 0.6742
TheGhost 0.5275 0.4266 0.6910
RWTH-DBIS 0.4747 0.4888 0.4613

A.4 (FS) - GO - Cellular Component

Silp nlp 0.2726 0.4279 0.2000
RWTH-DBIS 0.2178 0.1846 0.2656
TheGhost 0.1877 0.1653 0.2171
TSOTSALearning 0.0638 0.0767 0.0545
Phoenixes 0.0158 0.0124 0.0217

A.4 (FS) - GO - Biological Process

Silp nlp 0.2691 0.4006 0.2026
TheGhost 0.1025 0.0964 0.1095
RWTH-DBIS 0.0881 0.0693 0.1207
TSOTSALearning 0.0648 0.0806 0.0542
Phoenixes 0.0319 0.0214 0.0622

A.4 (FS) - GO - Molecular Function

Silp nlp 0.2970 0.4185 0.2302
RWTH-DBIS 0.1418 0.1670 0.1231
TheGhost 0.1270 0.1278 0.1261
TSOTSALearning 0.0910 0.1072 0.0790
Phoenixes 0.0700 0.0485 0.1256

A.5 (ZS) - DBO
RWTH-DBIS 0.4270 0.4270 0.4270
Silp nlp 0.3009 0.3009 0.3009

A.6 (ZS) - FoodOn
RWTH-DBIS 0.8068 0.8068 0.8068
Silp nlp 0.7278 0.7278 0.7278

RWTH-DBIS [12]. This team participated in tasks A and B (12 subtasks in total).
For both tasks, they proposed a domain-specific continual training, fine-tuning, and
knowledge-enhanced prompt-tuning approach. The models are firstly enriched with
conceptual information related to terms and types. This is followed by CausalLM man-
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ner and task-specific fine-tuning using LLaMA-3-8B [20]. The proposed approach per-
forms well on several subtasks, showcasing that incorporating domain-specific informa-
tion and providing a list of classification types enhances inference performance. They
concluded that in Task A, GPT-3.5-Turbo [21] outperformed fine-tuned open-source
LLM, and incorporating domain-specific information and providing a list of types at
prompt significantly enhances the performance.

DaSeLab [11]. The DaSeLab team participated in UMLS, GeoNames, and Word-
Net subtasks. This team approach is based on fine-tuning a GPT-3.5-Turbo model.
The result of fine-tuning on UMLS and GeoNames domains showed that fine-tuning of
such model can achieve superior performance. The DaSeLab ranked first place in NCI
(0.8249), GeoNames (0.5906), and SNOMEDCT US (0.8829) subtasks (scores inside
practices are F1-scores).

TheGhost [14]. The TheGhost team investigated a variety of LLMs with a prompt-
tuning approach. They are the first team in the challenge that explored 11 LLMs (the
LLM list depicted in Table 2) for 8 subtasks of term typing tasks within a few-shot testing
evaluation scenario. They showed the viability of soft prompt tuning for OL and the
challenge of imbalanced class prompt tuning. Their finding supports the complexity of
geographical and biological domains at the term typing task of OL.

silp nlp [15]. The silp nlp team participated in all three tasks with a total of 15 sub-
tasks. They ranked in first place in several subtasks including A.3 (FS) - UMLS - MED-
CIN ( 0.9382), A.4 (FS) - GO - Cellular Component (0.2726), A.4 (FS) - GO - Biological
Process (0.2691), A.4 (FS) - GO - Molecular Function (0.2970), B.2 (FS) - Schema.org
(0.6157), B.3 (FS) - UMLS, B.5 (FS) - DBO (0.2109), and C.1 (FS) - UMLS (0.0783).
They employed several machine learning techniques, such as Random Forest, Logistic
Regression, and XGBoost, alongside advanced generative models like LLaMA-3-8B,
Mixtral [22], and GPT-4o [3]. The results revealed that prompt-based methods were ef-
fective in some domains but not universally applicable. Notably, Random Forest models
excelled in subtasks A.1 through A.4, while GPT-4o dominated the zero-shot tasks A.5
and A.6, as well as relation extraction tasks B and C. This team obtained in first-place
in six subtasks and second place in five subtasks.

TSOTSALearning [17]. The TSOTSALearning team focused on LLMs such as BERT [23]
and GPT-4. Through experimentation on SubTask A.1 - WordNet dataset, they achieved
an F1-score of 0.9264 with GPT-4, but significantly improved results when they com-
bined BERT with rule-based strategies, leading to an F1-score of 0.9938 and ranked
first place in WordNet dataset. Their findings showed the importance of incorporating
rules into LLMs for enhanced accuracy in OL. However, they highlight the challenge of
identifying appropriate rules, suggesting that future work should focus on automating
rule detection and integrating them seamlessly into LLMs. The WordNet dataset is be-
ing considered as a low number of types and having a higher number of types makes
it challenging to obtain highly accurate rules.

SKH-NLP [13]. Team SKH-NLP participated in SubTask B.1 - GeoNames, where
they developed a fine-tuning approach using the LLaMA-3-70B and BERT-Large [24].
This team obtained the first place in SubTask B.1 - GeoNames with an F1-score of
0.6557. Their comprehensive analysis demonstrates that BERT-Large, when fine-
tuned, achieves performance close to the larger LLaMA-3-70B model.

Phoenixes [16]. The Phoenixes team explored the application of a Retrieval Aug-
mented Generation (RAG) approach within the 12 subtaks of the challenge. They
introduced a promising RAG-specific formulation over all three tasks of OL, where a
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Table 4. Task B - Taxonomy Discovery Results for SubTasks

SubTask Team Name F1-Score Precision Recall

B.1 (FS) - GeoNames

SKH-NLP 0.6557 0.6318 0.6814
RWTH-DBIS 0.3409 0.2400 0.5882
Silp nlp 0.0830 0.0446 0.5931
TSOTSALearning 0.0104 0.0052 0.5294
Phoenixes 0.0036 0.0019 0.0294

B.2 (FS) - Schema.org
Silp nlp 0.6157 0.4578 0.9396
RWTH-DBIS 0.5733 0.5475 0.6016
Phoenixes 0.0155 0.0079 0.3901

B.3 (FS) - UMLS
Silp nlp 0.3544 0.4118 0.3111
Phoenixes 0.0960 0.0550 0.3778
RWTH-DBIS 0.0491 0.0257 0.5556

B.4 (FS) - Gene Ontology (GO) Phoenixes 0.0164 0.0180 0.0149

B.5 (FS) - DBpedia Ontology (DPO)
Silp nlp 0.2109 0.1412 0.4164
Phoenixes 0.0164 0.0180 0.0149

B.6 (ZS) - Food Ontology (FoodOn) Phoenixes 0.0308 0.0243 0.0420

Table 5. Task C - Non-Taxonomic Relation Extraction Results for SubTasks

SubTask Team Name F1-Score Precision Recall

C.1 (FS) - UMLS
Silp nlp 0.0783 0.0494 0.1888
Phoenixes 0.0273 0.0433 0.0199

RAG system with minor changes was developed for both tasks A and B, later can be
used as a two-step approach for task C. Task C consists of the following steps: Step 1
– runs the Task B approach for finding child-parent pairs and step 2 – applying the Task
A approach for assigning the relations to the pairs. They incorporated Mistral-7B [25]
as LLM and Dense Passage Retrieval (DPR) [26] model as the retriever model in the
RAG framework. However, their results in both zero-shot and few-shot fall shorter than
the fine-tuned models and this suggests that still fine-tuning is the key to obtain a high
performance within OL.

4.2 Large Language Models

The participants in the challenge utilized a diverse array of LLMs, each bringing distinct
strengths to the tasks. We detailed a breakdown of the key strengths of the prominent
LLMs used.

GPT FAMILY – GPT-3.5-Turbo, GPT-4, and GPT-4o: GPT based LLMs, developed by
OpenAI, are renowned for their advanced natural language understanding and gen-
eration capabilities. These models excel in context comprehension and can handle a
variety of queries effectively, making them particularly suitable for tasks that require
deep semantic understanding and detailed generation. Their ability to generalize from
a wide range of training data allows them to perform well across various knowledge
domains relevant ontologies [5], [27]. GPT-3.5-Turbo was a popular choice among par-
ticipants, with teams such as DaSeLab, RWTH-DBIS, and silp nlp using the model and
demonstrating its high adaptability and effectiveness across the various challenge sub-
tasks. Furthermore, GPT-4 and GPT-4o as more advanced models over GPT-3, were
explored by the teams: TSOTSA Learning and silp nlp.

10



Babaei Giglou et al. | Open Conf Proc 4 (2024) ”LLMs4OL 2024: The 1st Large Language Models for Ontology Learning
Challenge at the 23rd ISWC”

LLAMA FAMILY – LLaMA-7B, LLaMA-2-7B, LLaMA-3-8B, and LLaMA-3-70B: The LLaMA
models were another prominent choice among participants. With models like LLaMA-2
and LLaMA-3 featured by TheGhost, RWTH-DBIS, SKH-NLP, and silp nlp, their popu-
larity stems from their open-source, efficiency, and scalability. These models’ strengths
in handling large-scale data and intricate details made them well-suited for comprehen-
sive multi-dimensional data interpretation.

BLOOM FAMILY – BLOOM-1B7, BLOOM-3B, and BLOOM-7B1: BLOOM [28] models,
featured in our original research work [5], gained traction due to their open-access na-
ture and collaborative development. TheGhost, in particular, utilized a range of BLOOM
models for their flexibility and multilingual capabilities.

BIOMEDICAL FAMILY – BioMistral-7B and OpenBioLLM-8B: BioMistral-7B [29], as a
domain-specific fine-tuned variant of Mistral-7B, and OpenBioLLM-8B [30], as a domain-
specific fine-tuned variant of LLaMA-3-8B, were utilized for their domain-specific strengths
in biomedical contexts. TheGhost’s use of these models highlights their importance in
tasks requiring detailed biomedical terminology and concepts, emphasizing their sig-
nificance in the specialized subfields of the challenge.

MISTRAL FAMILY – Mistral-7B and Mixtral-8x7B: Mistral-7B, part of the Mistral family of
models, was noted for its performance in the challenge by teams like Phoenixes and
TheGhost. Moreover, Mixtral-8x7B was utilized by the team silp nlp.

OTHERS – Flan-T5, GTE-Large, Sentence-BERT, and DPR: Flan-T5 and GTE-Large
were chosen for their adaptability and fine-tuning capabilities. DSTI recognized their
potential in fine-tuning and handling diverse NLP tasks efficiently when there are limited
computational resources. Sentence-BERT was prominently used for tasks involving
semantic similarity and sentence-level embeddings. Its popularity among participants
like SKH-NLP and Phoenixes. Phoenixes used DPR for the retrieval model of the RAG
approach.

4.3 Trade-offs Between Precision and Recall

Across the tasks, a clear trend emerges among the participating teams. Teams like
silp nlp often exhibit high precision but lower recall, particularly in subtasks related
to GO and UMLS ontologies. This suggests that while silp nlp is adept at avoiding
false positives and making accurate predictions, it frequently misses relevant instances,
indicating a more conservative approach. However, teams such as RWTH-DBIS and
Phoenixes display a different trend, where recall is relatively higher than precision.
These teams retrieve a larger number of relevant results but at the cost of precision,
indicating that they tend to capture a broad set of possible answers, including many
false positives. Their approach may be useful in tasks where coverage is prioritized
over accuracy, but it also introduces challenges in filtering out noise.

Teams that manage to balance both precision and recall, such as DaSeLab and
SKH-NLP, stand out for their well-rounded performance. These teams perform consis-
tently across different subtasks by finding a middle ground between retrieving enough
relevant results and minimizing false positives. DaSeLab, for example, shows balanced
performance across multiple subtasks, especially in UMLS-related tasks, suggesting a
more effective strategy. Meanwhile, SKH-NLP stands out in the GeoNames taxonomy
discovery task, where it achieves high precision and recall, demonstrating its capability
to capture relevant information without sacrificing accuracy.
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In more challenging tasks, such as non-taxonomic relation extraction, the disparity
between precision and recall becomes particularly pronounced. For example, both
silp nlp and Phoenixes struggle, with silp nlp showing low precision but managing to
retrieve more relevant results than Phoenixes, which has very low recall. This sug-
gests that these tasks may require more sophisticated models or techniques to achieve
higher performance. Overall, the results reflect that teams vary significantly in how they
prioritize precision and recall, depending on the specific subtask, with some teams ex-
celling in precision-oriented tasks while others show better results in recall-sensitive
subtasks.

5 Discussion

Performance Analysis. As the participating teams navigated through the zero-shot
and few-shot testing phases of the LLMs4OL 2024 challenge, notable variations in
performance underscored the importance of model adaptability and data-specific ad-
justments. Few-shot tasks, particularly those involving geographical, biological, and
biomedical domains, highlighted the critical need for specialized model tuning and the
strategic use of training data to achieve high precision and recall rates. This indicates
that achieving optimal performance in real-world ontology challenges requires not only
selecting the right LLMs but also fine-tuning them to align with the specific character-
istics of the domains and tasks at hand. Additionally, studies show that for Task A,
even smaller models like Flan-T5-Small with 80M parameters can perform well when
there are fewer types. However, as the number of types increases, larger models, such
as those with 7B parameters, tend to perform better. One reason for the popularity
of 7B models is that Parameter-Efficient Fine-Tuning (PEFT) [31] fine-tuning requires
less memory compared to traditional fine-tuning methods. Many participants also in-
corporated external knowledge, such as type definitions, synthesis data using LLMs, or
general knowledge graphs (KGs) to build answer sets. These strategies have demon-
strated a positive impact on fine-tuning performance.

Complexity Across Domains and Tasks. The results indicated that certain domains
and tasks, such as biomedical term typing and non-taxonomic relation extraction, were
more challenging than others. The variation in performance across tasks, particularly
in relation to term complexity (e.g., Gene Ontology), highlights the complexity of cer-
tain knowledge domains. This still requires specialized approaches. The Phoenixes
(on all three tasks) and DSTI (on task A only) teams introduced a formulation based on
Retrieval-Augmented Generation (RAG) approaches with success, indicating that com-
bining LLM generation capabilities with retrieval mechanisms can enhance accuracy in
OL tasks. This approach is particularly suitable due to the hybrid framework with high
adaptability to be extended with different components.

Few-Shot and Zero-Shot Testing Phases. While many models performed well in
the few-shot phase, the zero-shot testing phase exposed limitations in the generaliza-
tion capabilities of LLMs. Models like GPT-3.5 and GPT-4 demonstrated strong per-
formance, but there were notable drops when transitioning from few-shot to zero-shot
testing phases. More research is needed to improve the transferability and robustness
of LLMs across unseen domains and ontologies.

Task A vs Task C. From a task perspective, Task C attracted only two teams, indi-
cating it was perceived as highly challenging. Non-taxonomic relation extraction re-
quires identifying complex relationships between terms that go beyond hierarchical
(taxonomy-based) relations, which is a significantly more intricate task. Unlike sim-
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ple is-a relationships, non-taxonomic relations are more diverse, context-dependent,
and require a deeper understanding of the subject matter. Extracting these relations
often involves dealing with ambiguous or implicit connections, requiring models to in-
fer meanings that might not be explicit. This complexity might have discouraged more
teams from participating, as success in this task requires advanced techniques, often
combining deep semantic understanding with domain-specific knowledge. On the other
hand, Task A, term typing, had much higher participation compared to Task C. This task
involves classifying terms into predefined categories, a more familiar task for many re-
searchers. Term typing is conceptually simpler because it involves assigning a label
to a term, which is something that even general-purpose LLMs can do relatively well.
There is a clear, finite set of categories or types, and many participants experimented
with text classification approaches.

6 Conclusion

The 1st Large Language Models for Ontology Learning Challenge at ISWC 2024 has
revealed the emerging potential of LLMs beyond previous studies of OL tasks. The
diverse range of participant systems, including fine-tuning, prompt-tuning, and retrieval-
augmented generation approaches, demonstrated how adaptable LLMs can be when
handling complex ontological data across various domains. The integration of diverse
LLMs like GPT-4o, GPT-3.5, LLaMA-3, and Mistral underscored the versatility of LLMs.

Through this challenge, key insights were garnered regarding the strengths and limi-
tations of current LLMs for OL. Notably, while LLMs have shown a remarkable capacity
to generalize across unseen tasks (as evidenced by their performance in few-shot and
zero-shot scenarios), certain domains such as biomedical and geographical ontolo-
gies posed unique challenges, particularly in terms of class imbalance and complex
taxonomies. These challenges opened pathways for future research, emphasizing the
need for scalable LLM training and the refinement of prompt-based methods to handle
highly specialized ontologies.

Moreover, the variety of approaches suggests that hybrid methods combining LLMs
with domain-specific knowledge are particularly effective. Moving forward, research
should focus on improving the interpretability and scalability of LLM-based OL systems
to enable even more accurate and dynamic knowledge extraction. This challenge has
laid the groundwork for expanding LLM capabilities in the context of the Semantic Web,
fostering innovation and collaboration in building the next generation of intelligent web
technologies.
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1  I ntr o d u cti o n

O nt ol o gi e s  h a v e  g ai n e d  a  l ot of  p o p ul arit y  a n d  r e c o g niti o n i n t h e s e m a nti c  w e b  b e c a u s e  
of  t h eir fi n e  s o ur c e  o f  s e m a nti c s  a n d  i nt er o p er a bility . T h e  i n cr e a s e i n u n str u ct ur e d  
d at a  o n  t h e w e b  h a s  m a d e  t h e a ut o m at e d  a c q ui siti o n  of  o nt ol o g y  fr o m u n str u ct ur e d  
t e xt a  m o st  pr o mi n e nt  r e s e ar c h ar e a.  R e c e ntl y,  i n st e a d of  h a n d cr afti n g  o nt ol o gi e s,  
t h e r e s e ar c h tr e n d i s n o w  s hifti n g  t o w ar d a ut o m ati c  o nt ol o g y  l e ar ni n g ( O L) [ 1]. O L  
i n v ol v e s a ut o m ati c all y  i d e ntif yi n g t er m s, t y p e s, r el ati o n s, a n d  p ot e nti al  a xi o m s  fr o m 
t ext u al  i nf or m ati o n t o c o n str u ct  a n  o nt ol o g y  [ 2].

L o o ki n g  b a c k  t o t h e hi st or y  of  O L  r e s e ar c h, u ntil  e arl y  2 0 0 2  [ 3], m o st  O L  a p pr o a c h e s  
r eli e d o n  s e e d  w or d s  or  e xi sti n g  b a s e  o nt ol o gi e s  r at h er t h a n b uil di n g  n e w  o n e s  fr o m 
s cr at c h.  L at er  i n 2 0 0 3  [ 4] t h e n at ur al  l a n g u a g e pr o c e s si n g  ( N L P) t e c h ni q u e s h o w e d  
pr o mi s e  f or t h e e xtr a cti o n  of  n e w  c o n c e pt s.  H o w e v er,  r el ati o n e xtr a cti o n  f or O L  r e-
m ai n e d  still  c h all e n gi n g.  Al s o,  t h e pri or  d o m ai n  k n o wl e d g e  of  t h e b a s e  o nt ol o gi e s  still  
w a s  i n t h e mi d dl e  of  t h e f o c u s f or O L.  Wit h  pr o g r e s s i n t h e fi el d,  i n 2 0 0 6  t h e c o n c e pt  of  
” o nt ol o g y l e ar ni n g l a y er c a k e”  [ 5] w a s  i ntr o d u c e d t o or g a ni z e  a n d  d e s cri b e  t h e diff er e nt  
st e p s  i n v ol v e d i n t h e pr o c e s s  of  o nt ol o g y  l e ar ni n g fr o m t h e t ext  f or r e al-lif e a p pli c ati o n
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s c e n ari o s. T h e O L l a y er c a k e i n cl u d e s (fr o m t h e b ott o m of t h e c a k e t o t h e t o p), T er m s,
S y n o n y m s, C o n c e pt s, T a x o n o mi e s, R el ati o n s, R ul e s, a n d A xi o m s. T hi s r e fl e ct s a pr o-
gr e s si o n fr o m si m pl er t o m or e c o m pl e x a n d a b str a ct f or m s, e a c h st e p b uil di n g o n t h e
r e s ult s of t h e pr e vi o u s o n e. It pr o vi d e s a str u ct ur e d a p pr o a c h t o u n d er st a n di n g a n d a u-
t o m ati n g t h e O L pr o c e s s. L at er i n 2 0 1 1, H a z m a n et al.[ 6] st u di e d v ari o u s O L s y st e m s
a n d c at e g ori z e d t h e m i nt o t w o c at e g ori e s, ( 1) l e ar ni n g fr o m u n str u ct ur e d d at a a n d ( 2)
l e ar ni n g fr o m s e mi- str u ct ur e d d at a. T h e y al s o p oi nt e d o ut t h at w h e n h u m a n- b a s e d
e v al u ati o n i s n ot p o s si bl e, c arr yi n g o ut fi v e-l e v el e v al u ati o n s f or O L i s i m p ort a nt, l e v el s
s u c h a s l e xi c al, hi er ar c hi c al, c o nt e xt u al, s y nt a cti c, a n d str u ct ur al l e v el s. Si n c e 2 0 1 1
a n d i n 2 0 1 8 s ur v e y of [ 7] s h o w e d t h at a h y bri d a p pr o a c h c o m pri si n g b ot h li n g ui sti c
a n d st ati sti c al t e c h ni q u e s pr o d u c e s b ett er o nt ol o gi e s. H o w e v er, it i s dif fi c ult t o fi n d t h e
b e st t e c h ni q u e a m o u nt a p pr o a c h e s d u e t o t h e d o m ai n of t h e st u di e s. T h e tr e n d w a s
s hift e d t o w ar d st ati sti c al t e c h ni q u e s f or t er m e xtr a cti o n s, h o w e v er f or r el ati o n e xtr a cti o n
cl u st eri n g m et h o d s w er e t h e m o st u s e d o n e s. M or e o v er, t h e v ari o u s e v al u ati o n s of O L
s h o w e d t h at h u m a n- b a s e d e v al u ati o n i s t h e m o st r eli a bl e a p pr o a c h f or e v al u ati o n.

C o n si d eri n g t h at m o st of t h e a p pr o a c h e s i n t h e fi el d w er e b a s e d o n st ati sti c al a p-
pr o a c h e s or cl u st eri n g m o d el s, t h e e m er g e n c e of l ar g e l a n g u a g e m o d el s ( L L M s), of-
f er e d a p ar a di g m s hift i n O L si n c e t h eir c h ar a ct eri sti c s j u stif y O L a s a st u di e d f or t h e
fir st ti m e wit hi n L L M s 4 O L p ar a di g m [ 8]. O n e r e a s o n f or t hi s s hift i s t h e L L M’ s g e n er a-
ti o n c a p a biliti e s b e c a u s e t h e y ar e b ei n g tr ai n e d o n e xt e n si v e a n d di v er s e t e xt, si mil ar
t o d o m ai n- s p e ci fi c k n o wl e d g e b a s e s [ 9]. F or t h e fir st ti m e, i n 2 0 2 3 t h e L L M s 4 O L [ 8]
p ar a di g m w a s i ntr o d u c e d t h at i n c or p or at e s L L M s f or t hr e e i m p ort a nt t a s k s of O L a s
T er m Ty pi n g, T a x o n o m y Di s c o v er y, a n d N o n- T a x o n o mi c R el ati o n E xtr a cti o n. L at er,
m or e r e s e ar c h er s w er e i n v ol v e d i n t h e O L t a s k s fr o m diff er e nt p er s p e cti v e s [ 1 0] –[ 1 3].

T h e c urr e nt tr e n d i n t h e s e m a nti c w e b r e v e al s a gr o wi n g i nt er e st a m o n g r e s e ar c h er s
i n utili zi n g L L M s [ 1 4]. A b e n c h m ar k d at a s et i s e s s e nti al t o a s s e s s t h e p erf or m a n c e
of O L a p pr o a c h e s, p arti c ul arl y t h o s e i n v ol vi n g L L M s, i n a c o n si st e nt a n d c o m p ar a-
bl e m a n n er. Wit h o ut s u c h b e n c h m ar k s, it b e c o m e s dif fi c ult t o e v al u at e pr o gr e s s a n d
c o m p ar e v ari o u s m et h o d ol o gi e s eff e cti v el y [ 1 3]. T o a d dr e s s t hi s g a p, i n t hi s w or k, w e
i ntr o d u c e a n L L M s 4 O L p ar a di g m t a s k s d at a s et t o bri d g e t h e g a p i n b e n c h m ar k e v al-
u ati o n d at a s et s s p e ci fi c all y wit hi n t h e c o nt e xt of O L u si n g L L M s. O ur k e y c o ntri b uti o n
i s t h e cr e ati o n of t h e L L M s 4 O L d at a s et, ai m e d at f a cilit ati n g c o n si st e nt e v al u ati o n i n
t hi s e m er gi n g fi el d. F or t h e fir st ti m e, t hi s d at a s et i s i ntr o d u c e d i n t h e ” 1 st L L M s 4 O L
C h all e n g e @ I S W C 2 0 2 4” [ 1 5], a c h all e n g e or g a ni z e d at t h e pr e sti gi o u s I nt er n ati o n al
S e m a nti c W e b C o nf er e n c e (I S W C). T h e pri m ar y g o al of t h e c h all e n g e i s t o pr o vi d e a
s h ar e d pl atf or m f or r e s e ar c h er s t o b e n c h m ar k t h eir L L M- b a s e d O L a p pr o a c h e s. B y e s-
t a bli s hi n g t hi s d at a s et a n d l a u n c hi n g t h e L L M s 4 O L C h all e n g e, w e h o p e t o e n c o ur a g e
f urt h er r e s e ar c h a n d i n n o v ati o n i n O L wit h L L M s, ulti m at el y e n a bli n g a m or e str u ct ur e d
a n d f air c o m p ari s o n of diff er e nt m et h o d s i n t hi s r a pi dl y e v ol vi n g ar e a.

T h e L L M s 4 O L 2 0 2 4 d at a s et a d dr e s s e s t hr e e O L t a s k s, w hi c h ar e k n o w n a s pri miti v e
o nt ol o g y c o n str u cti o n t a s k s [ 1 6]. C o n si d eri n g, L a s a l e xi c al e ntri e s f or c o n c e pt u al
t y p e T , a n d H T a s a r e pr e s e nt ati o n of t a x o n o m y of t y p e s, a n d R a s a n o n-t a x o n o mi c
r el ati o n s, t h e L L M s 4 O L t a s k s ar e d e fi n e d a s f oll o w s:

• T a s k A – T er m T y pi n g: F or a gi v e n l e xi c al t er m L , di s c o v er t h e g e n er ali z e d t y p e
T .

• T a s k B – T a x o n o m y Di s c o v er y: F or a gi v e n s et of g e n er ali z e d t y p e s T , di s c o v er
t h e t a x o n o mi c hi er ar c hi c al p air s (T a , Tb ) p air s, r e pr e s e nti n g ”i s- a” r el ati o n s.

• T a s k C – N o n- T a x o n o mi c R el ati o n E xtr a cti o n: F or a gi v e n s et of g e n er ali z e d
t y p e s T a n d r el ati o n s R , d d e ntif y n o n-t a x o n o mi c, s e m a nti c r el ati o n s b et w e e n
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t y p e s t o f or m a (T h , r, Tt ) tri pl et, w h er e T h a n d T t ar e h e a d a n d t ail t a x o n o mi c
t y p e s wit h r ∈ R .

T h e L L M s 4 O L d at a s et i s p u bli cl y a v ail a bl e o n Git H u b 1 , pr o vi di n g e a s y a c c e s s f or
r e s e ar c h er s a n d pr a ctiti o n er s i n t h e fi el d. T h e p a p er i s or g a ni z e d a s f oll o w s: S e cti o n
2 d e s cri b e s t h e d o m ai n s t h at ar e b ei n g c o n si d er e d f or b e n c h m ar ki n g L L M s 4 Ol a n d
S e cti o n 3 i n v e sti g at e s h o w o nt ol o gi e s ar e c ur at e d f or O L. I n s e cti o n 4, w e di s c u s s t h e
c ur at e d d at a s et. Fi n all y, w e c o n cl u d e i n S e cti o n 5

2 O nt ol o gi c al R e s o ur c e s a n d D o m ai n s of t h e St u d y

T h e L L M s 4 O L 2 0 2 4 d at a s et s s u p p ort a v ari et y of d o m ai n s fr o m l e x o s e m a nti c s t o
bi o m e di c al. S u c h v ari et y s u p p ort s t h e c o m pr e h e n si v e n e s s of t h e st u di e s wit hi n t h e
L L M s 4 O L 2 0 2 4 C h all e n g e . I n t h e f oll o wi n g, w e d et ail e a c h o nt ol o g y wit hi n t h e d o m ai n s
t h at w e u s e d f or t h e c o n str u cti o n of t h e L L M s 4 O L p ar a di g m t a s k s d at a s et.

L e x o s e m a nti c s. W or d N et [ 1 7] i s a l ar g e l e xi c al d at a b a s e of E n gli s h t h at s er v e s a s
a ri c h o nt ol o g y f or N L P a n d ot h er a p pli c ati o n s. It w a s d e v el o p e d at Pri n c et o n U ni-
v er sit y a n d h a s b e c o m e a wi d el y u s e d t o ol f or u n d er st a n di n g a n d r e pr e s e nti n g t h e
r el ati o n s hi p s b et w e e n w or d s. W or d N et i s di vi d e d i nt o f o ur m ai n p art s of s p e e c h, 1)
N o u n s: C o n c e pt s, e ntiti e s, a n d o bj e ct s. 2) V er b s: A cti o n s, pr o c e s s e s, or st at e s of b e-
i n g. 3) A dj e cti v e s: D e s cri pti v e q u aliti e s or attri b ut e s. 4) A d v er b s: M o di fi er s of v er b s,
a dj e cti v e s, or ot h er a d v er b s. E a c h p art of s p e e c h h a s it s o w n s et of s y n s et s a n d r e-
l ati o n s hi p s, w hi c h h el p s i n di sti n g ui s hi n g t h e diff er e nt m e a ni n g s w or d s c a n h a v e w h e n
u s e d i n diff er e nt gr a m m ati c al c o nt e xt s

G e o gr a p hi c al L o c ati o n s. T h e G e o N a m e s [ 1 8] O nt ol o g y i s a f or m al r e pr e s e nt ati o n of
g e o gr a p hi c al d at a t h at m o d el s g e o gr a p hi c f e at ur e s, l o c ati o n s, a n d a s s o ci at e d i nf or m a-
ti o n. It i s a cr u ci al p art of t h e Li n k e d O p e n D at a ( L O D) cl o u d, pr o vi di n g a m a c hi n e-
r e a d a bl e f or m at f or g e o gr a p hi c d at a t o f a cilit at e i nt e gr ati o n, q u er yi n g, a n d s h ari n g of
g e o gr a p hi c k n o wl e d g e a cr o s s diff er e nt d o m ai n s. G e o N a m e s c o nt ai n s o v er 1 2 milli o n
g e o gr a p hi c al n a m e s a n d 9 milli o n u ni q u e f e at ur e s s u c h a s citi e s, c o u ntri e s, ri v er s,
m o u nt ai n s, l a k e s, et c. T hi s m a k e s G e o N a m e s a ri c h o nt ol o g y f or f urt h er st u di e s of
L L M s 4 O L t a s k s.

Bi o m e di c al. T h e U ni fi e d M e di c al L a n g u a g e S y st e m ( U M L S) [ 1 9] i s a c o m pr e h e n si v e
bi o m e di c al o nt ol o g y d e v el o p e d a n d m ai nt ai n e d b y t h e U. S. N ati o n al Li br ar y of M e di ci n e
( N L M). It i nt e gr at e s v ari o u s h e alt h c ar e t er mi n ol o gi e s, c o di n g s y st e m s, a n d o nt ol o gi e s
t o cr e at e a u ni fi e d r e s o ur c e t h at s u p p ort s N L P, bi o m e di c al d at a i nt e gr ati o n, a n d i n-
t er o p er a bilit y b et w e e n diff er e nt h e alt h c ar e s y st e m s. U M L S M et at h e s a ur u s i s a l ar g e
d at a b a s e of bi o m e di c al c o n c e pt s a n d t er m s t h at i nt e gr at e s m a n y e xi sti n g t er mi n ol o gi e s
a n d c o di n g s y st e m s. It c o n si st s of s o ur c e v o c a b ul ari e s a n d i n cl u d e s w ell- k n o w n o n-
t ol o gi e s li k e S N O M E D C T U S [ 2 0], N CI [ 2 1], a n d M E D CI N [ 2 2]. T h e S N O M E D C T U S
pr o vi d e s t h e c or e g e n er al t er mi n ol o g y f or t h e el e ctr o ni c h e alt h r e c or d. H o w e v er, N CI
c o v er s v o c a b ul ar y f or c a n c er-r el at e d cli ni c al c ar e, tr a n sl ati o n al a n d b a si c r e s e ar c h, a n d
p u bli c i nf or m ati o n a n d a d mi ni str ati v e a cti viti e s. M or e o v er, t h e M E D CI N m e di c al t er mi-
n ol o g y e n c o m p a s s e s s y m pt o m s, hi st or y, p h y si c al e x a mi n ati o n, t e st s, di a g n o s e s, a n d
t h er a pi e s.

Bi ol o gi c al. G e n e O nt ol o g y ( G O) [ 2 3] c o n s orti u m i s a m aj or bi oi nf or m ati c s i niti ati v e
t h at pr o vi d e s a st a n d ar di z e d v o c a b ul ar y t o d e s cri b e t h e f u n cti o n s, l o c ati o n s, a n d pr o-
c e s s e s i n v ol vi n g g e n e s a n d g e n e pr o d u ct s a cr o s s diff er e nt s p e ci e s. G O ai m s t o u nif y

1 htt p s:// git h u b. c o m/ H a m e d B a b a ei/ L L M s 4 O L- C h all e n g e-I S W C 2 0 2 4
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t h e r e pr e s e nt ati o n of g e n e a n d g e n e pr o d u ct attri b ut e s, all o wi n g r e s e ar c h er s t o c o n-
si st e ntl y a n n ot at e bi ol o gi c al d at a a n d m a k e it e a si er t o c o m p ar e g e n e f u n cti o n s a cr o s s
or g a ni s m s. G O pr o vi d e s a hi er ar c hi c al str u ct ur e t o d e s cri b e g e n e pr o d u ct s i n t hr e e k e y
ar e a s s u c h a s Bi ol o gi c al Pr o c e s s ( B P) , M ol e c ul ar F u n cti o n ( M F) , a n d C ell ul ar C o m p o-
n e nt ( C C) . T h e B P d e s cri b e s o ur k n o wl e d g e of t h e bi ol o gi c al d o m ai n i n t h e l ar g er pr o-
c e s s e s a c c o m pli s h e d b y m ulti pl e m ol e c ul ar a cti viti e s. T h e C C g o e s b e y o n d m ol e c ul ar
a cti viti e s a n d c o n si d er s o nl y l o c ati o n, r el ati v e t o c ell ul ar c o m p art m e nt s a n d str u ct ur e s.
M F d e s cri b e s a cti viti e s t h at o c c ur at t h e m ol e c ul ar l e v el, s u c h a s “ c at al y si s” or “tr a n s-
p ort”.

G e n er al K n o wl e d g e. D B p e di a [ 2 4] i s a cr o w d- s o ur c e d i niti ati v e ai m e d at e xtr a cti n g
str u ct ur e d d at a fr o m c o nt e nt g e n er at e d a cr o s s v ari o u s Wi ki m e di a pr oj e ct s. T hi s d at a
f or m s a n o p e n k n o wl e d g e gr a p h ( O K G) t h at i s a c c e s si bl e t o e v er y o n e o n t h e W e b. T h e
D B p e di a O nt ol o g y ( D B O), a s a cr o s s- d o m ai n o nt ol o g y, e m er g e d fr o m a c o m m u nit y ef-
f ort t o u s e Wi ki p e di a’ s m o st c o m m o nl y u s e d i nf o b o x e s t o cr e at e a f or m al v o c a b ul ar y f or
c at e g ori zi n g k n o wl e d g e f or m or e pr e ci s e q u er yi n g a n d d at a li n ki n g. Wi ki p e di a arti cl e s,
t y pi c all y r e pr e s e nti n g s p e ci fi c e ntiti e s ( e. g., p e o pl e, pl a c e s, or e v e nt s), c a n b e cl a s si-
fi e d u n d er o n e or m or e of t h e s e cl a s s e s. A s a r e s ult of t hi s, t h e o nt ol o g y i s str u ct ur e d
a s a hi er ar c h y of cl a s s e s a n d pr o p erti e s t h at d e s cri b e c o n c e pt s a n d t h eir r el ati o n s hi p s,
r e s ulti n g i n 7 6 8 cl a s s e s, w hi c h f or m a s u b s u m pti o n hi er ar c h y wit h ar o u n d 3, 0 0 0 pr o p-
erti e s a n d c o nt ai n a p pr o xi m at el y 4 milli o n i n st a n c e s.

F o o d. F o o d O nt ol o g y ( F o o d O n) [ 2 5] i s a c o n s orti u m- dri v e n pr oj e ct t o b uil d a c o m pr e-
h e n si v e a n d e a sil y a c c e s si bl e gl o b al f ar m-t o-f or k o nt ol o g y a b o ut f o o d, t h at a c c ur at el y
a n d c o n si st e ntl y d e s cri b e s f o o d s c o m m o nl y k n o w n i n c ult ur e s fr o m ar o u n d t h e w orl d.
T h e F o o d O n a s a f o o d pr o d u ct t er mi n ol o g y s u p p ort s f o o d s e c urit y, s af et y, q u alit y, pr o-
d u cti o n, di stri b uti o n, a n d c o n s u m er h e alt h a n d c o n v e ni e n c e.

W e b C o nt e nt T y p e s. S c h e m a. or g [ 2 6] v o c a b ul ar y c o v er s e ntiti e s, r el ati o n s hi p s b e-
t w e e n e ntiti e s, a n d a cti o n s, a n d c a n e a sil y b e e xt e n d e d t hr o u g h a w ell- d o c u m e nt e d
e xt e n si o n m o d el. T h e s c h e m a s ar e a s et of ’t y p e s’, e a c h a s s o ci at e d wit h a s et of
pr o p erti e s a n d t h e t y p e s ar e arr a n g e d i n a hi er ar c h y. O v er all, s c h e m a. or g c o n si st s
of 8 0 6 Ty p e s, 1 4 7 6 pr o p erti e s 1 4 d at at y p e s, 9 0 e n u m er ati o n s, a n d 4 8 0 e n u m er ati o n
m e m b er s.

3 O nt ol o g y C ur ati o n f or L L M s 4 O L T a s k s

W e c ur at e d 6 o nt ol o gi e s c o m pri si n g a t ot al of 1 0 d at a s et s f or T a s k A, 6 o nt ol o gi e s f or
T a s k B, a n d 3 o nt ol o gi e s f or T a s k C. T h e c ur at e d o nt ol o gi e s a n d pr o c e s s e s ar e r e p-
r e s e nt e d i n Fi g ur e 1, w hi c h i n v ol v e s t hr e e st e p s, e a c h c orr e s p o n di n g t o t h e s p e ci fi e d
t a s k s. I n t hi s s e cti o n, w e pr o vi d e a bri ef o v er vi e w of t h e c ur ati o n pr o c e s s.

3. 1 W or d N et O nt ol o g y – T a s k A

W e utili z e d t h e W N 1 8 R R d at a s et, a s i ntr o d u c e d i n [ 2 7]. F or e v al u ati o n, w e m er g e d t h e
t e st a n d v ali d ati o n s et s, w hil e t h e ori gi n al tr ai ni n g s et w a s r et ai n e d f or m o d el tr ai ni n g.
A d diti o n all y, w e f o c u s e d o n f o ur s p e ci fi c l e xi c al t er m t y p e s T : n o u n s, v er b s, a d v er b s,
a n d a dj e cti v e s. W e al s o i n c or p or at e d t h e s e nt e n c e s a v ail a bl e i n t h e W or d N et d at a s et
a s a d diti o n al c o nt e xt f or t h e t er m s.
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Fi g ur e 1. L L M s 4 O L 2 0 2 4 D at a s et s C ur ati o n.

3. 2 G e o N a m e s O nt ol o g y – T a s k s A a n d B

T h e G e o N a m e s o nt ol o g y e n c o m p a s s e s all g e o gr a p hi c al l o c ati o n s w orl d wi d e. T o n ar-
r o w o ur f o c u s, w e fir st r e stri ct e d t h e d at a s et t o l o c ati o n s r e pr e s e nt e d i n E n gli s h l ett er s,
r e s ulti n g i n a s et of l e xi c al t er m s L . G e o N a m e s u s e s F e at ur e- C o d e [ 2 8] t o c at e g ori z e
a n d cl a s sif y v ari o u s g e o gr a p hi c e ntiti e s. E a c h l o c ati o n i s a s s o ci at e d wit h a F e at ur e-
C o d e , w hi c h d e n ot e s a t y p e of g e o gr a p hi c al l o c ati o n ( e. g. ”r o a d”, or ” p o p ul at e d pl a c e”
l o c ati o n s). W e m a p p e d t h e s e F e at ur e- C o d e ’ s t o t h eir c orr e s p o n di n g n a m e s t o cr e at e
a s et T , i d e ntif yi n g a t ot al of 6 8 0 di sti n ct t y p e s wit hi n G e o N a m e s. F or i n st a n c e, t h e
t er m ” El k s C o u ntr y Cl u b” wit h t h e f e at ur e- c o d e ” S. R S R T” i s m a p p e d t o it s t y p e n a m e,
”r e s ort”. T h e r e s ulti n g (L, T ) p air s w er e t h e n u s e d t o cr e at e a tr ai n-t e st s plit b a s e d o n
T , wit h a p pr o xi m at el y 1 0 % of t h e d at a all o c at e d f or t e sti n g a n d t h e r e m ai ni n g u s e d f or
tr ai ni n g at T a s k A.

F or T a s k B, w e utili z e d G e o N a m e s F e at ur e C o d e s , w hi c h ar e hi er ar c hi c all y str u ct ur e d
t o r e fl e ct v ar yi n g l e v el s of gr a n ul arit y i n g e o gr a p hi c f e at ur e s. T h e s e c o d e s ar e di vi d e d
i nt o ni n e pri m ar y c at e g ori e s: ” A d mi ni str ati v e r e gi o n s,” ” H y dr o gr a p hi c f e at ur e s,” ” Ar e a,”
” P o p ul at e d pl a c e s,” ” R o a d s a n d r ailr o a d s,” ” S p ot f e at ur e s,” ” T err ai n,” ” U n d er s e a f e a-
t ur e s,” a n d ” V e g et ati o n.” T h e s e c at e g ori e s o p er at e at a hi g h er l e v el wit hi n a t w o-l e v el
t a x o n o m y, r e s ulti n g i n 6 8 0 p air s wit h a n ”i s- a” r el ati o n s hi p. W e t h e n s plit t h e d at a i nt o
a 7 0- 3 0 r ati o t o cr e at e tr ai ni n g a n d t e st s et s.

3. 3 U M L S O nt ol o g y – T a s k s A, B, a n d C

F or g e n er ati n g U M L S s u b- o nt ol o gi c al s o ur c e s i. e. N CI, M E D CI N, a n d S N O M E D C T U S,
w e c o n si d er e d u m l s - 2 0 2 2 A B - m e t a t h e s a u r u s - f u l l v er si o n of t h e U M L S a n d pr o c e s s e d
t h e M R C O N S O fil e s f or o bt ai ni n g t h e t er m s t h at ar e writt e n i n E n gli s h. N e xt, w e u s e d t h e
f oll o wi n g st e p s f or e xtr a cti o n of l e xi c al t er m s L , t h eir r e s p e cti v e t y p e s T , a n d r el ati o n s:

1. Filt eri n g L e xi c al T er m s : F or e a c h s o ur c e ( N CI, M E D CI N, S N O M E D C T U S), t h e
d at a s et i s fir st filt er e d t o e xtr a ct r el ati o n s hi p s w h er e b ot h e ntiti e s i n a r el ati o n s hi p
b el o n g t o t h e s p e ci fi c s o ur c e b ei n g c o n si d er e d. T hi s filt eri n g i s d o n e b y m at c hi n g
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t h e s o ur c e ( N CI, M E D CI N, S N O M E D C T U S), e n s uri n g t h at o nl y tri pl et s fr o m t h at
s o ur c e ar e u s e d. T h e C o n c e pt U ni q u e I d e nti fi er s ( C UI s) of t h e s e t er m s ar e t h e n
st or e d i n a li st, r e pr e s e nti n g all t h e u ni q u e C UI s fr o m t h e s o ur c e.

2. R etri e vi n g S e m a nti c I nf or m ati o n : Aft er i d e ntif yi n g t h e u ni q u e C UI s f or e a c h s o ur c e,
t h e n e xt st e p i s t o g at h er s e m a nti c i nf or m ati o n a b o ut t h e s e C UI s. F or e a c h C UI,
d at a fr o m t h e M R S T Y ( M et at h e s a ur u s S e m a nti c Ty p e s) fil e i s u s e d t o o bt ai n it s
Ty p e U ni q u e I d e nti fi er s ( T UI), S e m a nti c Ty p e N u m b er s ( S T N), a n d S e m a nti c Ty p e
Stri n g s ( S T Y). T hi s i nf or m ati o n i s c oll e ct e d a n d st or e d i n a di cti o n ar y t h at li n k s
e a c h C UI t o it s c orr e s p o n di n g s e m a nti c t y p e s, e n s uri n g t h at e a c h T UI a n d S T N
i s c o n si st e ntl y a s s o ci at e d wit h o nl y o n e s e m a nti c t y p e.

3. C o n fli ct R e s ol uti o n : D uri n g t h e pr e vi o u s st e p s, a n y c o n fli ct s — w h er e a T UI or
S T N mi g ht b e a s s o ci at e d wit h diff er e nt s e m a nti c t y p e s — ar e c h e c k e d a n d r e-
p ort e d. O n c e t h e c o n si st e n c y of t h e d at a i s v eri fi e d, t h e fi n al hi er ar c h y f or e a c h
s o ur c e ( N CI, M E D CI N, S N O M E D C T U S) i s o bt ai n e d, w hi c h c o nt ai n s m a p pi n g s
fr o m T UI s t o t h eir S T N s a n d S T Y s, al o n g wit h a li st of all u ni q u e T UI s a n d S T N s
a s s o ci at e d wit h e a c h s o ur c e, r e pr e s e nti n g t h e hi er ar c hi c al str u ct ur e of e ntiti e s
wit hi n t h at s p e ci fi c s o ur c e.

T h u s, s e p ar at e d at a s et s f or N CI, M E D CI N, a n d S N O M E D C T U S ar e cr e at e d, e a c h
c a pt uri n g t h e u ni q u e s e m a nti c r el ati o n s hi p s a n d e ntit y t y p e s wit hi n t h o s e s o ur c e s. F or
T a s k A, w e o nl y c o n si d er e d C UI’ s a n d T UI’ s t o f or m t h e t a s k d at a s et. W e s plit t h e
d at a s et s p er s o ur c e i nt o tr ai ni n g a n d t e sti n g s et s wit h a 7 0- 3 0 r ati o. F or T a s k s B a n d
C, si n c e b ot h d at a s et s ar e b a s e d o n t h e s a m e s e m a nti c n et w or k, w e l e v er a g e d t hi s
n et w or k t o e xtr a ct t y p e s al o n g wit h t h eir r el ati o n s hi p s. Ty p e s wit h ’i s- a’ r el ati o n s hi p s
ar e u s e d f or T a s k B, w hil e n o n-’i s- a’ r el ati o n s hi p s ar e u s e d f or T a s k C. I n b ot h c a s e s,
t h e d at a s et s ar e s plit u si n g a 7 0- 3 0 r ati o.

3. 4 G e n e O nt ol o g y – T a s k s A, B, a n d C

F or t h e T er m Ty pi n g t a s k, w e n e e d e d t o m a p l e xi c al t er m s ( g e n e pr o d u ct s) t o t h eir
g e n er ali z e d t y p e s, d eri v e d fr o m t hr e e G e n e O nt ol o g y ( G O) s u b- o nt ol o gi e s: Bi ol o gi c al
Pr o c e s s ( B P), C ell ul ar C o m p o n e nt ( C C), a n d M ol e c ul ar F u n cti o n ( M F). T o c oll e ct r el-
e v a nt a n n ot ati o n s, w e u s e d a P yt h o n s cri pt t o q u er y t h e G O L o o k u p S er vi c e ( G O L R)
vi a t h e f oll o wi n g A PI: h t t p s : / / g o l r - a u x . g e n e o n t o l o g y . i o . T h e q u er y r etri e v e d a n-
n ot ati o n s c o nt ai ni n g i nf or m ati o n s u c h a s g e n e pr o d u ct n a m e s ( bi o e ntit y n a m e), l a b el s
( a n n ot ati o n cl a s s l a b el), a n d t h e a s s o ci at e d o nt ol o g y a s p e ct. T h e d at a s et w a s t h e n
gr o u p e d b y t h e a s p e ct fi el d, w hi c h c orr e s p o n d s t o t h e s u b- o nt ol o g y ( B P, C C, or M F),
a n d d u pli c at e s w er e r e m o v e d. Aft er g at h eri n g a n d pr e pr o c e s si n g t h e d at a, w e cr e at e d
s e p ar at e d at a s et s f or e a c h s u b- o nt ol o g y, or g a ni zi n g g e n e pr o d u ct s ( L ) a n d t h eir c or-
r e s p o n di n g t y p e s (T ). T o e n s ur e t h e q u alit y of t h e d at a s et, w e a p pli e d a fr e q u e n c y
t hr e s h ol d of 2 0 0, filt eri n g o ut l o w-fr e q u e n c y t er m s, t h u s r e d u ci n g n oi s e. S u b s e q u e ntl y,
t h e d at a s et w a s di vi d e d i nt o tr ai ni n g a n d t e st s et s, wit h a 7 0- 3 0 s plit t o e n s ur e a r o b u st
e v al u ati o n of m o d el s p erf or mi n g t h e T er m Ty pi n g t a s k. T h e r e s ulti n g d at a s et s w er e
s uf fi ci e ntl y l ar g e, wit h u ni q u e t er m c o u nt s f or e a c h s u b- o nt ol o g y, r a n gi n g fr o m 3 2 3 t o
7 9 2.

F or T a s k B, t h e o bj e cti v e w a s t o i d e ntif y hi er ar c hi c al r el ati o n s hi p s (i. e., ”i s- a” r el ati o n s)
b et w e e n t h e g e n er ali z e d t y p e s fr o m T a s k A. W e u s e d t h e G O hi er ar c hi c al str u ct ur e,
w hi c h d e fi n e s r el ati o n s hi p s a s e d g e s b et w e e n n o d e s r e pr e s e nti n g diff er e nt o nt ol o g y
t er m t y p e s. U si n g t h e G O o nt ol o g y fil e, w e e xtr a ct e d n o d e s a n d e d g e s fr o m t h e o n-
t ol o g y gr a p h s a n d t h e n filt er e d t h e e d g e s t o r et ai n o nl y t h o s e t h at r e pr e s e nt ”i s- a”
r el ati o n s. W e t h e n g e n er at e d p air s of t er m t y p e s r e pr e s e nti n g t h e c hil d- p ar e nt r el ati o n-
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S E L E C T D I S T I N C T ? c l a s s ? l a b e l W H E R E {
? c l a s s a o w l : C l a s s ;

r d f s : l a b e l ? l a b e l .
F I L T E R ( l a n g ( ? l a b e l ) = ' e n ' )

}

Fi g ur e 2. D B O S P A R Q L q u er y f or r etri e vi n g l e af cl a s s e s f or t a s k A.

S E L E C T D I S T I N C T ? t e r m ? l a b e l W H E R E {
? t e r m a < l e a f _ c l a s s > ;
r d f s : l a b e l ? l a b e l .
F I L T E R ( l a n g ( ? l a b e l ) = ' e n ' )

}
L I M I T 1 0 0

Fi g ur e 3. D B O S P A R Q L q u er y f or r etri e vi n g 1 0 0 t er m s f or gi v e n l e af cl a s s. T h e l e a f c l a s s i s a pl a c e
h ol d er f or r e pl a ci n g it wit h l e af cl a s s a n d q u er yi n g f or t er m s.

s hi p s ( s u b, o bj). T h e s e p air s w er e s plit i nt o tr ai ni n g a n d t e st s et s b a s e d o n t h e u ni q u e
t er m t y p e s i n v ol v e d, e n s uri n g t h at n o t er m a p p e ar e d i n b ot h s et s.

Fi n all y, f or T a s k C, w e c ur at e d a d at a s et of s e m a nti c r el ati o n s hi p s b et w e e n t er m t y p e s
di s c o v er e d i n T a s k A. T h e r el ati o n s ar e e n c o d e d i n t h e G O u si n g pr o p erti e s s u c h a s
r e g ul at e s, p art of, a n d o c c ur s i n. W e p ar s e d t h e o nt ol o g y t o i d e ntif y e d g e s r e pr e s e nti n g
t h e s e r el ati o n s, u si n g a pr e d e fi n e d s et of r el ati o n m a p pi n g s. E d g e s t h at m at c h e d t h e
s p e ci fi e d r el ati o n t y p e s w er e c at e g ori z e d i nt o tr ai ni n g a n d t e st s et s. Si mil ar t o T a s k
B, w e e n s ur e d t h at t h er e w a s n o o v erl a p i n t h e r el ati o n s b et w e e n t h e tr ai ni n g a n d t e st
s et s. T h e fi n al d at a s et f or T a s k C c o nt ai n e d 1 0, 5 3 8 tr ai ni n g tri pl et s a n d 7, 2 3 4 t e st
tri pl et s, s p a n ni n g m ulti pl e n o n-t a x o n o mi c r el ati o n s.

3. 5 D B P e di a O nt ol o g y – T a s k s A a n d B

W e h a v e u s e d D B P e di a O nt ol o g y ( D B O) f or b ot h T a s k A a n d T a s k B, l e v er a gi n g t h e
str u ct ur e a n d d at a pr o vi d e d b y D B p e di a’ s S P A R Q L e n d p oi nt. T h e d at a s et s fr o m t hi s
o nt ol o g y h a s b e e n utili z e d i n a z er o- s h ot s etti n g, m e a ni n g it w a s u s e d e x cl u si v el y f or
t e sti n g wit h o ut a n y pri or tr ai ni n g. T h e m o d el s w er e e v al u at e d dir e ctl y o n t h e s e u n s e e n
t a s k s, wit h o ut e x p o s ur e t o a n y d at a fr o m t h e s p e ci fi c d o m ai n d uri n g tr ai ni n g, e m p h a-
si zi n g t h eir g e n er ali z ati o n c a p a biliti e s f or T a s k A a n d T a s k B.

F or T a s k A, w e q u eri e d D B p e di a f or l e af cl a s s e s a n d t h eir a s s o ci at e d t er m s i n E n gli s h.
L e af cl a s s e s w er e i d e nti fi e d u si n g t h e S P A R Q L q u er y a s d e s cri b e d i n Fi g ur e 2, w hi c h
r etri e v e s all cl a s s e s wit h E n gli s h l a b el s. F or e a c h l e af cl a s s, w e q u eri e d u p t o 1 0 0
t er m s t h at b el o n g t o t h e cl a s s, a g ai n filt eri n g f or E n gli s h t er m s u si n g t h e S P A R Q L
q u er y pr o vi d e d i n Fi g ur e 3. T h e r e s ult s of t h e s e q u eri e s w er e a g gr e g at e d i nt o t er m s
a n d t h eir r e s p e cti v e t y p e s, f or mi n g t h e d at a s et f or T a s k A.

F or T a s k B, w e q u eri e d D B p e di a’ s s u b cl a s s (’i s- a’) hi er ar c h y t o g e n er at e p ar e nt- c hil d
r el ati o n s hi p s b et w e e n t a x o n o mi c t y p e s. T h e S P A R Q L q u er y, a s d e s cri b e d i n Fi g ur e 4,
r etri e v e d s u b cl a s s r el ati o n s hi p s w h er e b ot h p ar e nt a n d c hil d h a v e E n gli s h l a b el s. T h e
r e s ulti n g d at a s et c o nt ai n s hi er ar c hi c al t y p e p air s of ”i s- a” r el ati o n s, wit h t h e t a x o n o mi c
t y p e s st or e d a s li st s. T hi s d at a s et s er v e s a s t h e i n p ut f or o ur T a x o n o m y Di s c o v er y t a s k.
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S E L E C T D I S T I N C T ? c h i l d L a b e l ? p a r e n t L a b e l W H E R E {
? c h i l d r d f s : s u b C l a s s O f ? p a r e n t .
? c h i l d r d f s : l a b e l ? c h i l d L a b e l .
? p a r e n t r d f s : l a b e l ? p a r e n t L a b e l .
? c h i l d a o w l : C l a s s .
? p a r e n t a o w l : C l a s s .
F I L T E R ( l a n g ( ? c h i l d L a b e l ) = " e n " )
F I L T E R ( l a n g ( ? p a r e n t L a b e l ) = " e n " )

}

Fi g ur e 4. D B O S P A R Q L q u er y f or cr e ati n g ”i s- a” r el ati o n s hi p s b et w e e n t a x o n o mi c t y p e s f or T a s k B.

P R E F I X o b o - t e r m : < h t t p : / / p u r l . o b o l i b r a r y . o r g / o b o / >
S E L E C T ? s ? l a b e l ? d e f i n i t i o n F R O M < h t t p : / / p u r l . o b o l i b r a r y . o r g / o b o / m e r g e d / F O O D O N > {

? s a o w l : C l a s s .
? s r d f s : l a b e l ? l a b e l .
? s o b o - t e r m : I A O \ _ 0 0 0 0 1 1 5 ? d e f i n i t i o n .

}

Fi g ur e 5. F o o d O n S P A R Q L q u er y f or e xtr a ct e ntit y l a b el s a n d d e fi niti o n s f or T a s k A.

3. 6 F o o d O nt ol o g y - T a s k s A, B, a n d C

F or F o o d o nt ol o g y ( F o o d O n), w e c o n str u ct d at a s et s f or t a s k s A, B, a n d C. All t a s k s ar e
d e si g n e d t o e v al u at e m o d el s i n a z er o- s h ot s etti n g. F or T a s k A, w e q u eri e d F o o d O n
t o r etri e v e l e af cl a s s e s (i. e., s p e ci fi c e ntit y t y p e s) a n d a s s o ci at e d t er m s. T h e S P A R Q L
q u er y a s d e s cri b e d i n Fi g ur e 5 w a s u s e d t o e xtr a ct e ntit y l a b el s a n d d e fi niti o n s, e n-
s uri n g t h at o nl y cl a s s e s wit h E n gli s h l a b el s w er e i n cl u d e d. T h e o ut p ut fr o m t hi s q u er y
w a s pr o c e s s e d t o a s si g n t er m s t o o n e of t h e pr e d e fi n e d hi g h-l e v el c at e g ori e s s u c h a s
” F o o d”, ” E n vir o n m e nt”, ” A gr o n o m y”, et c. T hi s r e s ult e d i n a d at a s et w h er e e a c h t er m i s
l a b el e d wit h it s c orr e s p o n di n g cl a s s t y p e ( e. g., ” F o o d”, ” Pl a nt”, et c.).

F or T a s k B o n t a x o n o m y di s c o v er y, w e e xtr a ct e d hi er ar c hi c al r el ati o n s hi p s b et w e e n
cl a s s e s b y r etri e vi n g r df s: s u b Cl a s s Of r el ati o n s hi p s fr o m t h e F o o d O n. W e u s e d t h e
S P A R Q L q u er y ( pr e s e nt e d i n Fi g ur e 6) t o o bt ai n p ar e nt- c hil d p air s of cl a s s e s i n E n gli s h,
c a pt uri n g t h e t a x o n o mi c str u ct ur e. T hi s r e s ult e d i n a t a x o n o m y d at a s et wit h p air s of
p ar e nt a n d c hil d c o n c e pt s, w hi c h w e u s e d t o e v al u at e h o w w ell m o d el s c a n u n c o v er
s u b cl a s s r el ati o n s hi p s i n a z er o- s h ot c o nt e xt.

F or t h e T a s k C, w e f o c u s e d o n e xtr a cti n g o bj e ct pr o p erti e s t h at r e pr e s e nt n o n-t a x o n o mi c
r el ati o n s b et w e e n e ntiti e s. T h e Fi g ur e 7 S P A R Q L q u er y w a s u s e d t o r etri e v e all o bj e ct
pr o p erti e s a n d t h eir l a b el s fr o m t h e F O O D O N o nt ol o g y. W e t h e n a p pli e d t h e s e r el a-
ti o n s t o e xtr a ct tri pl e s of t h e f or m ( h e a d e ntit y, r el ati o n, t ail e ntit y), w h er e e a c h tri pl e
r e pr e s e nt s a n o n-t a x o n o mi c r el ati o n s hi p b et w e e n t w o e ntiti e s. T hi s yi el d e d a d at a s et
wit h v ari o u s r el ati o n t y p e s a n d c orr e s p o n di n g tri pl et s, all o wi n g u s t o e v al u at e m o d el s’
p erf or m a n c e i n pr e di cti n g n o n-t a x o n o mi c r el ati o n s hi p s.

3. 7 S c h e m a. or g – T a s k B

W e al s o l e v er a g e d t h e S c h e m a. or g o nt ol o g y t o g e n er at e a d at a s et f or T a s k B, wit h a
pri m ar y g o al of e xtr a cti n g hi er ar c hi c al r el ati o n s b et w e e n c o n c e pt s, e n a bli n g t h e e v al-
u ati o n of h o w w ell m o d el s c a n i d e ntif y ’i s- a’ r el ati o n s hi p s wit hi n a t a x o n o m y. W e e x-
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P R E F I X o b o - t e r m : < h t t p : / / p u r l . o b o l i b r a r y . o r g / o b o / >
S E L E C T D I S T I N C T ? c h i l d L a b e l ? p a r e n t L a b e l
F R O M < h t t p : / / p u r l . o b o l i b r a r y . o r g / o b o / m e r g e d / F O O D O N > W H E R E {

? c h i l d r d f s : s u b C l a s s O f ? p a r e n t .
? c h i l d r d f s : l a b e l ? c h i l d L a b e l .
? p a r e n t r d f s : l a b e l ? p a r e n t L a b e l .
? c h i l d a o w l : C l a s s .
? p a r e n t a o w l : C l a s s .
F I L T E R ( l a n g ( ? c h i l d L a b e l ) = " e n " )
F I L T E R ( l a n g ( ? p a r e n t L a b e l ) = " e n " )

}

Fi g ur e 6. F o o d O n S P A R Q L q u er y t o o bt ai n p ar e nt- c hil d p air s of cl a s s e s i n E n gli s h f or T a s k B.

F R O M < h t t p : / / p u r l . o b o l i b r a r y . o r g / o b o / m e r g e d / F O O D O N > W H E R E {
? p r o p e r t y a o w l : O b j e c t P r o p e r t y .
? p r o p e r t y r d f s : l a b e l ? p r o p e r t y L a b e l .
F I L T E R ( l a n g ( ? p r o p e r t y L a b e l ) = " e n " ) .

}
O R D E R B Y ? p r o p e r t y L a b e l

Fi g ur e 7. F o o d O n S P A R Q L q u er y t o e xtr a ct o bj e ct pr o p erti e s t h at r e pr e s e nt n o n- hi er ar c hi c al r el ati o n s
i n E n gli s h f or T a s k C.

tr a ct e d s u b cl a s s r el ati o n s hi p s fr o m t h e S c h e m a. or g t a x o n o m y b y pr o c e s si n g t h e o n-
t ol o g y. Fir st, w e filt er o ut irr el e v a nt c o n c e pt s b y e x cl u di n g r o ot c o n c e pt T h i n g or ot h er
irr el e v a nt R D F cl a s s e s li k e r d f - s c h e m a # C l a s s . N e xt, w e pr e p ar e p ar e nt- c hil d p air s b y
u si n g s u b T y p e O f pr o p ert y, w h er e if a c hil d h a d m ulti pl e p ar e nt s, w e s plit t h e s e i nt o s e p-
ar at e p ar e nt- c hil d p air s. T hi s g a v e u s a li st of hi er ar c hi c al r el ati o n s hi p s, w h er e e a c h
p air r e pr e s e nt e d a c hil d- p ar e nt r el ati o n s hi p. Fi n all y, t o si m ul at e a r e ali sti c f e w- s h ot
s c e n ari o, w e s plit t h e t y p e s i nt o tr ai ni n g a n d t e sti n g s et s. C o n c e pt s t h at a p p e ar e d
i n t h e s u b Ty p e Of pr o p ert y w er e di vi d e d i nt o t w o s et s u si n g a n 8 0/ 2 0 tr ai n-t e st s plit.
P ar e nt- c hil d p air s w er e t h e n a s si g n e d t o t h e tr ai ni n g or t e sti n g s et b a s e d o n t h e p ar e nt
c o n c e pt s.

4 D at a s et St ati sti c s

T h e L L M s 4 O L 2 0 2 4 d at a s et i s d e si g n e d t o s u p p ort t h e b e n c h m ar ki n g of o nt ol o g y
l e ar ni n g m o d el s, wit h a t ot al of 1 9 d at a s et s di stri b ut e d a cr o s s t hr e e c or e t a s k s: T a s k
A - T er m Ty pi n g, T a s k B - T a x o n o m y Di s c o v er y, a n d T a s k C - N o n- T a x o n o mi c R el a-
ti o n E xtr a cti o n. T h e l ar g e st pr o p orti o n of d at a i s all o c at e d t o t h e T er m Ty pi n g t a s k,
gi v e n it s f u n d a m e nt al r ol e i n a s s o ci ati n g t er m s wit h pr e d e fi n e d t y p e s, w hi c h l a y s t h e
gr o u n d w or k f or d o w n str e a m O L pr o c e s s e s. M or e o v er, T a x o n o m y Di s c o v er y a n d N o n-
T a x o n o mi c R el ati o n E xtr a cti o n t a s k s ar e m or e s p e ci ali z e d, f o c u si n g o n hi er ar c hi c al a n d
n o n- hi er ar c hi c al r el ati o n s hi p s, r e s p e cti v el y. T hi s b al a n c e d y et t a s k- s p e ci fi c di stri b uti o n
e n s ur e s t h at m o d el s ar e t e st e d a cr o s s di v er s e, r e al- w orl d l e ar ni n g s c e n ari o s.

T a s k A - T er m T y pi n g. T a s k A d at a s et s a s d e s cri b e d i n T a bl e 1 c o v er s b ot h f e w-
s h ot ( F S) a n d z er o- s h ot ( Z S) e v al u ati o n p h a s e s a cr o s s m ulti pl e d o m ai n s. T h e G e o N-
a m e s ( A. 2 F S) i s t h e l ar g e st d at a s et, wit h o v er 8 milli o n tr ai ni n g s a m pl e s a n d 7 0 2
t h o u s a n d t e sti n g s a m pl e s, m a ki n g it hi g hl y si g ni fi c a nt f or l ar g e- s c al e g e o gr a p hi c t er m
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T a bl e 1. L L M s 4 O L 2 0 2 4 d at a s et s – T A S K A - T E R M T Y PI N G – d o m ai n s a n d e v al u ati o n p h a s e s. ” F S”
r ef er s t o t h e F e w- S h ot t e sti n g p h a s e d at a s et c o nt ai ni n g tr ai n a n d t e st s et s, B ut ” Z S” r ef er s t o
t h e Z er o- s h ot t e sti n g p h a s e e v al u ati o n d at a s et c o nt ai ni n g o nl y t e st s et s.

D at a s et D o m ai n Tr ai n T e st T y p e s

A. 1 ( F S) - W or d N et l e xi c o s e m a nti c s 4 0, 5 5 9 9, 4 7 0 4

A. 2 ( F S) - G e o N a m e s g e o gr a p hi c al l o c ati o n s 8, 0 7 8, 8 6 5 7 0 2, 5 1 0 6 8 0

A. 3 ( F S) - U M L S - N CI
bi o m e di c al

9 6, 1 7 7 2 4, 0 4 5 1 2 5
A. 3 ( F S) - U M L S - M E D CI N 2 7 7, 0 2 8 6 9, 2 5 8 8 7
A. 3 ( F S) - U M L S - S N O M E D C T U S 2 7 8, 3 7 4 6 9, 5 9 4 1 2 5

A. 4 ( F S) - G O - Bi ol o gi c al Pr o c e s s
bi ol o gi c al

1 9 5, 7 7 5 1 0 8, 3 0 0 7 9 2
A. 4 ( F S) - G O - C ell ul ar C o m p o n e nt 2 2 8, 4 6 0 1 2 6, 4 8 5 3 2 3
A. 4 ( F S) - G O - M ol e c ul ar F u n cti o n 1 9 6, 0 7 4 1 0 7, 4 3 2 4 0 1

A. 5 ( Z S) - D B O g e n er al k n o wl e d g e - 4 4, 7 2 4 4 8 4

A. 6 ( Z S) - F o o d O n f o o d - 1 8, 0 8 7 1 2

T a bl e 2. L L M s 4 O L 2 0 2 4 d at a s et s – T A S K B - T A X O N O M Y D I S C O V E R Y – d o m ai n s a n d e v al u ati o n p h a s e s.
” F S” r ef er s t o t h e F e w- S h ot t e sti n g p h a s e d at a s et c o nt ai ni n g tr ai n a n d t e st s et s, B ut ” Z S” r ef er s
t o t h e Z er o- s h ot t e sti n g p h a s e e v al u ati o n d at a s et c o nt ai ni n g o nl y t e st s et s. ” Si z e” r ef er s t o
gr o u n d tr ut h ”i s- a” p air s.

D at a s et D o m ai n
Tr ai n T e st

Si z e T y p e s Si z e T y p e s

B. 1 ( F S) - G e o N a m e s g e o gr a p hi c al l o c ati o n s 4 7 6 4 7 7 2 0 4 2 1 2

B. 2 ( F S) - S c h e m a. or g w e b c o nt e nt t y p e s 1, 0 7 0 2, 0 6 2 3 6 4 7 2 8

B. 3 ( F S) - U M L S bi o m e di c al 7 4 7 6 4 5 5 1

B. 4 ( F S) - G O bi ol o gi c al 3 3, 7 0 3 2 5, 3 7 2 5, 7 5 3 6, 6 2 1

B. 5 ( Z S) - D B O g e n er al k n o wl e d g e - - 7 4 2 7 6 2

B. 6 ( Z S) - F o o d O n f o o d - - 3 0, 2 4 0 2 5, 6 3 1

t y pi n g. M or e o v er, U M L S ( A. 3 F S) pr o vi d e s d et ail e d bi o m e di c al d at a a cr o s s t hr e e s u b-
o nt ol o gi c al s o ur c e s s u c h a s N CI, M E D CI N, a n d S N O M E D C T U S, e a c h wit h a l ar g e
n u m b er of t y p e s cr u ci al f or s p e ci ali z e d m e di c al t er m c at e g ori z ati o n. T h e G O ( A. 4 F S)
d at a s et, p arti c ul arl y t h e ” Bi ol o gi c al Pr o c e s s ( B P)” s u b s et, off er s t er m s a n d t y p e s wit h
t h e hi g h e st v ari et y of t y p e s u p t o 7 9 2. D B O ( A. 5 Z S) a n d F o o d O n ( A. 6 Z S) ar e i m p or-
t a nt z er o- s h ot d at a s et s, t o st u d y t h e g e n er ali z ati o n of fi n e-t u n e d m o d el s.

T a s k B - T a x o n o m y Di s c o v er y. T a s k B d at a s et st ati sti c s ar e c o v er e d i n T a bl e 2,
s h o w c a si n g 6 d at a s et s fr o m diff er e nt d o m ai n s. T h e G e o N a m e s ( B. 1 F S), S c h e m a. or g
( B. 2 F S), a n d U M L S ( B. 3 - F S) ar e r el ati v el y s m all i n t er m s of tr ai ni n g e x a m pl e s b ut
r e pr e s e nt u ni q u e d o m ai n s ( g e o gr a p hi c al l o c ati o n s, w e b c o nt e nt, a n d bi o m e di c al). Si m-
il arl y, a z er o- s h ot d at a s et D B O ( B. 5 F S) h a s s m all e x a m pl e s f or t e sti n g w hi c h pl a y s a
r e al- w orl d s c e n ari o t o st u d y t h e g e n er ali z ati o n of m o d el s, w h e n t h e y ar e fi n e-t u n e d.
M or e o v er, G O ( B. 4 F S) st a n d s o ut wit h o v er 3 3, 7 0 3 tr ai ni n g s a m pl e s a n d t h e hi g h e st
v ari et y of t y p e s 2 5, 3 7 2, m a ki n g it k e y f or bi ol o gi c al t a x o n o m y di s c o v er y. A n d F o o d O n
( B. 6 Z S) i s si g ni fi c a ntl y l ar g e wit h 3 0, 2 4 0 t e st s a m pl e s a n d 2 5, 6 3 1 t y p e s, f o c u si n g o n
t h e e v al u ati o n of t h e g e n er ali z ati o n of m o d el s i n fi n di n g t a x o n o mi e s i n t h e f o o d d o m ai n.

T a s k C - N o n- T a x o n o mi c R el ati o n E xtr a cti o n. T a s k C c o n si st s of 3 d at a s et s, a s
s h o w n i n T a bl e 3, t h e d at a s et s f or t hi s t a s k ar e f e w i n c o m p ari s o n t o t a s k A a n d B
d at a s et s. T h e U M L S ( C. 1 F S), d e s pit e it s m o d er at e si z e, h ol d s si g ni fi c a n c e i n bi o m e d-
i c al r el ati o n e xtr a cti o n, f o c u si n g o n m ulti pl e r el ati o n t y p e s. G O ( C. 2 F S) s h o w s a n
i m b al a n c e i n r el ati o n t y p e s, wit h 5 r el ati o n s f or tr ai ni n g b ut o nl y 2 r el ati o n s f or t e sti n g.
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T a bl e 3. L L M s 4 O L 2 0 2 4 d at a s et s – T A S K C - N O N - TA X O N O MI C R E L A TI O N E X T R A C TI O N – d o m ai n s a n d
e v al u ati o n p h a s e s. ” F S” r ef er s t o t h e F e w- S h ot t e sti n g p h a s e d at a s et c o nt ai ni n g tr ai n a n d t e st
s et s, B ut ” Z S” r ef er s t o t h e Z er o- s h ot t e sti n g p h a s e e v al u ati o n d at a s et c o nt ai ni n g o nl y t e st s et s.
” Si z e” r ef er s t o gr o u n d tr ut h (h, r, t ) tri pl et s.

D at a s et D o m ai n
Tr ai n T e st

Si z e T y p e s R el ati o n s Si z e T y p e s R el ati o n s

C. 1 ( F S) - U M L S bi o m e di c al 3, 0 3 0 1 2 1 3 3 2, 6 1 1 1 1 1 1 5

C. 2 ( F S) - G O bi ol o gi c al 1 0, 5 3 8 1 0, 9 0 1 5 7, 2 3 4 1 4, 0 6 5 2

C. 3 ( Z S) - F o o d O n f o o d - - - 7, 0 8 6 7, 2 9 8 2 6

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

N u m b e r of T y p e s

W o r d N e t

G e o N a m e s

U M L S- N CI

U M L S- M E D CI N

U M L S- S N O M E D C T _ U S

G O- Bi ol o gi c al P r o c e s s

G O- C ell ul a r C o m p o n e n t

G O- M ol e c ul a r F u n c ti o n

D B O

F o o d O n

D
at

a
s

et

T a s k A - T e r m T y pi n g ( T y p e s Di s t ri b u ti o n)

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

N u m b e r of T y p e s

G e o N a m e s

S c h e m a. o r g

U M L S

G O

D B O

F o o d O n

T a s k B - T a x o n o m y Di s c o v e r y ( Tr ai n v s T e s t T y p e s)

Tr ai n

T e s t

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

N u m b e r of T y p e s

U M L S

G O

F o o d O n

T a s k C - N o n- T a x o n o mi c R E ( Tr ai n v s T e s t T y p e s)

Tr ai n

T e s t

Fi g ur e 8. L L M s 4 O L d at a s et s t y p e di stri b uti o n s i n tr ai n a n d t e st s et s.

F o o d O n ( C. 3 Z S), wit h 7, 0 8 6 t e st s a m pl e s a n d 2 6 r el ati o n s, hi g hli g ht s t h e c o m pl e xit y
of n o n-t a x o n o mi c r el ati o n s i n t h e f o o d d o m ai n.

T y p e s Di stri b uti o n s. T h e Fi g ur e 8 hi g hli g ht s t h e c o m pl e xit y of t h e d at a s et s a cr o s s
t a s k s. I n T a s k A ( T er m Ty pi n g), t h e G e o N a m e s a n d G O- Bi ol o gi c al Pr o c e s s d at a s et s
st a n d o ut wit h t h e hi g h e st n u m b er of t y p e s, w hil e W or d N et a n d F o o d O n h a v e r el ati v el y
f e w er t y p e s, i n di c ati n g si m pl er cl a s si fi c ati o n c h all e n g e s. F or T a s k B ( T a x o n o m y Di s c o v-
er y), t h e S c h e m a. or g a n d G O d at a s et s s h o w a l ar g e n u m b er of t y p e s i n b ot h tr ai n a n d
t e st p h a s e s, s u g g e sti n g t h eir c o m pl e xit y, w hil e F o o d O n f e at ur e s a hi g h n u m b er of t e st
t y p e s d e s pit e h a vi n g n o tr ai ni n g d at a, m a ki n g it a c h all e n gi n g z er o- s h ot t a s k. L a stl y,
i n T a s k C ( N o n- T a x o n o mi c R el ati o n E xtr a cti o n), t h e G O d at a s et s h o w s a si g ni fi c a nt i n-
cr e a s e i n t y p e s fr o m tr ai n t o t e st, a n d F o o d O n a g ai n pr e s e nt s a l ar g e n u m b er of t y p e s
a n d r el ati o n s, r ei nf or ci n g it s dif fi c ult y i n a z er o- s h ot s etti n g.

5 C o n cl u si o n

I n t hi s p a p er, w e i ntr o d u c e d t h e L L M s 4 O L 2 0 2 4 d at a s et, d e si g n e d t o a d v a n c e t h e
fi el d of O L b y l e v er a gi n g t h e c a p a biliti e s of L L M s. T h e d at a s et e n c o m p a s s e s t hr e e
c or e t a s k s — T a s k A - T er m Ty pi n g, T a s k B - T a x o n o m y Di s c o v er y, a n d T a s k C - N o n-
T a x o n o mi c R el ati o n E xtr a cti o n — a cr o s s s e v e n di sti n ct d o m ai n s, pr o vi di n g a c o m pr e-
h e n si v e b e n c h m ar k f or e v al u ati n g L L M s i n di v er s e s e m a nti c a n d str u ct ur al c o nt e xt s.
B y f o c u si n g o n t h e s e t a s k s, w e ai m t o p u s h t h e b o u n d ari e s of O L a n d e n h a n c e t h e
d e v el o p m e nt of m o d el s c a p a bl e of pr o c e s si n g u n str u ct ur e d t e xt i nt o f or m ali z e d k n o wl-
e d g e r e pr e s e nt ati o n s. T h e d at a s et al s o r e fl e ct s r e al- w orl d c h all e n g e s s u c h a s cl a s s
i m b al a n c e a n d d o m ai n- s p e ci fi c v ari ati o n s, w hi c h ar e cr u ci al f or t h e d e v el o p m e nt of r o-
b u st, g e n er ali z a bl e m o d el s. F urt h er m or e, it s i nt e gr ati o n i nt o t h e L L M s 4 O L C h all e n g e
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at t h e 2 3r d I nt er n ati o n al S e m a nti c W e b C o nf er e n c e (I S W C) 2 0 2 4 ai m s t o f o st er c o m-
m u nit y e n g a g e m e nt a n d e n c o ur a g e t h e e x pl or ati o n of n o v el a p pr o a c h e s t o O L.

M o vi n g f or w ar d, t hi s d at a s et a n d it s b e n c h m ar k s will pr o vi d e r e s e ar c h er s wit h a f o u n-
d ati o n al r e s o ur c e t o e x pl or e t h e i nt er s e cti o n of L L M s a n d O L, pr o m oti n g f urt h er i n n o-
v ati o n s i n k n o wl e d g e e xtr a cti o n, cl a s si fi c ati o n, a n d r el ati o n di s c o v er y. W e b eli e v e t h at
t h e L L M s 4 O L 2 0 2 4 d at a s et will s er v e a s a k e y c at al y st i n t h e o n g oi n g e v ol uti o n of O L
a n d it s pr a cti c al a p pli c ati o n s a cr o s s a v ari et y of d o m ai n s.

D at a A v ail a bilit y St at e m e nt

T h e d at a s et s s u p p orti n g t hi s arti cl e ar e p u bli cl y a v ail a bl e a n d c a n b e a c c e s s e d vi a
Z e n o d o at htt p s:// d oi. or g/ 1 0. 5 2 8 1/ z e n o d o. 1 3 8 5 1 3 7 3 , or t hr o u g h t h e Git H u b r e p o sit or y:
htt p s:// git h u b. c o m/ H a m e d B a b a ei/ L L M s 4 O L- C h all e n g e-I S W C 2 0 2 4 .

A ut h or s C o ntri b uti o n s

H a m e d B a b a ei Gi gl o u : C o n c e pt u ali z ati o n, M et h o d ol o g y, S oft w ar e, V ali d ati o n, I n v e s-
ti g ati o n, R e s o ur c e s, D at a C ur ati o n, Writi n g - Ori gi n al Dr aft, Writi n g – R e vi e w & E diti n g,
Vi s u ali z ati o n.
J e n nif er D’ S o u z a : C o n c e pt u ali z ati o n, M et h o d ol o g y, I n v e sti g ati o n, R e s o ur c e s, S u p er-
vi si o n, Pr oj e ct a d mi ni str ati o n, F u n di n g a c q ui siti o n, Writi n g – R e vi e w & E diti n g, Vi s u al-
i z ati o n.
S a m e er S a dr u d di n : M et h o d ol o g y, R e s o ur c e s, D at a C ur ati o n.
S ö r e n A u er : C o n c e pt u ali z ati o n, M et h o d ol o g y, R e vi e w & E diti n g, S u p er vi si o n, Pr oj e ct
a d mi ni str ati o n, F u n di n g a c q ui siti o n.

C o m p eti n g i nt er e st s

T h e a ut h or s d e cl ar e t h at t h e y h a v e n o c o m p eti n g i nt er e st s.

A c k n o wl e d g e m e nt s

T h e 1 st L L M s 4 O L C h all e n g e @ I S W C 2 0 2 4 j oi ntl y s u p p ort e d b y t h e N F DI 4 D at a S ci e n c e
i niti ati v e ( D F G, G er m a n R e s e ar c h F o u n d ati o n, Gr a nt I D: 4 6 0 2 3 4 2 5 9) a n d t h e S CI N E X T
pr oj e ct ( B M B F, G er m a n F e d er al Mi ni str y of E d u c ati o n a n d R e s e ar c h, Gr a nt I D: 0 1l S 2 2 0 7 0).
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Abstract: Our team, silp nlp, participated in the LLMs4OL Challenge at ISWC 2024, 
engaging in all three tasks focused on ontology generation. The tasks include predict-
ing the type of a given term, extracting a hierarchical taxonomy between two terms, 
and extracting non-taxonomy relations between two terms. To accomplish these tasks, 
we used machine learning models such as random forest, logistic regression and gen-
erative models for the first t ask a nd g enerative m odels s uch a s llama-3-8b-instruct, 
mistral 8*7b and GPT-4o-mini for the second and third tasks. Our results showed that 
generative models performed better for certain domains, such as subtasks A6 and B2. 
However, for other domains, the prompt-based technique failed to generate promising 
results. Our team achieved first p lace i n s ix s ubtasks a nd s econd p lace i n fi ve sub-
tasks, demonstrating our expertise in ontology generation.

Keywords: Large Language Models, LLMs, Ontology Learning, Prompt-based Learn-
ing, GPT, Llama

1 Introduction

Ontology Learning (OL) is essential in artificial intelligence as it enables the automatic 
extraction and organization of knowledge from text data. Traditional methods of cre-
ating ontologies often require manual input from domain experts, resulting in a time-
consuming and costly process. Recent progress in natural language processing, es-
pecially through Large Language Models (LLMs), offers a compelling alternative for 
automating this procedure.

The LLMs4OL paradigm, as explained in the [1], aims to use large language models 
(LLMs) to improve tasks in ontology learning (OL), such as term typing, discovering 
taxonomies, and extracting non-taxonomic relations. These models, trained on a large 
amount of text data, can understand complex language patterns, which can be useful 
for building ontologies. This study expands on this idea by using similar methods in 
new areas to further prove that LLMs can help automate ontology learning and reduce 
the need for manual input. The work in this paper extends the mentioned task to 
cover fifteen subtasks, as l isted in table 3  and details of all tasks described in [ 2]. We 
utilized machine learning models, such as random forest and logistic regression, as
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well as generative models for Task A, which involves predicting the type of a given term
across multiple domains. In Task B, our objective was to find taxonomies for a given
pair of terms, also across multiple domains. Task C is similar to Task B, where the
goal was to find non-taxonomic relations. For Tasks B and C, we employed a prompt-
based technique with generative models such as mistral 8*7b [3], llama-3-8b-instruct
[4] and gpt-4o [5] for taxonomy prediction. Our results showed that generative models
performed better for certain domains, such as subtasks A6 and B2. However, for other
domains, the prompt-based technique failed to generate promising results. The code
of our work is available here1.

2 Related Work

The OL has been a major focus of research in the fields of artificial intelligence and
knowledge engineering. It aims to automate the process of acquiring and structuring
knowledge from text to create ontologies [6]. Traditionally, this process has relied on
manual efforts by domain experts, which can be time-consuming, costly, and error-
prone. To overcome these challenges, various approaches have been proposed to
automate OL, primarily using lexico-syntactic pattern mining and clustering techniques
[6]–[9].
One of the earliest significant works in the field of ontology learning, as highlighted by
[10], involved using lexico-syntactic patterns to improve lexical ontologies like Word-
Net by extracting new lexicosemantic concepts and relations from large unstructured
text collections. Following approaches, such as those by Hwang (2002), used itera-
tive methods to discover types and taxonomies from text using seed terms, while [11]
focused on expanding existing ontologies by reusing domain-specific ones and inte-
grating verb patterns from text.

In recent years, developments in Ontology Learning have involved the use of machine
learning techniques. Methods such as the self-organizing tree algorithm have been
utilized to create hierarchical structures within ontologies. [12] introduced a TF-IDF-
based term classifier and pattern finder to automatically identify domain-specific terms
and relations from text. This demonstrates the evolving nature of OL methodologies.

The field of online learning has undergone significant changes with the development
of Large Language Models (LLMs). These models, which are trained on extensive and
diverse text collections, have shown potential in understanding complex language pat-
terns and have been used to explore new approaches in online learning. The LLMs4OL
method, introduced by [1], examines the idea that LLMs can effectively use their lan-
guage modelling abilities for online learning tasks such as identifying terms, discovering
taxonomies, and extracting relationships. This method demonstrates the potential of
LLMs in overcoming the limitations of traditional online learning approaches, especially
when customized for specific areas.

Despite the progress made, the research suggests that basic LLMs may not be skilled
enough at complex ontology construction that requires deep reasoning and domain ex-
pertise. However, ongoing improvements and adjustments to LLMs for ontology learn-
ing tasks continue to demonstrate potential, providing a scalable and efficient alterna-
tive to traditional techniques.

1https://drive.google.com/drive/folders/1vRynlNH6LouIvcI1ymHsm6DwYKSOUoAa?usp=sharing
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3 Datasets

The organizers of the event have provided the dataset for each subtask. The details
of the dataset can be described in [13]. Some subtasks do not have training data, and
our goal is to develop zero-shot (ZS) solutions. However, training data is available for
specific subtasks which require a few-shot (FS) approach. A list of all the subtask and
Their statistics for all datasets of Task A and Task B are tabulated in Table 1 and Table
2, respectively. Tasks A and B are divided into various subtasks according to various
domains. For example, the dataset for subtask A1 was taken from Wordnet. Also, we
can see that for task A, the number of classes varies. For example, subtask A1 has
four classes, and subtask A4 has 792 classes.

Table 1. Table shows the size of training data, testing data and number of classes for each subtask of
Task A.

Task Training Data Testing Data Number of classes
A.1(FS) - WordNet 40,559 9,470 4
A.2(FS) - GeoNames 8,078,865 702,510 680
A.3(FS) - UMLS(NCI) 96,177 24,045 125
A.3(FS) - UMLS(MEDCIN) 277,028 69,258 87
A.3(FS) - UMLS(SNOMEDCT US) 278,374 69,594 125
A.4(FS) - GO(Biological Process) 195,775 108,300 792
A.4(FS) - GO(Cellular Component) 228,460 126,485 323
A.4(FS) - GO(Molecular Function) 196,074 107,432 401
A.5(ZS) - 44,724 484
A.6(ZS) - 18,078 12

Table 2. Table shows the size of training and testing data of each subtask of Task B.

Task Training Data Test Data
B.1(FS) - GeoNames 476 204
B.2(FS) - Schema.org 1,070 364
B.3(FS) - UMLS 74 45
B.4(FS) - GO 33,703 5,753
B.5(ZS) - 762

4 Methodology

4.1 Methodology for Task A (Term Typing)

Term typing is a fundamental task in Natural Language Processing (NLP) that involves
categorizing terms or words into predefined types or categories based on their seman-
tic meaning, context, attributes, and relationships with other terms. The subtasks of
task A involve two types: zero-shot and few-shot.

4.1.1 Methodology for the few-shot subtasks (A1 to A4)

For the few-shot subtasks, we trained models using machine learning algorithms such
as random forest, logistic regression, and XGBoost. Each term was converted into
embeddings using the tf-idf model, where the size of each vector is equal to the total
number of unique terms in the training and testing datasets.
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4.1.2 Methodology for the zero-shot subtasks (A5 and A6)

We have used two approaches. In the first approach, we have utilized bert [14] and
sentence transformer models for the features extraction of the terms and types, and
thereafter, we calculate cosine similarity between a term with all types. Most similar
types are predicted as types of the term.

In the second approach, we prompted our query to the generative models. our
best results for the A.6(ZS) achieved with lama-3-8b- instruct model with the follow-
ing prompt:

Prompt:

system prompt = f”””Term typing involves Categorize terms into predefined types or
categories based on their attributes. Return the answer as JSON, with each term as a
key and its corresponding type from the available types as the value.”””

user prompt = f”””term:{term},term definition:definition. classify the given term into
one of types:[{list of categories or types}]”””

assistant prompt = ”””{”area of barren land”:”Environment”}”””

In above prompt we have provided term and some information about term ( informa-
tion about the term are extracted with the model in advance. ) with list of types and
asked model to find the type of term from the given list of types. Assistant prompt is
showing an example with a specific output format.

4.2 Methodology for Task B (Taxonomy Discovery)

Taxonomy discovery is a task in which we need to identify the hierarchical relation-
ship between type pairs. In this task, instances Ta and Tb are given, where Ta is the
superclass (parent) of Tb, and Tb is the subclass (child) of Ta. This represents the tax-
onomy relationship between the two types. This task was also divided into two types
of subtasks: zero-shot and few-shot subtasks.

4.2.1 Methodology for the few-shot subtasks (B1, B2 and B3)

In this task, we’re given training data with term types and corresponding taxonomy-
related type tuples. In the testing data, only the term types are provided, and we must
identify the correct taxonomic relationships from those terms. We have used few-shot
prompting in multiple ways to predict the relation.

Few-Shot Prompting through Description-Based Approaches with GPT-4o

First, find the description of each term. Afterwards, we provided a pair of terms with
descriptions, along with a list of possible relations to GPT-4o and asked to select the
most suitable relation between the given terms. We have also provided some examples
of pairs and their relation so that the model can understand the task with the example.
To maintain efficient performance.

Few-shot Prompting with GPT-4o

This method is applicable for small dataset. In this approach, a list of all the terms is
provided to the GPT-4o and asked to find the pairs from the given list of terms which
have hierarchical relation. We have also provided some examples of pairs and their
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relation so that the model can understand the task with the example. An example of
prompting for the B.2(FS)-schema.org subtask with gpt-4o model is:

Prompt:

{”role”:”system”,”content”:”””extract all the terms having parent child relationship means
superclass subclass and return answer as a list of dict where the list contain all parent
child relationship and dict contains keys as the parent and child and value of keys the
parent and child which are possible from the given list of terms. return answer like this
{”parent”:Animal, ”child:”elephant”}”””}, {”role”: ”user”, ”content”: f”Here is the list of
terms :{test data}”}

Verification-based Few-shot Prompting with mistral-22-7b

We provided a pair of terms, along with a list of possible relations to mistral-22-7b and
asked to select the most suitable relation between the given terms. Thereafter, we
instruct the model to verify the relation. We have also provided some examples of pairs
and their relation so that the model can understand the task with the example.

4.3 Methodology for Task C1 (FS) UMLS (Non-Taxonomic Relationship
Extraction)

Task C is similar to Task B, except that the terms do not have a hierarchical taxonomy.
We have utilized the gpt4o for prompting. For the prediction, all combinations of pairs
are provided to the model and asked whether each term of a pair is related or not. We
have also provided some examples of pairs and their relation so that the model can
understand the task with the example.

5 Evaluation Metric

For Task A, the precision and f1-score are reported as the metrics for the task. We
have reported the same metrics. Similarly, evaluations for Task B are reported in terms
of the standard F1-score based on precision and recall.

6 Results and Analysis

Our best results are tabulated in Table 3 with their respective ranks. For subtasks A1,
A2, A3, and A4, a comparison of results with the random forest, logistic regression,
and XGboost models is shown in Table 4. The Random forest model achieved better
scores, but it required more training time compared to logistic regression and XGboost.

Similarly, for subtasks A5 and A6, which are zero-shot tasks, the results with various
models are shown in Table 5. The results show that GPT-4o performed better using a
prompting-based approach, whereas the sentence transformer performed more effec-
tively with a similarity-based approach.

For subtasks B and C, results with various generative models are tabulated in Ta-
ble 6. The GPT-4o model demonstrated better performance for the relation extraction
tasks. However, the results of B.1(FS)-GeoNames and C.1(FS)-UMLS subtasks are
still challenging since no model produces good results for these subtasks.

35



Kumar Goyal et al. | Open Conf Proc 4 (2024) ”LLMs4OL 2024: The 1st Large Language Models for Ontology Learning
Challenge at the 23rd ISWC”

Table 3. Table displays our highest F1-scores and rankings for all subtasks.

Task F1-score Precision Recall Rank

A.1(FS) - WordNet 0.90 0.90 0.90 6
A.2(FS) - GeoNames 0.44 0.75 0.31 2
A.3(FS) - UMLS(NCI) 0.69 0.87 0.57 2
A.3(FS) - UMLS(MEDCIN) 0.93 0.95 0.92 1
A.3(FS) - UMLS(SNOMEDCT US) 0.75 0.85 0.67 2
A.4(FS) - GO(Biological Process) 0.26 0.40 0.20 1
A.4(FS) - GO(Cellular Component) 0.27 0.42 0.20 1
A.4(FS) - GO(Molecular Function) 0.29 0.41 0.23 1
A.5(ZS) 0.30 0.30 0.30 2
A.6(ZS) 0.72 0.72 0.72 2
B.1(FS) - GeoNames 0.08 0.04 0.59 3
B.2(FS) - Schema.org 0.61 0.45 0.94 1
B.3(FS) - UMLS 0.35 0.41 0.31 1
B.5(ZS) 0.21 0.14 0.42 1
C.1(FS) UMLS 0.07 0.04 0.18 1

Table 4. Comparison of F1-score across different machine learning models for few-shot subtasks of task
A.

Task Name Random Forest Logistic Regression XGboost

A.1(FS) - WordNet 0.9037 0.68 0.69
A.2(FS) - GeoNames 0.4433 0.31 0.40
A.3(FS) - UMLS(NCI) 0.6973 0.4706 -
A.3(FS) - UMLS(MEDCIN) 0.9381 - -
A.3(FS) - UMLS(SNOMEDCT US) 0.7552 0.7334 0.7552
A.4(FS) - GO(Cellular Component) - 0.2725 -
A.4(FS) - GO(Biological Process) 0.24 0.2349 0.269075
A.4(FS) - GO(Molecular Function) 0.20 0.267 0.297

7 Conclusion

During our investigation, we explored different machine learning and generative mod-
els for ontology generation as part of the LLMs4OL Challenge @ ISWC 2024. Our
approach involved using traditional machine learning models such as Random Forest,
Logistic Regression, and XGBoost, as well as advanced generative models like llama-
3-8b-instruct, mistral 8*7b, and GPT-4o.

Our results showed that different approaches had varying effectiveness across tasks.
For subtasks A1 through A4, Random Forest models yielded superior results, although
they required longer training times compared to Logistic Regression and XGBoost. For
zero-shot tasks A5 and A6, GPT-4O proved to be the most effective model, highlighting
the potential of advanced generative models in scenarios where labelled data is limited.
Similarly, for subtasks B and C, which focused on relation extraction, GPT-4O also
outperformed other models, demonstrating its suitability for complex NLP tasks.
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Table 5. Comparison of F1-score across different models for zero-shot subtasks of task A.

Task Name
bert-base-
uncased

sentence-
transformers/

all-MiniLM-L6-v2 mistral 8*7b GPT-4o-mini
llama-3-8b-

instruct

A.5(ZS) 0.146 0.2001 0.2906 0.3008 -
A.6(ZS) 0.30 0.39 - - 0.7278

Table 6. Comparison of the F1-scores across different models for tasks B and C.

Task Name llama3-8b-fine-tuning-predibase llama3-8b gpt-4o mistral 22*7b

B.1(FS) - GeoNames 0.083 0.041 - -
B.2(FS) - Schema.org - - 0.61 -
B.3(FS) - UMLS - - 0.3544 0.1834
B.5(ZS) - - 0.2109 -
C.1(FS)-UMLS - 0.047 0.0616 -
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Abstract: Large language models (LLMs) showed great capabilities in ontology learn-
ing (OL) where they automatically extract knowledge from text. In this paper, we pro-
posed a Retrieval Augmented Generation (RAG) formulation for three different tasks of 
ontology learning defined in the LLMs4OL Challenge at ISWC 2024. For task A - term 
typing - we considered terms as a query and encoded the query through the Query En-
coder model for searching through knowledge base embedding of types embeddings 
obtained through Context Encoder. Next, using Zero-Shot Prompt template we asked 
LLM to determine what types are appropriate for a given term within the term typing 
task. Similarly, for Task B, we calculated the similarity matrix using an encoder-based 
transformer model, and by applying the similarity threshold we considered only similar 
pairs to query LLM to identify whatever pairs have the ”is-a” relation between a given 
type and in a case of having the relationships which one is ”parent” and which one is 
”child”. In final, for Task C – non-taxonomic relationship extraction – we combined both 
approaches for Task A and B, where first using Task B  formulation, child-parents are 
identified t hen u sing Task A , we a ssigned t hem a n a ppropriate r elationship. For the 
LLMs4OL challenge, we experimented with the proposed framework over 5 subtasks 
of Task A, all subtasks of Task B, and one subtask of Task C using Mistral-7B LLM.

Keywords: Large Language Models, Ontology Learning, Retrieval Augmented Gener-
ation, Term Typing, Taxonomy Discovery, Non-Taxonomic Relationship Extraction

1 Introduction

Ontology Learning (OL) is a critical area in knowledge representation and manage-
ment, addressing the challenges of acquiring and structuring knowledge from diverse 
textual sources. With the rapid advancements in Natural Language Processing (NLP), 
particularly through the emergence of Large Language Models (LLMs), there is a com-
pelling opportunity to enhance OL processes. LLMs have demonstrated remarkable 
capabilities in understanding and generating human language, making them potential 
candidates for automating the extraction and organization of knowledge from natu-
ral language texts. In the work of Babaei Giglou et al. [1] LLMs4OL paradigm was
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introduced which investigates the hypothesis: Can LLMs effectively leverage their lan-
guage pattern recognition abilities to facilitate ontology learning? Our approach en-
compasses a comprehensive evaluation of different LLM families across three primary
tasks: term typing, taxonomy discovery, and extraction of non-taxonomic relationships.
These tasks are evaluated using diverse ontological knowledge sources, including lex-
icosemantic knowledge from WordNet, geographical knowledge from GeoNames, and
medical knowledge from UMLS. The empirical results from our study reveal that while
foundational LLMs may struggle with the reasoning and domain expertise required for
effective ontology construction, they can serve as valuable assistants when fine-tuned
appropriately. This fine-tuning can alleviate the knowledge acquisition bottleneck often
encountered in ontology development.

To systematically explore the capabilities of LLMs in OL, we have structured our
research into three distinct tasks as described in LLMs4OL 2024 Challenge [2]:

1. Task A – Term Typing: This task involves classifying terms into predefined cate-
gories across various domains, such as geographical locations in GeoNames and
medical terminologies in UMLS.

2. Task B – Taxonomy Discovery: Here, we aim to identify hierarchical relation-
ships between term types, utilizing datasets from GeoNames and Schema.org to
establish taxonomic structures.

3. Task C – Non-Taxonomic Relationship Extraction: This task focuses on iden-
tifying semantic relationships between terms that do not conform to hierarchical
structures, with a particular emphasis on medical concepts in UMLS.

The rest of the paper is constructed as follows: In section 2 we refer to some pre-
viously conducted works. Then in section 3, we describe our methodology and after
reporting the results of the study in section 4, we provide information about datasets
we used in our implementations.

2 Related works

The construction of ontologies and knowledge graphs (KGs) has traditionally relied
on human domain experts to define entities, establish relationships, and ensure data
quality. However, the advent of Large Language Models (LLMs) has introduced promis-
ing avenues for automating aspects of this labor-intensive process. In the work of
Kommineni et al. [3] proposed a semi-automated pipeline for constructing KGs using
open-source LLMs. Their approach involves formulating competency questions (CQs),
developing an ontology based on these CQs, and constructing KGs with minimal hu-
man involvement. The authors demonstrate the feasibility of their pipeline by creating
a KG focused on deep learning methodologies, utilizing scholarly publications. Their
findings suggest that while LLMs can significantly reduce the human effort required for
KG construction, a human-in-the-loop approach remains essential for evaluating the
quality of automatically generated content.

Another study [4] introduces ANGEL, a framework that integrates ontology structures
and instructive prompting within LLMs for Named Entity Recognition (NER) data aug-
mentation. This framework addresses the challenge of generating scalable training
data while maintaining contextual diversity and label consistency. The experimental re-
sults indicate that ANGEL outperforms state-of-the-art methods, showcasing the poten-
tial of LLMs to enhance NER model performance, especially in low-resource scenarios.
OntoChat is presented as a framework designed to facilitate conversational ontology
engineering [5]. By leveraging LLMs, OntoChat supports requirement elicitation, anal-
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ysis, and testing in large collaborative projects. The framework allows users to interact
with a conversational agent to create user stories and extract competency questions,
thus streamlining the ontology engineering process. Preliminary evaluations indicate
positive feedback from domain experts, although challenges such as biases and the
need for enhanced insights into implementation costs remain.

One other work presented SPIRES [6], a knowledge extraction approach that utilizes
LLMs for zero-shot learning and schema-conforming query answering. SPIRES recur-
sively interrogates prompts to extract information from input text while adhering to a
user-defined knowledge schema. The method demonstrates flexibility and customiza-
tion, enabling it to perform various tasks without requiring new training data. The re-
sults indicate that SPIRES can assist in knowledge curation and validation, significantly
improving the efficiency of knowledge base creation. Furthermore, researchers inves-
tigate the use of LLMs to generate technical content relevant to the SAPPhIRE model
of causality. They present a method for hallucination suppression using Retrieval-
Augmented Generation (RAG) to ensure the generated content is accurate and sci-
entifically grounded. The study emphasizes the importance of the context provided to
the LLM, demonstrating that different contexts can lead to varying quality in the gener-
ated responses. This research aims to build a software tool for generating SAPPhIRE
models, highlighting the potential of LLMs in technical knowledge generation [7].

In a study, L.Silva et al. [8] explore the creation of capability ontologies using LLMs.
The authors conduct experiments with different prompting techniques and LLMs to gen-
erate machine-interpretable models from natural language descriptions. Their findings
indicate that even complex capabilities can be accurately modeled, significantly reduc-
ing the effort and expertise required for ontology creation. The study also emphasizes
the need for semi-automated quality checks to ensure the reliability of the generated
ontologies. Yushi Sun and his team also investigated whether traditional knowledge
graphs should be replaced by LLMs, particularly regarding their ability to capture spe-
cialized taxonomies. The authors introduce TaxoGlimpse, a benchmark for evaluating
the performance of LLMs across various taxonomies. Their comprehensive experi-
ments reveal that while LLMs perform well on common taxonomies, they struggle with
specialized domains and leaf-level entities. The study suggests future research direc-
tions that combine LLMs with traditional taxonomies to create novel neural-symbolic
taxonomies [9]. Recent research has started to explore the potential of LLMs in ontol-
ogy matching (OM) using retrieval augmented generation (RAG), leveraging the vast
amount of knowledge encoded in these models to perform more sophisticated and
context-aware matching. The LLMs4OM [10] framework represents a significant ad-
vancement in this direction. It introduces an approach that employs LLMs for OM
tasks through two modules dedicated to retrieval and matching, enhanced by zero-
shot prompting across three ontology representations: concept, concept-parent, and
concept-children. Comprehensive evaluations using 20 OM datasets from various do-
mains demonstrate that LLMs4OM can match and even surpass the performance of
traditional OM systems, particularly in complex matching scenarios using RAG.

The mentioned research collectively highlights the transformative potential of LLMs
in ontology and KG construction, offering various methodologies to enhance automa-
tion and reduce the reliance on human expertise. However, they also underscore the
importance of maintaining human oversight to ensure the accuracy and relevance of
the generated content. As the field evolves, future research will likely continue to ex-
plore the integration of LLMs in knowledge engineering, addressing existing limitations
and enhancing the effectiveness of these technologies.
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Figure 1. RAG for Term Typing Task of LLMs4OL

3 Methodology

3.1 Task A – term typing

In Task A, the goal is to classify terms into predefined categories across various do-
mains. We implemented a Retrieval-Augmented Generation (RAG) approach, leverag-
ing LLMs using QLoRA approach. This setup allowed us to efficiently handle the term
classification task without the need for additional fine-tuning. By integrating RAG, we
aimed to enhance the accuracy and relevance of the classifications, making it suitable
for a wide range of domains where terms might have clear meanings and require exact
categorization.

To accomplish the task, the Figure 1 implemented to treat the types as a knowledge
base (KB) and employed a Context Encoder model to generate embeddings for these
types, which were then stored in the KB Embedding Storage. Specifically, we used the
dpr-ctx encoder-single-nq-base model [11], which is a sentence-BERT variant, to
create context-aware embeddings. For any given query, we generated the correspond-
ing embedding using a Query Encoder with dpr-question encoder-single-nq-base

model [11]. This dual-encoder approach facilitated a robust representation of both
terms and types, ensuring that the system could effectively match terms with the most
relevant types. Once the embeddings were in place, a Retrieval model searched the
KB Embedding Storage to retrieve the top-k candidate types using the cosine similar-
ity metric (we set top-k as 20). These candidate types were then passed to the LLM,
specifically the Mistral-7B-Instruct-v0.3 [12] model, which processed the candi-
dates through a specialized prompt template (as described in Figure 2). The prompt
was designed to instruct the LLM to identify the most probable types for the given term
and return them in a simple Python list format, without any additional explanation. This
process allowed for efficient and accurate term typing, ensuring that the most suitable
types were consistently identified for each term.

3.2 Task B - taxonomy discovery

In Task B: Taxonomy Discovery, the focus is on identifying ”is-a” relationships between
predefined types, where the goal is to determine the hierarchical child-parent relation-
ships among these types. This process involves analyzing provided types to establish
which ones serve as more general categories (parents) and which are more specific
instances (children). By uncovering these relationships, we can construct or expand a
taxonomy that organizes types in a structured manner, reflecting their inherent hierar-
chies. The overall workflow for this task is visually summarized in Figure 3.
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Given a list of types as a candidate to be assigned to the term, identify the most probable
types.

Return types only in the form of a Python list.
Do not provide any explanation.

Term: <term>
Candidates: <candidates-list>
Suitable types:

Figure 2. Prompt Template for Task A - Term Typing

Figure 3. RAG for Taxonomy Discovery Task of LLMs4OLB

The first step in this task was to generate a types embedding matrix using a con-
text embedding model. This matrix represents the types in a high-dimensional space,
capturing their semantic similarities. To identify potential ”is-a” relationships, we cal-
culated pairwise cosine similarities between all possible pairs of types, producing a
cosine-similarity matrix. This matrix serves as the foundation for detecting relation-
ships, with each value representing how closely related two types are in terms of their
embeddings. We then applied a threshold-based filter to the lower triangular part of
this matrix, effectively narrowing down the list of possible type pairs that might exhibit
a child-parent relationship. The filtered pairs were then passed to a Large Language
Model (LLM) to assess whether a child-parent relationship exists between each pair.
We designed a specific prompt template to guide the LLM in this evaluation. For each
pair, the LLM was asked to determine if a hierarchical relationship was present, and if
so, to identify which type is the child and which is the parent. The model was instructed
to output the results in a JSON format, strictly indicating the child-parent pairs or re-
turning an empty JSON object if no relationship was found. This structured approach
ensured that the LLM’s output clear and accurate taxonomy. The prompt template in
Figure 4 is used in the taxonomy discover framework.
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Given two types, determine whether they can have the children-parent relations or not.
Then which one would be a parent and which one would be a child?

Use the following output format:
“‘
{
”child”: ”type”,
”parent”: ”type”
}
“‘
Notes:
- If it is not possible to establish a parent-child relationship.
Just return empty ‘{}‘.
- Do not return anything other than JSON.
- Do not provide any explanation

Term-1: <first-types>
Term-2: <second-type>

###

Figure 4. Prompt Template for Task B - Taxonomy Discovery

3.3 Task C – Non-Taxonomic Relation Extraction

In Task C: Non-Taxonomic Relation Extraction, the objective is to identify and extract
triplets in the form of (head, relation, tail) from a set of given types. These triplets repre-
sent non-taxonomic relationships between types, where ”head” and ”tail” are types, and
”relation” defines the nature of their connection. This task leverages the methodologies
developed for both Task A (Term Typing) and Task B (Taxonomy Discovery), integrating
them to uncover and label relationships beyond simple hierarchical structures.

The first phase of this task mirrors the approach used in Task B: we begin by identify-
ing potential pairs of types that may have a significant relationship, treating the problem
similarly to how we discovered ”child-parent” relationships in Task B. We use a context
embedding model to create embeddings for the types and then calculate pairwise co-
sine similarities to determine which pairs are closely related. By applying a threshold
to the cosine similarity matrix, we filter out the most promising type pairs, which could
potentially form the basis of non-taxonomic triplets.

Once the type pairs are identified, we employ an approach similar to Task A to assign
the appropriate relationship (or ”relation”) to each pair, transforming the ”child-parent”
identification into a broader relation extraction. The filtered pairs are fed into an LLM
using a prompt depicted in Figure 5 to determine the exact nature of the relationship
between each pair. The LLM, informed by its understanding of the types, assigns a
specific relation to each pair, effectively completing the triplet. This combined approach
ensures we can extract meaningful and accurate (head, relation, tail) triplets, providing
a comprehensive understanding of the relationships within the given set of types.
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Given a head and tail type with candidate relations between them, identify the most
probable relation between head and tail.

Notes:
- Return a single relation in the following format:
{’relation’:’relation-name’}
- not provide any explanation.

Head-Type: <head-type>
Tail-Type: <tail-type>

Candidate relation between head and tail types: <candid-list>
Suitable relations:

Figure 5. Prompt Template for Task C - Non-Taxonomic Relation Extraction

4 Results

In the LLMs4OL Challenge, we participated in multiple subtasks across three ma-
jor tasks: Task A (Term Typing), Task B (Taxonomy Discovery), and Task C (Non-
Taxonomic Relation Extraction). Our performance was evaluated based on F1 scores,
precision, and recall under both Few-Shot (FS) and Zero-Shot (ZS) testing scenario
datasets of the challenge [13]. The results are presented in Table 1.

Table 1. Phoenixes at LLMs4OL Challenge Results Across LLMs4OL SubTasks.

SubTasks Rank F1 Precision Recall
Task A - Term Typing
SubTask A.1 (FS) - WordNet 7 0.8158 0.7689 0.8687
SubTask A.3 (FS) - NCI 5 0.0737 0.0562 0.1070
SubTask A.4 (FS) - Cellular Component 5 0.0158 0.0124 0.0217
SubTask A.4 (FS) - Biological Process 5 0.0319 0.0214 0.0622
SubTask A.4 (FS) - Molecular Function 5 0.0700 0.0485 0.1256
Task B - Taxonomy Discovery
SubTask B.1 (FS) - GeoNames 5 0.0036 0.0019 0.0294
SubTask B.2 (FS) - Schema.org 3 0.0155 0.0079 0.3901
SubTask B.3 (FS) - UMLS 2 0.0960 0.0550 0.3778
SubTask B.4 (FS) - Gene Ontology (GO) 1 0.0164 0.0180 0.0149
SubTask B.5 (FS) - DBpedia Ontology (DPO) 2 0.0164 0.0180 0.0149
SubTask B.6 (ZS) - Food Ontology (FoodOn) 1 0.0308 0.0243 0.0420
Task C - Non-Taxonomic Relationship Extraction
SubTask C.1 (FS) - UMLS 2 0.0273 0.0433 0.0199

Below, we provide an overview of our results and their insights.

4.1 Task A - Term Typing

In Task A, we participated in five subtasks focused on different ontologies and domains.
Our best performance was in SubTask A.1 (FS) - WordNet, where we achieved an F1
score of 0.8158. This result indicates a relatively strong ability to classify terms within
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the WordNet domain, with a precision of 0.7689 and a recall of 0.8687. However, our
performance in the other subtasks fell short, particularly in SubTask A.4 (FS) - Cellular
Component, where we only achieved an F1 score of 0.0158. Similar low scores were
observed in SubTask A.4 (FS) - Biological Process (F1 = 0.0319) and SubTask A.4 (FS)
- Molecular Function (F1 = 0.0700). These results suggest that our model struggled
with more specialized biological domains, likely due to the complexity and specificity of
the terms involved. Overall, the presented results show the formulation of the task with
RAG is beneficial, however, fine-tuning is one of the requirements to obtain a better
performance as observed in [1].

4.2 Task B - Taxonomy Discovery

In Task B, we explored the discovery of ”is-a” relationships across various ontologies.
Our best result was in SubTask B.3 (FS) - UMLS, where we ranked 2nd with an F1
score of 0.0960. However, the F1 scores across other subtasks, such as SubTask B.1
(FS) - GeoNames (F1 = 0.0036) and SubTask B.2 (FS) - Schema.org (F1 = 0.0155),
indicate difficulties in accurately identifying taxonomic relationships in these domains.
For SubTask B.3 (FS) - UMLS the recall score of 0.3778 shows that our approach was
competitive in identifying complex relationships within the UMLS domain, however, LLM
failed to find appropriate relations.

4.3 Task C - Non-Taxonomic Relationship Extraction

For Task C, we participated in SubTask C.1 (FS) - UMLS, which focused on extracting
non-taxonomic relationships. Our model achieved an F1 score of 0.0273, ranking 2nd
in this subtask. Despite the relatively low F1 score, this result shows that our approach
was competitive in identifying complex relationships within the UMLS domain. The
precision of 0.0433 and recall of 0.0199 indicate that while our model was able to
correctly identify some relationships, there were challenges in capturing the full range
of relevant relations, suggesting areas for further improvement.

5 Conclusion

In conclusion, our participation in the LLMs4OL Challenge revealed strengths in certain
domains, particularly in Task A for WordNet and in Task B for Food Ontology. However,
the generally low F1 scores across many subtasks highlight the challenges of term typ-
ing, taxonomy discovery, and relation extraction in highly specialized domains. These
results suggest that while our approach has potential, there is significant room for im-
provement, particularly in enhancing the model’s adaptability to diverse and complex
ontologies. The implementation of this work is published in the GitHub repository for the
research community at https://github.com/MahsaSanaei/Phoenixes-LLMs4OL-ISWC.
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Abstract: The increasing capabilities of Large Language Models (LLMs) have opened
new opportunities for enhancing Ontology Learning (OL), a process crucial for structur-
ing domain knowledge in a machine-readable format. This paper reports on the partic-
ipation of the RWTH-DBIS team in the LLMs4OL Challenge at ISWC 2024, addressing
two primary tasks: term typing and taxonomy discovery. We used LLaMA-3-8B and
GPT-3.5-Turbo models to find the performance gaps between open-source and com-
mercial LLMs. For open-source LLMs, our methods included domain-specific continual
training, fine-tuning, and knowledge-enhanced prompt-tuning. These approaches were
evaluated on the benchmark datasets from the challenge, i.e., GeoNames, UMLS,
Schema.org, and the Gene Ontology (GO), among others. The results indicate that
domain-specific continual training followed by task-specific fine-tuning enhances the
performance of open-source LLMs in these tasks. However, performance gaps remain
when compared to commercial LLMs. Additionally, the developed prompting strategies
demonstrate substantial utility. This research highlights the potential of LLMs to au-
tomate and improve the OL process, offering insights into effective methodologies for
future developments in this field.

Keywords: Ontology Learning, Large Language Models, Domain-specific Continual
Learning, Knowledge-enhanced Prompt-tuning, Hierarchical Text Classification

1 Introduction

In the context of the Semantic Web community, an ontology is a formal representation
of a set of concepts and the relationships between those concepts of shared con-
ceptualizations of a domain of interest, shared by a group of people within a certain
domain [1], [2]. It is often considered as a source of semantics and interoperability
and used to model domain knowledge in a structured, machine-readable format. On-
tology Learning (OL) refers to the process of automatic or semi-automatic creation of
ontologies from text, including the extraction of terms and concepts, the extraction re-
lationships, axiom and evaluation [3].
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The recent success of OpenAI’s Generative Pre-trained Transformer (GPT) has demon-
strated the enormous capabilities of Large Language Models (LLMs) in natural lan-
guage understanding and generation. LLMs have shown proficiency in various tasks,
including machine translation, summarization, question-answering, and more recently,
and now open new opportunities for enhancing OL processes, a domain-specific task.
LLMs4OL [4] defines six key activities in OL including corpus preparation, terminology
extraction, including term typing, taxonomy construction, relation extraction, and axiom
discovery. The LLMs4OL Challenge ISWC 2024 [5] introduces three tasks of con-
ceptualization (term typing, taxonomy construction, and relation extraction) and aims
to explore and harness the potential of LLMs in OL within the context of the Semantic
Web. It seeks to foster innovation and collaboration in the development of scalable and
precise methods. This paper presents a technical report on our participation in the
challenge.

1.1 Tasks Performed

In this study, we addressed two primary tasks defined by the LLMs4OL Challenge:

• Task A - Term Typing: Discover the generalized type for a lexical term.
• Task B - Taxonomy Discovery: Discover the taxonomic hierarchy between type

pairs.

1.2 Main Objectives of Experiments

The primary objectives of our experiments were to assess the effectiveness of both
open-source and commercial LLMs in tasks such as term typing and taxonomy dis-
covery. Our research is centered around the following research questions, which are
guiding the design of our experiments and the subsequent analysis of the results:

1. Comparing the Performance of Commercial and Open-Source Models: How
do existing commercial models stack up against open-source models in terms of
performance on the tasks defined in this competition? This question is aimed
at evaluating the strengths and limitations of different models when applied to
domain-specific challenges.

2. Enhancing Open-Source Models through Training Methods: Can the perfor-
mance of open-source models be improved through the application of various
training methods? This question explores whether targeted training strategies
can narrow the performance gap between commercial and open-source models
in these tasks.

2 Background and Related Work

For both tasks in the challenge, our research focuses on the following topics: Unsuper-
vised Continual Learning and Knowledge-enhanced Prompt-tuning.

Unsupervised Continual Learning

Unsupervised continual learning (UCL) focuses on the ongoing training of models using
unlabeled data, a technique that has shown considerable success across various fields.
In the continual pre-training scenario, models are first pre-trained on a large corpus of
general text and then further pre-trained on domain-specific data to better adapt to
new domains. This method has led to significant performance improvements for tasks
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within new domains. For instance, Gururangan et al. [6] explored the effectiveness of
domain-adaptive pre-training for NLP models. Their study demonstrated that continual
pre-training on domain-specific data could significantly enhance the performance of
downstream tasks, even when the amount of data is limited. Additionally, researchers
such as Ke et al. [7], Scialom et al. [8], and Han et al. [9] formalized the continual
pre-training scenario. They proposed pre-training strategies that effectively retain and
transfer knowledge, thereby improving the generalization capabilities of the models.
Their work also yielded promising results in the field of natural language processing
(NLP).

The study of continual learning in large language models (LLMs) is still evolving. Wu
et al. [10], wang et al. [11], and shi et al. [12] provided a comprehensive survey on
continual learning for LLMs, emphasizing the necessity for regular updates to keep the
models current with evolving knowledge and skills. Those studies show that continual
pre-training and unsupervised continual learning offer promising avenues for enhancing
the adaptability and performance of models in language domains. Therefore, we will
develop our own continuous pre-training scheme based on the contextual information
collected from the domain of the provided training data.

Knowledge-enhanced Prompt-tuning

The integration of external knowledge into prompt-tuning methods has shown promis-
ing results in enhancing the performance of few-shot learning models. Traditional
prompt-tuning approaches often struggle with tasks requiring domain-specific knowl-
edge due to their reliance on general-purpose language models pre-trained on vast but
generic datasets [13]. To address these limitations, several studies have explored the
incorporation of structured and unstructured knowledge into prompt-tuning frameworks.
Lu et al. [14] proposed the Medical Knowledge-enhanced Prompt Learning (MedKPL)
model to improve diagnosis classification from clinical text. MedKPL leverages both
structured knowledge from medical knowledge graphs and unstructured knowledge
from online resources, integrating them into the prompt templates. The model demon-
strated superior performance in standard and low-resource settings, showcasing its
robustness and transferability across different medical departments. Similarly, liu et
al. [15] introduced the Structured Knowledge Prompt Tuning (SKPT) method, which
enhances prompt learning by embedding structured knowledge directly into the prompt
sequences. This approach utilizes open information extraction to generate knowledge
triples, which are then incorporated into the prompt templates. SKPT has shown ef-
fectiveness in few-shot text classification tasks, outperforming traditional methods on
benchmark datasets.

These advancements highlight the potential of knowledge-enhanced prompt-tuning
to address the challenges of domain-specific tasks in NLP. By integrating external
knowledge into prompt templates, these methods not only improve model performance
but also enable better generalization to unseen data and low-resource scenarios.

3 Methods

In this section, we detail the methodologies employed in our approach to the LLMs4OL
Challenge at ISWC 2024. Our approach depicted in Figure 1 is structured into three
main stages data augmentation, model training, and inference. Each stage involves
specific techniques and processes designed to optimize the performance of LLMs in
term typing and taxonomy discovery.
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Figure 1. Overview of Research Methodology

3.1 Data Augmentation for Terms and Types

We participated in both Task A and Task B of the competition, each of which provided a
set of ontologies [16]. Task A included the ontologies WordNet [17], GeoNames [18],
UMLS [19], and GO [20]. The training data for Task A comprised three components: an
optional context sentence (available only for WordNet), a lexical term, and a conceptual
term type (provided as a list if the term could be assigned multiple types). In contrast,
the test dataset for Task A only provided the optional context sentence (again, only for
WordNet) and the lexical term.

Task B included the ontologies GeoNames [18], UMLS [19], GO [20], and Schema.org
[21]. The training data for Task B was structured as pairs of types in the format {Ta, Tb},
where Ta represents the parent (superclass) and Tb represents the child (subclass).
The test dataset for Task B provided only a series of types, requiring us to identify pairs
with an ”is-a” relationship among them.

During model training, we collected contextual information for terms and types us-
ing three methods described in this section, based on the data provided in the train-
ing datasets. Notably, for GeoNames [18], we gathered contextual information for all
types and terms that appeared in both the Task A and Task B training datasets. For
Schema.org [21], we collected information for all types present in both the training and
test datasets of Task B. For UMLS [19] and GO [20], we collected contextual informa-
tion only for the types found in the Task B training dataset. No contextual information
was collected for WordNet [17].

3.1.1 Data Collection from Wikipedia

We search for term or type descriptions through publicly available sources, such as
Wikipedia. We utilize the Wikipedia API [22] to retrieve relevant term definitions by
sending HTTP requests and parsing the returned JSON data. After obtaining the raw
content, we perform data cleaning to remove irrelevant or redundant information, ensur-
ing the data is more standardized and structured. The specific cleaning steps include:

• Filtering Parser Instructions: Use regular expressions to match and remove
magic words such as ” NOTOC ” that control page content display and behavior
but are not useful for our training purposes.

• Filtering File/Image Links: Remove file or image links starting with File, Image,
or Media.

• Filtering References and Tables: Remove content within ”ref” and ”table” tags.
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• Handling Category Links: Retain category links but remove the category pre-
fixes.

• Merging and Cleaning Content: Combine various parts of the content and re-
move extra line breaks and whitespace characters.

This data collection and cleaning process ensures that the data obtained from Wikipedia
is of high quality and consistency. The cleaned content is used for subsequent data
analysis and model training. It is also suitable for collecting the definitions of various
types.

3.1.2 Data Collection using Commercial Language Models

We employ commercial large language models with network search capabilities to col-
lect a large amount of term-related information required for training, such as OpenAI’s
GPT-4o [23], Anthropic’s Claude-3 [24], and Microsoft’s Copilot [25]. We use zero-shot
prompting to access these models through their API interfaces, and after cleaning the
returned data, it is used as training data to enrich the contextual information of terms
and types. Figure 2 demonstrates the example prompt we used to collect context infor-
mation for the GeoNames dataset.

Inference Prompt

Here is a geographical term: ”{name}”. Translate the given geographical term into En-
glish. Provide geographical information in plain text without any markdown formatting or
reference links. Ensure that all provided information is useful for discovering implicit re-
lationships with other geographical terms. Do not include the relationships in the result.

Figure 2. Template used to prompt commercial LLMs to generate relevant information about terms in
dataset GeoNames.

As an example, we present a data entry from the GeoNames training dataset for a
given term: ”Cascade Bluff”. Using the prompt provided above, we obtained the follow-
ing response from GPT-3.5-Turbo: ”Cascade Bluff is a geographical location that can
be translated into English. It is a place characterized by steep slopes or cliffs formed
by the cascading of water. The term ”Cascade” refers to the manner in which water
descends rapidly and forcefully, creating a series of small waterfalls or a large waterfall.
”Bluff” indicates a high, steep, or vertical cliff or bank. Geographically, Cascade Bluff is
likely to be situated near a body of water, such as a river, where the cascading effect
is prominent. It could be part of a hilly or mountainous region with pronounced cliffs or
bluffs.”

3.1.3 Direct Access to Ontology Data Sources

We accessed the ontology data sources associated with the datasets directly through
their provided APIs or by downloading their datasets. This allowed us to retrieve and
store contextual information pertinent to the training data. The contextual information
refers to the explanatory text descriptions of the terms and types included in the training
set, as provided within the ontology datasets. For instance, in the case of the type
”lake”, we extracted the following descriptive explanation from the GeoNames [18]: ”a
large inland body of standing water”. The datasets utilized include GeoNames [18],
UMLS [19], GO [20], and Schema.org [21].
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3.2 Model Continual Learning

3.2.1 Domain-specific Continual Training

This approach involves domain-specific continual training of the selected open-source
model. We enriched the training data using the context information for terms and types
obtained through the method described in Section 3.1. For the GeoNames dataset, we
collected context information for all terms and types present in the training datasets of
Task A and Task B. For other datasets, we collected only the context information for
types.

Figure 3 we present the training prompts constructed using type information alone
and using both type and term information. These texts were used to train the model
in a CausalLM manner. An analysis of the types contained in the GeoNames dataset
reveals that there are 9 level-1 types and 671 level-2 types. In the prompt template
provided below, ”L2” represents the type of the term from the training dataset, while
”L1” denotes the super-type of that type.

Training Prompts

# Prompt using type information alone

Type: ”{type name}”, {type info}

# Prompt using both type and term information

The term ”{term}” from the GeoNames dataset. {term info}. It falls under
the top-level classification of ”{L1}”. Given this description, it can be logically
inferred that ”{term}” should belong to the specific sub-category ”{L2}” within
this top-level classification.”{L2}” is described as: {L2 info}. Based on this
inference, the type of this term is determined to be ”{L2}”.

Figure 3. Template of training prompts for Method A

3.2.2 Fine-tuning

This method describes the fine-tuning of an open-source LLM for a specific task, aimed
at addressing the downstream task of Sequence Classification. We employed different
training strategies for Task A and Task B.

Task A

We started with the training data provided by the competition, which included terms
and their corresponding types. The objective was to transform this data into a format
suitable for model training. Specifically, we assigned a unique numerical label to each
type and created a new dataset comprising these labels and their corresponding terms.
We then fine-tuned the model using this processed data.

Task B

We begin with the training data provided by the challenge, which included a hierarchical
parent-child relationship. First, we needed to transform these hierarchical relationships
into a data format suitable for model training. Specifically, we generated textual de-
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scriptions and context information for each relationship and assigned a label of 1 to
these positive samples. To enable the model to distinguish between correct and in-
correct hierarchical relationships, we constructed negative samples by reversing the
parent and child entities and assigning a label of 0 to these negative samples. Finally,
we combined the positive and negative samples to create the final training dataset.
Below are data samples from the dataset for GeoNames [18]. We then fine-tuned the
model using this processed data.

Task B Data Processing

# Unprocessed Training Data

”parent”: ”mountain, hill, rock”,
”child”: ”karst area”

# Processed Prompts

”{parent} is the superclass / parent / supertype / ancestor class of {child},
They are two geographical terms. ’{parent}’: {parent info} ’{child}’: {child info}”

”{child} is the subclass / child / subtype / descendant class of {parent}, They are two
geographical terms. ’{parent}’: {parent info} ’{child}’: {child info}”

Figure 4. Data Processing Example for Method B - Task B

3.2.3 Domain-specific Continual Training Followed by Task-specific Fine-tuning

First, we performed unsupervised continual training on the specific dataset using the
method described in Section 3.2.1. Next, we further fine-tuned the model for the spe-
cific task using the approach outlined in Section 3.2.2. The methods and training texts
used in the phased training process were consistent with those previously described.

3.3 Prompting

We experimented with various prompts and ultimately selected the ones that demon-
strated the best performance for the challenge. Below, we provide the templates for
these prompts, each specifically designed for different tasks and models:

1. Prompt template for inference using GPT-3.5, applicable to all datasets in
Task A: ”You are provided with a term: ’{term}’ from the {dataset name}, {short
description about dataset}. Based on the information you have and can find on the
internet, provide only the most likely type for this term. This type is strictly defined
within the following list: {type list}. You must only give me the type. Nothing else.”
Here, {type list} represents the set of all types that appear in the training dataset
for Task A’s {dataset name}.

2. Prompt template for inference using GPT-3.5, specifically for the GeoNames
dataset in Task A: The GeoNames dataset contains 9 level-1 types and 671
level-2 types. First, GPT determines which of the 9 level-1 types the term belongs
to. Then, based on the first result, GPT infers which level-2 type under the identi-
fied level-1 type the term belongs to. The prompts used for these inferences are
similar to those described previously, with the key difference being the {type list}
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provided in the prompt, which varies according to the hierarchical level being in-
ferred.

3. Prompt template for inference using the model trained with Method A (Sec-
tion 3.2.1), specifically for the GeoNames dataset in Task A: ”The term ’{term}’
from the GeoNames dataset.” The generated text needs to extract the type infor-
mation following the keyword ”sub-category” using a regular expression, and this
type information is returned as the result.

4. Prompt template for inference using the model trained with Method B (Sec-
tion 3.2.2), applicable to the UMLS and GO datasets in Task A: Use the term
directly from the test data.

5. Prompt template for inference using the model trained with Method B (Sec-
tion 3.2.2), specifically for the GeoNames dataset in Task B: ”{parent} is the
superclass of {child}.” Here, {parent} and {child} are paired combinations from
the type list provided in the test data.

6. Prompt template for inference using the model trained with Method C (Sec-
tion 3.2.2), applicable to the GeoNames and Schema datasets in Task B: Use
the prompt provided in the fifth point above.

4 Evaluation

In this section, we present the evaluation of our approach to term typing and taxonomy
discovery as part of the LLMs4OL Challenge at ISWC 2024. The evaluation focuses
on assessing the performance of our models in accurately classifying terms and con-
structing taxonomic hierarchies.

4.1 Experimental Setup

The evaluation was conducted on datasets provided for the LLMs4OL challenge, con-
sisting of diverse sets of terms and their corresponding types and hierarchical relation-
ships, mentioned in the previous section.

We mainly use the Hugging Face transformers library for the implementation, which
provides robust tools for training and deploying state-of-the-art large language mod-
els, and the pre-trained model from Hugging Face model repository meta-llama/Meta-
Llama-3-8B. The model training and inference were conducted on a high-performance
server equipped with four NVIDIA H100 80GB GPUs. The duration of training depends
on the size of the training data. For instance, using the GeoNames dataset from Task A,
which contains 8,078,865 terms and approximately 6 GB of extracted contextual infor-
mation, training on 4 GPUs for 5 epochs takes around 200 hours to complete. Training
hyper-parameters are the following:

• Learning Rate: 2× 10−5

• Batch Size: 16 samples per device
• Number of Epochs: 5 (for each mentioned training method)
• Weight Decay: 0.01
• Mixed Precision Training: Enabled (fp16)
• Gradient Accumulation: Accumulate gradients over 4 steps
• Optimizer: AdamW

The learning rate is a critical hyper-parameter that controls the step size during the
update of model weights. In each back-propagation step, the model adjusts its weights
according to the gradient of the loss function, with the learning rate determining the
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magnitude of these adjustments. Batch size refers to the number of samples input
into the model during each training iteration. The number of epochs represents the
number of complete passes through the training dataset. One epoch consists of a
single forward and backward pass through the entire training dataset.

Weight decay is a regularization technique designed to prevent over-fitting by con-
straining the magnitude of model weights. It achieves this by adding the L2 norm of the
weights to the loss function, thereby penalizing excessively large weights and discour-
aging overly complex models. The strength of this penalty is controlled by the weight
decay parameter.

Mixed precision training [26] involves using 16-bit floating-point numbers (fp16) in-
stead of 32-bit floating-point numbers (fp32) to represent model parameters and gra-
dients during training. This approach can significantly reduce memory usage and in-
crease computational speed with minimal impact on the final model performance.

Gradient accumulation is a technique employed to achieve larger effective batch
sizes when memory resources are limited. Specifically, instead of updating the model
weights after each forward pass, the gradients are accumulated over multiple itera-
tions (in this case, four) and then used to update the weights. This method allows for
the benefits of larger batch sizes, such as more stable gradient estimates, without the
need for additional memory .

The AdamW optimizer [27] is a variant of the Adam optimizer [28] that improves upon
the original by decoupling weight decay from the gradient update process, thereby
mitigating the bias introduced by L2 regularization. AdamW combines the advantages
of momentum methods and adaptive learning rate adjustments, making it particularly
well-suited for training large-scale models.

4.2 Results

Table 1 and Table 2 present the evaluation results for our participation in the sub-tasks
of Task A and Task B, respectively. The numbers in parentheses indicate our ranking for
each metric among all participating teams in the corresponding sub-task. The results
in Table 1 were obtained by evaluating GPT using the prompts provided in Section 3.3
for inference. Similarly, the results in Table 2 were derived by applying the prompts
from Section 3.3 for inference on the Llama-3-8B model, which was trained using the
approach described in Section 3.2.3 for Task B.

Table 1. Results on Task A

Subtasks F1 Score Precision Recall

A.1-WordNet 0.9446 (4) 0.9446 (4) 0.9446 (4)
A.2-GeoNames 0.4355 (3) 0.4355 (3) 0.4355 (2)
A.3-UMLS (NCI) 0.1691 (4) 0.1821 (4) 0.1579 (4)
A.3-UMLS (MEDCIN) 0.4566 (4) 0.4607 (3) 0.4526 (4)
A.3-UMLS (SNOMEDCT US) 0.4747 (4) 0.4888 (3) 0.4613 (4)
A.4-GO (Biological Process) 0.0881 (3) 0.0693 (4) 0.1207 (2)
A.4-GO (Cellular Component) 0.2178 (2) 0.1846 (2) 0.2656 (1)
A.4-GO (Molecular Function) 0.1418 (2) 0.1670 (2) 0.1231 (4)
A.5-DBpedia 0.4270 (1) 0.4270 (1) 0.4270 (1)
A.6-FoodOn 0.8068 (1) 0.8068 (1) 0.8068 (1)
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Table 2. Results on Task B Dataset

Subtasks F1 Score Precision Recall

B.1-GeoNames 0.3409 (2) 0.2400 (2) 0.5882 (3)
B.2-Schema.org 0.5733 (2) 0.5475 (1) 0.6016 (2)

Next, we will provide a detailed comparison of the performance of GPT-3.5-Turbo-
0125 (referred to as G) and the Llama-3-8B model, which was trained using various
methods, across the UMLS, GO, Schema.org, and GeoNames datasets. The compar-
ative results are presented as follows:

4.2.1 Comparison of Training Methods for Task A

GeoNames Dataset

The Table 3 presents the performance comparison between two models, GPT-3.5-
Turbo and Trained Llama-3-8B, on the GeoNames dataset in terms of F1 Score, Pre-
cision, and Recall. The Llama-3-8B model was trained using the method described in
Section 3.2.1, which enriched the training data with context information for terms and
types. Although the results show that GPT-3.5-Turbo outperforms trained Llama-3-8B
across all metrics, considering the parameter sizes of the two models, it is evident that
our training method is highly effective.

Table 3. Results on Task A Dataset GeoNames

Methods F1 Precision Recall

GPT-3.5-Turbo 0.4355 0.4355 0.4355
Llama3-8B 0.40396 0.40396 0.40396

UMLS and GO Datasets

Table 4 and Table 5 show that GPT-3.5-Turbo outperforms the Llama-3-8B model, fine-
tuned using the method described in Section 3.2.2 for Task A, across all datasets in
terms of F1 score, precision, and recall. The Llama-3-8B model, trained using only
term textual information without providing context, performed poorly on downstream
tasks. Additionally, the evaluation results for the UMLS dataset are generally better
than those for the GO dataset. This discrepancy may be due to the fact that terms
in the GO dataset can be assigned to a larger number of types, whereas our prompt
method identifies only the most likely type.

Table 4. Results on Task A for Dataset UMLS. Method G for GPT-3.5-Turbo and F for Fine-tuned Llama3-
8B using Method in Section 3.2.2 for Task A

Methods
NCI MEDCIN SNOMEDCT US
F1 P R F1 P R F1 P R

G 0.1691 0.1821 0.1579 0.4566 0.4607 0.4526 0.4747 0.4888 0.4613
F 0.0017 0.0018 0.0016 0.0001 0.0001 0.0001 0.0048 0.0050 0.0047
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Table 5. Results on Task A for Dataset GO. Method G for GPT-3.5-Turbo and F for Fine-tuned Llama3-
8B using Method in Section 3.2.2 for Task A

Methods
BP CC MF
F1 P R F1 P R F1 P R

G 0.0881 0.0693 0.1207 0.2178 0.1846 0.2656 0.1418 0.167 0.1231
F 0.0022 0.0027 0.0018 0.0017 0.0021 0.0015 0.0014 0.0016 0.0011

4.2.2 Comparison of Training Methods for Task B

GeoNames and Schema.org Datasets

The Table 6 presents the performance of the same model (Llama-3-8B) trained using
two different methods. Method F refers to the fine-tuning approach described in Sec-
tion 3.2.2 for Task B, which is training a model using textual descriptions and context
information for each relationship extracted from the training dataset, while Method P-F
refers to the training approach described in Section 3.2.3 for Task B, which is domain-
specific continual training followed by task-specific fine-tuning. By comparison, it is
evident that the model’s performance on this task significantly improves after training
with Method P-F. The submitted results showed in Table 7 for the Schema.org dataset
were also obtained after training with Method P-F. This method appears to enhance the
model’s capacity to generalize across different datasets, particularly in tasks requiring
a nuanced understanding of context and relationships, as evidenced by the improved
F1 scores, precision, and recall on the GeoNames and Schema.org datasets. These
findings underscore the importance of incorporating domain-specific knowledge and
tailored training strategies to improve the performance of large language models in
specialized tasks.

Table 6. Results for Methods F and P-F on Task B Dataset GeoNames

Methods F1 Score Precision Recall

F 0.183796 0.12199 0.372549
P-F 0.3409 0.24 0.5882

Table 7. Results for Methods P-F on Task B Dataset Schema.org

Methods F1 Score Precision Recall

P-F 0.5733 0.5475 0.6016

4.3 Discussion

The results demonstrate that GPT-3.5-Turbo (G) outperforms the Llama-3-8B model
fine-tuned for Task A across the UMLS, GO, and GeoNames datasets. This suggests
that GPT-3.5-Turbo is more effective in handling the diverse and complex semantic
structures present in these datasets. One possible reason for this superior performance
is GPT-3.5’s inherent ability to leverage a broader contextual understanding, which is
crucial for accurately disambiguating terms and relationships in datasets such as UMLS
and GO.

In Task B, our initial submission yielded suboptimal evaluation scores. To improve
performance, we re-ran the inference process and subsequently ranked the logits
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scores of the outputs in descending order. Specifically, we selected the top 500 re-
sults for the GeoNames dataset and the top 400 results for the Schema.org dataset.
Upon resubmission, we observed a marked improvement in the evaluation scores. This
enhancement is likely due to our revised approach to handling the output data. During
the inference process, we paired the types provided in the test dataset in all possi-
ble combinations, similar to constructing a matrix. However, because the ground truth
labels are sparsely distributed within this matrix, the model we trained produced a rel-
atively high number of false positives (FP) in its predictions. By refining our submission
to include only the top-ranked results, we effectively reduced the number of FPs, which
led to an overall improvement in the evaluation metrics. The accompanying Table 8 and
Table 9) present a comparison of the evaluation results before and after implementing
this top-ranking selection approach.

Table 8. Results for All and Top 500 Predictions on GeoNames

Methods F1 Score Precision Recall

All 0.2125 0.1226 0.7941
Top 0.3409 0.24 0.5882

Table 9. Results for All and Top 400 Predictions On Schema.org

Methods F1 Score Precision Recall

All 0.4653 0.3299 0.7890
Top 0.5733 0.5475 0.6016

Another notable observation from the results is the discrepancy in performance be-
tween the UMLS and GO datasets. GPT-3.5-Turbo achieves better evaluation metrics
on the UMLS dataset compared to the GO dataset. This difference could be attributed
to the nature of the datasets themselves. UMLS terms tend to have fewer associated
types, making it easier for models to accurately classify them. In contrast, GO terms
can be assigned to multiple types, leading to a more challenging classification task. Our
prompt-based method, which identifies the most likely type, may not be fully equipped
to handle the multiplicity of types in the GO dataset, resulting in lower performance
metrics. This suggests that future work should explore prompt engineering techniques
or model architectures that can more effectively address multi-label classification tasks.

5 Future Work

Building on the findings of this study, we offer the following recommendations for future
research and development. These suggestions aim to enhance the performance of
open-source LLMs in the two tasks addressed in this work:

Comprehensive Context Gathering for Task A

For future studies of Task A, we plan to collect comprehensive contextual information
for all terms and types within the UMLS and GO datasets. Leveraging this data, we
intend to train open-source models using Method P-F (as detailed in Section 3.2.3)
and subsequently evaluate their performance. This approach will allow us to assess
the impact of enriched context on model accuracy and effectiveness.
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Hierarchical Training of Classifiers

We propose a hierarchical training approach for classifiers based on type hierarchies.
Specifically, for datasets with multiple levels of types, such as those with 9 top-level
categories and corresponding subcategories, we will first train classifiers for the top-
level categories and then separately for the subcategories. The performance of this
hierarchical approach will be compared to that of a single classifier trained on all types
to evaluate the benefits and limitations of each method.

Advancing Prompting

Enhancing prompt engineering strategies for both GPT-3.5-turbo-0125 and Llama-3-
8B could lead to improved performance across a wider range of tasks. One potential
strategy involves incorporating feedback loops to continuously optimize prompts based
on model outputs [29]. This iterative process may include human-in-the-loop systems
or automated mechanisms designed to detect and correct errors or inconsistencies
in responses. By iteratively refining prompts through continuous optimization, we can
enhance overall model performance, ensuring more accurate and reliable outputs.

6 Conclusion

The experiments conducted with GPT-3.5-Turbo, despite not utilizing the latest com-
mercial models such as GPT-4o, yielded promising results. In Task A, GPT-3.5-Turbo
outperformed fine-tuned open-source models. However, it’s important to note that
these commercial models are closed-source, and the cost associated with domain-
specific fine-tuning can be prohibitive.

Incorporating domain-specific information and providing a list of classification types
within the prompt significantly enhances inference performance. A particularly effective
strategy involves initially classifying terms into higher-level categories before refining
them into more specific subcategories. This approach not only improves classification
accuracy but also reduces the number of tokens required in the prompt.

Our study offers valuable insights into the performance of GPT-3.5-Turbo and Llama-
3-8B on complex NLP tasks, underscoring the importance of training methodologies
and the role of contextual information in boosting model accuracy. These findings
carry helpfulness for the development of future models and methodologies in natu-
ral language processing. Notably, the fine-tuned open-source models demonstrated
competitive performance on the GeoNames dataset, rivaling that of GPT-3.5-Turbo.

Supplemental Material Statement

Our LLM prompt templates, comprehensive results, and the entire code-base are avail-
able as supplementary material on GitHub: https://github.com/MouYongli/LLMs4OL.
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Abstract: This paper presents our contribution to the Large Language Model For On-
tology Learning (LLMs4OL) challenge hosted by ISWC conference. The challenge in-
volves extracting and classifying various ontological components from multiple datasets.
The organizers of the challenge provided us with the train set and the test set. Our goal
consists of determining in which conditions foundation models such as BERT can be
used for ontologies learning. To achieve this goal, we conducted a series of experi-
ments on various datasets. Initially, GPT-4 was tested on the wordnet dataset, achiev-
ing an F1-score of 0.9264. Subsequently, we performed additional experiments on the
same dataset using BERT. These experiments demonstrated that by combining BERT
with rule-based methods, we achieved an F1-score of 0.9938, surpassing GPT-4 and
securing the first place for term typing on the Wordnet dataset.

Keywords: Ontology Learning, Large Language Models, Rules, BERT

1 Introduction

Knowledge acquisition from scratch is costly in time and resources. Ontology learning
aims to reduce this cost. Ontology learning is the extraction of ontological knowledge
from unstructured, semi-structured or fully structured knowledge sources in order to
build an ontology from them with little human intervention [1].

A lot of work has been done on the extraction of ontological knowledge from sev-
eral data sources such as texts [2], databases [3], XML files [4], vocabularies [5], etc
and several domain such as food information [6], food composition knowledge from
scientifc literature [7], healthcare [8]. These works resulted into symbolic based tech-
niques, statistical based techniques, and multi-strategy based techniques. Given that
Large Language Models (LLMs) have shown significant advancements in natural lan-
guage processing, Babaei et al. [9] proposed a Large Language Models for Ontology
Learning (LLMs4OL) approach. The authors evaluated nine LLMs families on several
datasets. These evaluations shows that foundational LLMs are not sufficiently suitable
for ontology learning. However, in many context students, researchers, etc. do not
always have enough resources to run LLMs such as LLaMA-7B or GPT-3.
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The main goal of this study is to reply to the following research question: ”In which
conditions foundations models can be used for ontology learning”. To reply to this
question, we participate to LLMs4OL 2024 challenge [10]. This challenge aims to
explore the intersection of LLMs and OL. The organizers of this challenge provided
train and test datasets. The GPT-4 model was run and evaluate on four of the dataset.
Thereafter, the BERT-Base uncased model was chosen and a set of experimentation
was conducted. These experimentation’s show that by merging the strengths of LLMs
such as BERT with symbolic techniques such as rules, the model obtained can be as
powerfully as GPT-4.

Before presenting the methodology in Section 2.2, we present the challenge in Sec-
tion 2.1, followed by the evaluation in Paragraph 2.1, the approach we used in Section
2.2 with the results in Section 3. Finally, Section 4provides the conclusion. To facili-
tate the reproducibility of the results, the codes used in this study are available on our
GitHub repository at https://github.com/sudo-001/LLMs4OL-2024.

2 An Approach Combining LLMs with Rules for Ontology Learning

Taking advantage of our experience in the field of ontology learning using symbolic
approaches such as rules and LLMs such as BERT, we defined an approach combining
LLMs and rules for ontology learning. This methodology was applied on the datasets
provided by LLMs4OL challenge. Before we present this methodology in Section 2.2,
the main ontology’s components will be presented in Section 2.1.

2.1 LLMs4OL Challenge

LLMs4OL challenge aims for exploring the intersection of LLMs and OL. The following
tasks were proposed by the organizers of this challenge:

• Task A - Term Typing: aims to discover the generalized type for a lexical term.
This correspond to a concept or a class and aims to represent a category of
object;

• Task B - Taxonomy Discovery: aims to discover the taxonomic hierarchy be-
tween type pairs;

• Task C - Non-Taxonomic Relationship Extraction: aims to identify non-taxonomic
relation between types.

Evaluation

The organizers provided us for each dataset the train and the test dataset. To evaluate
our system, we trained the model on the train data and we evaluated on the test data
on the codalab platform. The evaluation was done using the Precision, Recall and
F1-score.
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2.2 Methodology

Figure 1. An Approach Combining LLMs with Rules for Ontology Learning

To enhance the process of ontology learning, we propose in this work a methodology
(see Figure. 1) based on the combination of LLMs with rules derived from an in-depth
analysis of the training data. This analysis involved identifying recurring patterns and
contextual associations between terms and their corresponding types. This combina-
tion is described by the equations below (eq.1 and eq.2).

M = {LLMp, Rs} (1)

Rs = {r1, r2, ..., rn} (2)

• M : Represent our methodology.
• LLMp: this is the pre-trained LLM on the trained dataset.
• Rs: this is the set of rules that characterises the dataset. An example of a rule

found in the WordNet dataset is ”if a a term ends with ’ly’ and the predicted model
predict two types or more then the type is ’adverb’ ”.

The workflow consists of the following key steps:

1. Data Preprocessing: This step consists of refining the dataset so as to assure
that it is clean and properly structured. To this end, non-alphanumerical charac-
ters such as (!, #, -, ,... ) are removed, text are converted into lowercase and
tokenize, each token are reduce to it basical value, and the lemmatised token are
combined to form the preprocessed sentence.

2. Finetuning LLM for OL: During this step we fine-tuned a pre-trained BERT model
for our specific text classification task. Below are the additional details regarding
the fine-tuning process : - Model Choice: We used the pre-trained BERT model
(bert-base uncased) for its proven ability to capture rich contextual representa-
tions of text; - Data preparation: The data was pre-processed and encoded using
the BERT tokenizer; - Fine-tuning configuration: we configured the fine-tuning
with 3 epochs, a batch size of 16 for training, a warm-up steps of 500, a weight
decay of 0.01.
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3. Evaluating the fine-tuned model: In this step, the fine-tuned model is run on
the test data. We do not use prompts or additional query formulations during this
process. Instead, The evaluation was carried out by feeding the pre-processed
test data directly into the model. The model results were then used to generate
predictions for each test instance.;

4. Evaluating the LLM output: This step consists of evaluating the output of the
test data using the precision, recall and F1-score. If the score is sufficiently high,
one can stop the process. In our case we used the codalab platform to evaluate
our results.

5. Assessing the output: This step consists of identifying the elements that are not
well predicted;

6. Complete the model with rules: This step consists for each element identified
in step 5 to defined a rule that allow us to predict the right output.

2.3 Experimentation environment

To evaluate the different systems for ontology learning, the organizers of the LLMs4OL
provided several datasets [11]. The Table. 1 present a detailed description of the
datasets for term typing and Table. 2 present the different datasets for taxonomy dis-
covery.

Table 1. Overview of the datasets used in this work for task A : Term typing

Dataset Train Size Test Size Number of Types
WordNet 40,559 9,470 4

GeoNames 8,078,865 702,510 680
GO-Biological Process 195,775 108,300 792

GO-Cellular Component 228,460 126,485 323
GO-Molecular Function 196,074 107,432 401

Table 2. Overview of the datasets used for Task B : Taxonomy Discovery task

Dataset Train Size Test Size
GeoNames 476 204
Schema.org 1,070 364

UMLS 74 45
GO 33,703 5,753

1. Wordnet: See table 1. The WordNet dataset is a large lexical database, where
words are in english and organized into sets of synonyms called synsets. This
dataset contains two types of entries: (1) Entry with term or group of terms ac-
companies with it’s usage. For instance, ”cover” as a term and ”cover her face
with a handkerchief” as the contextual sentence or the usage example. (2) Entry
with terms or group of terms without example of usage. For this dataset, the task
was to predict the type of terms (corresponding to Task A of the challenge).

2. Geonames: See table 1. GeoNames is a geographical database that contains
over 8 million placenames and corresponding geographical information. It in-
cludes information such as location coordinates, population, and administrative
divisions. Such as ”Pic des Langounelles” a term or an entity with the type ”peak”.
This dataset contains terms without context or usage sentence. This dataset was
used for tasks A and B Taxonomy discovery.
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3. Gene Ontology (GO): The Gene Ontology dataset (see Table 1) provides a struc-
tured vocabulary for representing gene product attributes across species. This
dataset includes three domains: Biological Process, Molecular Function, and
Cellular Component. As WordNet and GeoName, this dataset contains terms
with one or multiple words. An example is following: The term ”Tetratricopeptide
repeat protein 19, mitochondrial” with the type ”mitotic cytokinesis” for biological
process.

2.3.1 Hardware and software

The experimentation was conducted in a controlled environment to ensure the repro-
ducibility and reliability of our results.

• The hardware used for our experiments was a laptop Dell Precision 5510, with an
Intel Core i7-6820HQ CPU running at 2.70GHz with 8 cores, 16.0 GiB of RAM,
and a disk capacity of 756.2 GB.

• The operating system was Ubuntu 22.04.4 LTS.

The BERT-Base uncased was chosen as the LLM to use. In addition, we have chosen
GPT-4 as a very large LLM and our goal was to determine in which conditions the
foundation model can beats an LLM such as GPT-4.

2.3.2 Experimentation processing

The first step of the experimentation consists of evaluating the performance of GPT-4
on the test data. Thereafter, we have chosen to use BERT-Base uncased as the foun-
dation model. Once the pre-trained model is run on the test data, a manual assessment
allow us to define the set of rules to combine with the pre-trained model and the model
is tested once. For instance, a manual assessment of the WordNet dataset allowed us
to realize that the terms without context was the one that was not well predicted. Thus,
we defined a set of rules that we applied on verb, adjectives, and adverbs.

3 Results and Discussion

This section presents the results of the application of our methodology (see Section
2) for the term typing (see Section 3.1) and taxonomy discovery (see Section 3.2) on
WordNet, GeoName, and GO datasets.

3.1 Term Typing Task

The following paragraphs presents the results (accompanied with ablation study) on
WordNet and Geoname datasets.

3.1.1 Term Typing on WordNet Dataset

Concerning the WordNet Dataset, the BERT-Base uncased model [12] was combined
with several rules obtained by assessing the dataset manually. Actually, the manual
assessment allowed us to realize that when the context is not provided, BERT failed
to identify the type. This allowed us to adapt the equations 1 and 2 in section 2 to the
WordNet dataset and obtain the equation below.

Rs = {verbrule, adjectiverule, adverbrule} (3)
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The following equations describe the rules defined in equation 3.

verb rule = { verb if term ∈ {ate, ify, ize} ∧ |obj type| = 2} (4)

adjective rule = { adjective if term ∈ {ible, able,al, ic,ous, ful, ive} ∧ |obj type| = 2}
(5)

adverb rule = { adverb if term ends with ”ly” ∧ |obj type| = 2} (6)

This model was applied on the test data provided by the organizers. Figure. 2
presents the results obtained in comparison with the results of other systems. This
figure shows that the system obtained using this model is the best system. It should be
noted that this system was run on a simple laptop.

Figure 2. Comparing the different score obtained per systems submitted to the challenge

Ablation study

To study the impact of rules on the whole system, several parts of the rules were
removed. The table 3 presents the results obtained from our approach, compared
to ose achieved using the th obtained using the GPTGPT-4 model and -4 model and
usithe rule-based method.ng different rules. This table shows that the performance of
the model depends on the completeness of the rules identified.

The low performance compared to the performance when combining BERT-Base
uncased with rules, suggest that rules can be an important component when learning
ontology using LLMs.

In conclusion, when BERT-Base uncased is enhances with rules for ontology learn-
ing, the model obtained can be as powerful as the one obtained using LLMs such as
GPT-4.
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Table 3. Results of the ablation study. (1) BERTbu: BERT-Base uncased

Method Precision Recall F-score
BERTbu 0.5994 0.9866 0.7457
GPT-4 0.9264 0.9264 0.9264
BERTbu + Verbs 0.9403 0.9403 0.9403
BERTbu + Adjectives 0.9332 0.9332 0.9332
BERTbu + Adverbs 0.9332 0.9332 0.9332
BERTbu + All Rules 0.9938 0.9938 0.9938

Given the results obtained after the experimentation on the WordNet dataset, we
decided to adopt this approach for the other datasets. However, the GeoName and GO
training datasets were too large and the time to finetune the model, test on the test data
was not enough. It requires at least 6 days for all mollecular on our training environment
(see Section 2.3.1) and at least 15 days for all geonames. We were able to finetuned
the BERT-Base uncased model on only 16.67% of data for GeoName, 16.67% of data
for Cellular, 16.67% of data for molecular. During this process, a manual assessment
of the dataset allowed us to identify several rules that can be used to enhance the LLM
once finetuned.

3.1.2 Term Typing on GeoNames Dataset

The equation 1 presents the model used for term typing on GeoNames dataset.

This model was applied to the test data provided by the organizers. Figure. 3
presents the results obtained in comparison with the results of other systems. This
figure shows that the system obtained using this model has the fourth position.

Figure 3. Comparison of the F1-score of the TSOTSALearning system with other systems on the GeoN-
ames dataset
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Ablation study

To study the impact of rules on the whole system, the rules applied on the GeoName
dataset was removed and the system was evaluated on the test data. The results
obtained are presented by table 4. This table shows that only rules allow to obtained
the 0.2937 of F1-score. It should be noted that the model was finetuned on only 16.67%
of the training dataset.

Table 4. Results of the ablation study. (1) BERT bu: BERT-Base uncased

rules applied BERT bu GPT-4
Precision 0.2937 0.0000 0.0000

Recall 0.2937 0.0000 0.0000
F-score 0.2937 0.0000 0.0000

3.1.3 Term Typing on Cellular Component Dataset

Similar to the WordNet and the GeoName dataset, the model defined (see equation
1) was applied on the ”Cellular Component Dataset”. The results obtained, compared
with other systems are presented by the Figure. 4.

Figure 4. Application of the TSOTSALearning system on test set of the Cellular dataset

3.1.4 Term Typing on Biological Process Dataset

Concerning the Biological Process, the BERT-Base uncased model was pretrained,
combined with rules (see Figure. 5) applied to the test data and submitted on the
codalab platform for evaluation.
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Figure 5. Application of the BERT-Base uncased model on the Biological Process dataset

3.1.5 Term Typing on Molecular Function Dataset

Concerning the Molecular Function, the BERT-Base uncased model was pre-trained,
combined with rules and applied to the test data. Figure. 6 presents the results ob-
tained compared to the results of other systems.

Figure 6. Application of the BERT-Base uncased model on the Molecular dataset
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3.2 Taxonomy Discovery on GeoNames Dataset

During the taxonomy discovery task, given the time for submitting our results, only the
BERT-Base uncased model was used on the GeoName dataset. Figure. 7 presents
the results obtained compared to the results of other participants. This figure shows
that the system proposed occupy the fourth position.

Figure 7. Application of the BERT-Base uncased model on the GeoName dataset

3.3 Conclusion

The results for the taxonomy discovery task, Fig 7 reveal considerable challenges,
particularly relating to the accuracy of predictions. The low f1 score on Geonames,
despite higher recall suggests that the model identifies many potentially relevant terms
but has difficulty avoiding false positives. This highlights the complexity of taxonomic
relationships and the importance of improving the accuracy of the model.

4 Conclusion

This research aims to determine in which conditions foundations models such as BERT
can be used for ontology learning. A set of experimentation’s was conducted using
BERT and compared the results obtained to the results obtained using GPT-4. The
results obtained on the WordNet dataset show that merging the strengths of LLMs
with rule-based strategies, enhances the accuracy of ontology learning. The ablation
study consists of comparing the performance of the LLM alone and the combination
of the LLM with rules. This suggests that rules can be an important component when
learning ontologies using LLMs. It should be noted that identifying rules to used is not
an easy task. Future work consists of automatic detection of rules and the possibility
to inject the rules in the LLM.
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Abstract: The report presents the evaluation results of our approach in the LLM4OL 
Challenge, where we fine-tuned GPT-3.5 for Task A (Term Typing) across three different 
datasets. Our approach demonstrated consistent and robust performance during few-
shot testing, achieving top rankings in several datasets and sub-datasets, proving the 
potential of fine-tuning LLMs for ontology creation tasks.
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1 Introduction

Large language models (LLMs) have made notable advancements in various natural 
language processing (NLP) tasks. In a recent study [1], the performance of LLMs was 
evaluated specifically for Ontology Learning (OL) using zero-shot prompting method. 
OL refers to the process of creating an ontology—a structured representation of knowl-
edge in a particular domain, consisting of concepts, relationships, and categories. Re-
searchers tackling the challenge of creating ontologies from text are essentially lever-
aging a broad range of methodologies developed in computational linguistics. By care-
fully selecting different NLP techniques, they address the three key issues in ontology 
construction: term association, the creation of term and concept hierarchies, and the 
identification and labeling of ontological relationships [2].

In [1], they provided an evaluation of three key OL tasks, one of which is term typ-
ing. Term typing aims to identify relevant terms from the text that will form the basic 
vocabulary of the ontology. This task is crucial because it determines the basic building 
blocks that will be used to construct the ontology. In many respects, ontology learning 
is a specialized extension of fundamental computational linguistics goals like automatic 
lexicon construction and semantic text labeling.

As part of the LLM4OL challenge1 at the International Semantic Web Conference 
(ISWC) 2024 [3], we focused on fine-tuning G PT-3.5 for t erm t yping a cross different 
datasets. The goal was to evaluate the performance of these models during the few-
shot testing phase, where the testing dataset includes data from the same ontology 
domain that the model was trained on. This approach aims to enhance the model’s

*These authors contributed equally to this work.
1https://sites.google.com/view/llms4ol/home?authuser=0
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ability to accurately identify and categorize relevant terms, thereby improving the overall
quality and utility of the created ontology. In the following, first, we talk about the
approach and the datasets we use for this task, and then we go through the results
and challenge leaderboard, and the conclusion.

2 Approach

Our approach involved using three different datasets to individually fine-tune the gpt-
3.5-turbo-0125 model2, training it to identify term types specific to each dataset. The
three fine-tuned models were then evaluated during the few-shot testing phase using
their respective test datasets.

2.1 Datasets

As part of the LLM4OL challenge [4], we used three datasets to fine-tune the GPT
model: WordNet, GeoNames, and UMLS.

WordNet: The WordNet dataset is a lexicosemantic dataset derived from the original
WordNet. The training set contains 40,559 terms, and the test set has 9,470 terms,
covering 18 relation types and four term types: nouns, verbs, adverbs, and adjectives
[5].

GeoNames: GeoNames consists of geographical locations that comprise 680 cat-
egories of geographical locations (e.g., streams, lakes, seas, roads, railroads, etc.).
The training set contains 8,078,865 terms, and the test set has 702,510 terms. We
used only the first 10 percent (approximately 878,137 terms) of the training dataset to
fine-tune our model due to OpenAI’s fine-tuning restrictions on the size of the training
dataset [6].

UMLS: The UMLS (Unified Medical Language System) dataset integrates various
biomedical terminologies and standards to support interoperability between different
health information systems [7]. Three subcategories of this dataset have been used:

NCI: NCI is a UMLS subontology from NCI Enterprise Vocabulary Services (EVS),
standardizing terminology for clinical care, research, and public information. It provides
reference terminology for NCI and other systems. The training set contains 96,177
terms, and the test set has 24,045 terms, containing 125 term types.

MEDCIN: MEDCIN is a UMLS subontology that includes medical components like
symptoms and treatments. It uses clinical hierarchies to link data elements, emphasiz-
ing relationships within diagnostic contexts. The training set contains 277,028 terms,
and the test set has 69,258 terms, containing 87 term types.

SNOMEDCT US: SNOMEDCT US is a UMLS subontology foundational for elec-
tronic health records (EHRs), providing concepts with distinct meanings and formal
definitions structured hierarchically. The training set contains 278,374 terms, and the
test set has 69,594 terms, containing 125 term types.

A detailed discussion of the datasets can be found on the challenge website3 and
and the dataset statistics are presented in Table 1.

2https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://sites.google.com/view/llms4ol/task-a-term-typing?authuser=0
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Table 1. Dataset Statistics for Fine-Tuning

Dataset Training Set Test Set No of Term
Types

Term Types

WordNet 40,559 terms 9,470 terms 4 Nouns, verbs, adverbs,
adjectives

GeoNames 878,137 terms 702,510 terms 680 Geographical locations
NCI 96,177 terms 24,045 terms 125 Clinical care, research, public

information
MEDCIN 277,028 terms 69,258 terms 87 Symptoms, treatments
SNOMEDCT US 278,374 terms 69,594 terms 125 Electronic health records

(EHRs)

2.2 Model Fine-Tuning

In our work, we fine-tuned the gpt-3.5-turbo-0125 model for each dataset using the
OpenAI API. Fine-tuning OpenAI’s text generation models is a powerful method to tailor
them to specific needs, but it requires significant time and resources [8]. In previous
work [1], the authors used a zero-shot prompting method for the term typing task on
the aforementioned datasets. We built upon their work by incorporating the optimized
prompts from their study into our fine-tuning process to achieve the best results.

To fine-tune the model, we had to prepare the training dataset. For the OpenAI API,
the data must be stored in JSONL format, which is a text format where each line is a
separate JSON object. This format is ideal for processing large datasets line by line.
To prepare the dataset, we created a diverse set of demonstration conversations that
closely resemble the interactions the model will encounter during inference in produc-
tion. Each example in the dataset is formatted as a conversation in the same style as
required by the Chat Completions API. Specifically, each example is a list of messages
where each message has a role and content. The prompt template can be found in
Table 2.

Table 2. Prompt template for each dataset

Dataset Prompt Template
WordNet Perform a sentence completion on the following sentence: The part of

speech of the term ”Term” in the sentence ”Sentence” is —
GeoNames Perform a sentence completion on the following sentence: ”Place

Name/Location” geographically is a
UMLS Perform a sentence completion on the following sentence: ”Medical related

term” in medicine can be described as

The example formats used for generating all three datasets for fine-tuning are given
in Tables 3 to 6.

Each entry in the training datasets is formatted according to the example format, us-
ing the respective prompt for that dataset to prepare the final JSONL file. After creating
all three training datasets, we uploaded the training files to fine-tune the gpt-3.5-turbo-
0125 model. The Later, the fine-tuned models for each dataset were evaluated using
the test datasets. The Table 7 highlights the training details of five datasets used for
fine-tuning. GeoNames has the largest number of trained tokens (37.7 million) but also
the highest training loss (0.0603), indicating that it was more challenging for the model
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Table 3. Data Format with an Example Sentence (WordNet)

Role Content
user Perform a sentence completion on the following sentence:

The part of speech of the term “cover” in the sentence
“cover her face with a handkerchief” is

assistant The part of speech of the term “cover” in the sentence
“cover her face with a handkerchief” is verb.

Table 4. Data Format without an Example Sentence (WordNet)

Role Content
user Perform a sentence completion on the following sentence:

The part of speech of the term “land reform” is
assistant The part of speech of the term “land reform” is noun.

Table 5. GeoNames Example

Role Content
user Perform a sentence completion on the following sentence:

“Pic de Font Blanca” geographically is a
assistant “Pic de Font Blanca” geographically is a peak.

Table 6. UMLS Example

Role Content
user Perform a sentence completion on the following sentence:

“1,2-Dihydro-3-methyl-benz(j)aceanthrylene” in medicine
can be described as

assistant The type of “1,2-Dihydro-3-methyl-benz(j)aceanthrylene” in
medicine can be described as: [’organic chemical’, ’haz-
ardous or poisonous substance’].

to learn from this dataset. WordNet, with the smallest dataset (2.2 million tokens) and a
smaller batch size, shows a relatively high training loss (0.0413). In contrast, MEDCIN
and SNOMEDCT exhibit the lowest training losses (0.0055 and 0.0086, respectively),
suggesting better model performance during training. All datasets were trained for just
one epoch, and the varying batch sizes (from 27 for WordNet to 128 for GeoNames,
SNOMEDCT, and MEDCIN) reflect the differences in dataset sizes and computational
strategies used. Overall, the datasets with larger token counts and higher batch sizes
performed well, but some (like GeoNames) may require further tuning to improve per-
formance.

Table 7. Training Information for Datasets

Dataset Trained Tokens Epochs Batch Size LR Multiplier Training Loss
WordNet 2,208,173 1 27 2 0.0413
GeoNames 37,737,184 1 128 2 0.0603
NCI 6,109,613 1 64 2 0.0273
SNOMEDCT 18,533,107 1 128 2 0.0086
MEDCIN 19,256,674 1 128 2 0.0055
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3 Evaluation Results

The performance of our fine-tuned models was evaluated across five different datasets.
We used the OpenAI API for evaluation, employing the same prompts that were used
during the training phase (e.g., as mentioned in the example format for the user’s role
2.2). Each of the three fine-tuned models was assessed using the few-shot testing
dataset specific to that model. The results, as provided by the challenge organizers,
are summarized in the following tables, which show the leaderboard rankings and the
corresponding performance metrics for each dataset. The source code for training and
evaluating the models is available online.4

3.1 WordNet

Table 8 shows the leaderboard rankings and performance metrics for the WordNet
dataset, Our model achieved a top-3 ranking, demonstrating competitive performance
in terms of accuracy and other relevant metrics. Here, our model’s performance high-
lights its effectiveness in achieving balanced precision and recall.

Table 8. SubTask A.1 (FS) – Term Typing – WordNet

Team Name F1 P R
1 TSOTSALearning 0.9938 0.9938 0.9938
2 DSTI 0.9716 0.9716 0.9716
3 DaSeLab 0.9697 0.9689 0.9704
4 RWTH-DBIS 0.9446 0.9446 0.9446
5 TheGhost 0.9392 0.9389 0.9395
6 Silp nlp 0.9037 0.9037 0.9037
7 Phoenixes 0.8158 0.7689 0.8687

3.2 GeoNames

Table 9 presents the leaderboard for GeoNames. Our model secured the first position
indicating its superior performance. It’s important to note that our model was evaluated
on a portion of the test data, which highlights its robustness and effectiveness even
with partial data.

Table 9. SubTask A.2 (FS) – Term Typing – GeoNames

Team Name F1 P R
1 DaSeLab 0.5906 0.5906 0.5906
2 Silp nlp 0.4433 0.7503 0.3146
3 RWTH-DBIS 0.4355 0.4355 0.4355
4 TSOTSALearning 0.2937 0.2937 0.2937
5 TheGhost 0.1489 0.1461 0.1519

3.3 UMLS

As mentioned, this dataset consists of three sub-datasets, and our model demonstrated
outstanding performance, ranking first in two of the sub-datasets and second in the
other one. The detailed results are presented in the following.

4https://github.com/AdritaBarua/LLMs4OL-2024-Task-A-Term-Typing
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3.3.1 NCI

In this sub-dataset our model achieved the top ranking, significantly outperforming
other models in terms of precision, recall, and F1-score that are shown in Table 10.

Table 10. SubTask A.3 (FS) – Term Typing – NCI subontological source from UMLS

Team Name F1 P R
1 DaSeLab 0.8249 0.8161 0.8340
2 Silp nlp 0.6974 0.8792 0.5779
3 TheGhost 0.5370 0.4450 0.6769
4 RWTH-DBIS 0.1691 0.1821 0.1579
5 Phoenixes 0.0737 0.0562 0.1070

3.3.2 SNOMEDCT US

Our model also ranked first here, demonstrating its robustness and consistent high
performance. The leaderboard is shown in Table 11.

Table 11. SubTask A.3 (FS) – Term Typing – SNOMEDCT US subontological source from UMLS

Team Name F1 P R
1 DaSeLab 0.8829 0.8810 0.8848
2 Silp nlp 0.7552 0.8583 0.6742
3 TheGhost 0.5275 0.4266 0.6910
4 RWTH-DBIS 0.4747 0.4888 0.4613

3.3.3 MEDCIN

As shown in Table 12, in this sub-dataset, we were ranked as the second one, closely
following the top-ranked model. These results indicate that our model maintains a
strong balance between precision and recall.

Table 12. SubTask A.3 (FS) – Term Typing – MEDCIN subontological source from UMLS

Team Name F1 P R
1 Silp nlp 0.9382 0.9591 0.9181
2 DaSeLab 0.9373 0.9379 0.9366
3 TheGhost 0.5328 0.4183 0.7336
4 RWTH-DBIS 0.4566 0.4607 0.4526

Analysis of the evaluation shows that the model exhibits significant performance vari-
ation across different datasets, particularly with GeoNames demonstrating substan-
tially lower scores compared to WordNet and UMLS datasets. The model achieved an
F1 score of 0.5906 on GeoNames, which may be due to the complexity and ambiguity
associated with geographical locations and the high number of term types (680), show-
ing a more significant challenge in classification. This ambiguity may refer to the same
geographical term representing different places, such as cities with identical names in
different countries, or it may arise from varying interpretations of boundaries and re-
gions across cultures and languages. In contrast, WordNet, with its limited scope of
four grammatical term types, allowed the model to perform much better, with an F1
score of 0.9697. UMLS datasets, with term types ranging from 87 to 125, still show
relatively high scores due to medical terminology’s structured and specialized nature.
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4 Conclusion

In this paper, we presented the results of our approach to the challenge on different
datasets: WordNet, GeoNames, and UMLS. Our models consistently demonstrated
robust and competitive performance, achieving top rankings in several datasets and
sub-datasets highlighting their strength and potential for practical applications. We are
optimistic about the future development and improvement of our approach by utilizing
different prompting methods and LLMs.

Author Contributions

Adrita Barua: Coding, Analysis, Writing.
Sanaz Saki Norouzi: Coding, Analysis, Writing.
Pascal Hitzler: Writing - Review & Editing, Supervision.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors acknowledge support by the National Science Foundation under awards
2333532 Proto-OKN Theme 3: An Education Gateway for the Proto-OKN and 2333782
Proto-OKN Theme 1: Safe Agricultural Products and Water Graph (SAWGraph): An
OKN to Monitor and Trace PFAS and Other Contaminants in the Nation’s Food and
Water Systems.

References
[1] H. B. Giglou, J. D’Souza, and S. Auer, “LLMs4OL: Large language models for ontology

learning,” in The Semantic Web – ISWC 2023 – 22nd International Semantic Web Confer-
ence, Athens, Greece, November 6-10, 2023, Proceedings, Part I, T. R. Payne, V. Presutti,
G. Qi, et al., Eds., ser. Lecture Notes in Computer Science, vol. 14265, Springer, 2023,
pp. 408–427.

[2] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology Learning from Text: Methods, Evaluation
and Applications (Frontiers in Artificial Intelligence and Applications). IOS Press, Amster-
dam, 2005, vol. 123.

[3] H. Babaei Giglou, J. D’Souza, and S. Auer, “Llms4ol 2024 overview: The 1st large lan-
guage models for ontology learning challenge,” Open Conference Proceedings, vol. 4, Oct.
2024.

[4] H. Babaei Giglou, J. D’Souza, S. Sadruddin, and S. Auer, “Llms4ol 2024 datasets: Toward
ontology learning with large language models,” Open Conference Proceedings, vol. 4, Oct.
2024.

[5] G. A. Miller, “WordNet: A lexical database for english,” Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[6] GeoNames, Geonames geographical database, http://www.geonames.org/, 2024.

[7] O. Bodenreider, “The Unified Medical Language System (UMLS): Integrating biomedical
terminology,” Nucleic acids research, vol. 32, no. suppl 1, pp. D267–D270, 2004.

83

http://www.geonames.org/


Barua et al. | Open Conf Proc 4 (2024) ”LLMs4OL 2024: The 1st Large Language Models for Ontology Learning Challenge at
the 23rd ISWC”

[8] J. Wei, M. Bosma, V. Y. Zhao, et al., “Finetuned language models are zero-shot learn-
ers,” in The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, OpenReview.net, 2022. [Online]. Available: https://
openreview.net/forum?id=gEZrGCozdqR.

84

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR


LLMs4OL 2024: The 1st Large Language Models for Ontology Learning Challenge at the 23rd ISWC

LLMs4OL 2024 Task Participant Papers

https://doi.org/10.52825/ocp.v4i.2486

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 02 Oct. 2024

The Ghost at LLMs4OL 2024 Task A:
Prompt-Tuning-Based Large Language Models for Term

Typing

Thiti Phuttaamart1 , Natthawut Kertkeidkachorn2 , and
Areerat Trongratsameethong1

1Chiang Mai University, Chiang Mai, Thailand
2Japan Advanced Institute of Science and Technology, Japan

*Correspondence: Thiti Phuttaamart, thiti ph@cmu.ac.th

Abstract: The LLMs4OL Challenge @ ISWC 2024 aims to explore the intersection of 
Large Language Models (LLMs) and Ontology Learning (OL) through three main tasks: 
1) Term Typing, 2) Taxonomy Discovery and 3) Non-Taxonomic Relation Extraction. In
this paper, we present our system’s design for the term typing task. Our approach uti-
lizes automatic prompt generation using soft prompts to enhance term typing accuracy
and efficiency. W e c onducted e xperiments o n s everal d atasets, i ncluding WordNet,
UMLS, GeoNames, NCI, MEDCIN, and SNOMEDCT US. Our approach outperformed
the baselines on most datasets, except for GeoNames, where it faced challenges due
to the complexity and specificity of this domain, resulting in substantially lower scores.
Additionally, we report the overall results of our approach in this challenge, which high-
light its promise while also indicating areas for further improvement.

Keywords: Large Language Models, Ontology Learning, Prompt Tuning

1 Introduction

Currently, most information on the World Wide Web is in a format that is readable and 
understandable by humans, but computers require significant p rocessing t o compre-
hend this data. To address this, the Semantic Web has been introduced, extending the 
capabilities of the World Wide Web to make information on the internet interpretable 
and interconnected more efficiently. T his i s a chieved u sing O ntology, w hich models 
the concepts of information within a specific d omain. Typically, creating an ontology is 
complex, time-consuming, and requires domain expertise. Therefore, Ontology Learn-
ing, which automates the extraction and creation of structured data from unstructured 
information, has been employed. Given the rapid development of Large Language 
Models (LLMs) with their deep understanding of language, the LLMs4OL Challenge [1] 
aims to explore and utilize these models to facilitate automatic ontology creation. The 
LLMs4OL Challenge comprises three tasks.

1. Term Typing: Discover the generalized type for a lexical term
2. Taxonomy Discovery: Discover the taxonomic hierarchy between type pairs
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3. Non-Taxonomic Relation Extraction: Identify non-taxonomic and semantic rela-
tions between types

In this study, we are participating in term typing task. The goal of Term Typing task
is to assign types to lexical terms. For instance, given the term TUXIS POND from
the GeoNames dataset, the correct type would be ”lake”. For the term typing task,
previous methods have primarily focused on using prompts with specific templates to
identify term types. However, the key challenge lies in finding an effective prompt that
produces accurate results. To address this issue, we propose a prompt-tuning-based
LLM for term typing, utilizing automatic prompt generation with soft prompts to enhance
both the accuracy and efficiency of the task. The repository of our approach is publicly
available (https://github.com/themes12/Prompt-Tuning-for-LLMs4OL).

2 Related Work

Ontology learning is a technique used to extract knowledge from unstructured text
and create structured data known as an ontology. Popular ontology learning meth-
ods include using lexico-syntactic patterns [2] and clustering methods [3], or employing
lexico-syntactic patterns for term and relation extraction and clustering methods for
type discovery [4]. Additionally, seed-term-based bootstrapping methods are also em-
ployed [5]. Recently, LLMs have been utilized in ontology learning and have produced
promising results [6]. Nevertheless, this method relies on using specific hard prompts,
which are difficult to craft and may not yield optimal results. To address these chal-
lenges, soft prompting techniques, such as prompt tuning [7], have been developed.
Soft prompts involve creating learnable vectors, often referred to as virtual tokens, that
are prepended to the input embeddings and further refined through training. Unlike
hard prompts, soft prompts do not require manual crafting, making them more flexible
and easier to adapt to different tasks.

3 Approach

We designed the system, which consists of two phases as shown in Figure 1: 1) Train-
ing and 2) Testing. In the training phase, we begin with a dataset containing terms and

Figure 1. The design of the system

their types. The data are preprocessed to remove any characters that might cause is-
sues, and then combined with an initial prompt. This input is fed into the LLM to create
a fine-tuned prompt. During the testing phase, the fine-tuned prompt is used on new,
unseen data, where the terms have no specified types. The LLM predicts the most
appropriate type for each term, and the results are formatted for evaluation, ensuring
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Figure 2. Prompt tuning.

accuracy and alignment with the expected output format. The details of each phase
are as follows:

3.1 Training Phase

The training phase involves two main steps. The details of each step are as follows:

3.1.1 Pre-processing

The objective of this preprocessing step is to remove characters that could interfere
with the final output, particularly during the process of splitting the output by commas
to convert it into a list for multi-label classification. This step is essential for ensuring
compatibility with the AutoModelForCausalLM and the evaluation system. For instance,
in datasets like Gene Ontology, some labels contain commas (e.g., ”regulation of alter-
native mRNA splicing, via spliceosome”), which could disrupt the output if not handled
correctly. By removing problematic characters, we can prevent such issues and main-
tain the integrity of the results. Additionally, the inputs are restructured into a format
suitable for training by tokenizing and padding to ensure uniform input length.

3.1.2 Soft Prompting

The objective of the soft prompting step is to efficiently adapt LLMs to perform specific
downstream tasks without the need to retrain the entire model for each task. Training
LLMs requires a significant amount of time and resources. One effective way to enable
a LLM to perform specific downstream tasks is through the use of prompts. Prompts
help to describe the task or provide examples of the task (few-shot). There are two
types of prompts.

1. Hard prompt involves manually creating the prompt by hand. The downside is that
it requires substantial effort to create a good prompt.

2. Soft prompt involves creating a vector, referred to as virtual tokens, and prepend
them to the input embeddings for further training with the dataset. The drawback
is that humans cannot read the prompt.

In this study, we employ soft prompt. There are various techniques for creating soft
prompts, each designed for different tasks. For example, prefix tuning was designed
for natural language generation tasks, while P-tuning is designed for natural language
understanding tasks. Multitask prompt tuning is another technique that learns a single
prompt from data for multiple task types. We have chosen to use the prompt tuning
technique because it was initially developed for text classification tasks on T5 models.
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This makes it particularly well-suited for our application, as it leverages the strengths of
prompt-based methods in handling classification tasks efficiently. The process begins
with an initial prompt, which provides a basic template or instruction set for the task.
This initial prompt is then refined and adapted during the training process to become
a fine-tuned prompt. The advantage of using prompts is that there is no need to train
a separate model for each downstream task. Instead, a single LLM can be utilized,
greatly reducing the required time.

3.2 Testing Phase

The testing phase is designed to evaluate the performance of the fine-tuned LLM on
new, unseen data. This phase involves feeding the model with testing data and ana-
lyzing its output to determine its accuracy and effectiveness in predicting term types.
Once the testing data is prepared, it is fed into the fine-tuned prompt and subsequently
into the LLM. The model processes the input terms and generates predictions for their
types. The fine-tuned prompt guides the model to understand the context and require-
ments of the task, leveraging the knowledge gained during the training phase.

4 Experiment

4.1 Datasets

The datasets used in the term typing task [8] consist of the following four sub-datasets:

1. WordNet. WordNet is a lexicosemantics dataset derived from the original Word-
Net. It contains 40,943 terms for training and 9,470 terms for testing, encompass-
ing four types: nouns, verbs, adverbs, and adjectives.

2. GeoNames. GeoNames includes data on geographical locations, with 8,078,865
instances for training, 702,510 instances for testing, and a total of 680 classes.

3. UMLS. The UMLS dataset comprises three sub-datasets:

• NCI. Created by NCI Enterprise Vocabulary Services (EVS) to standardize
vocabulary for organizational and public use. It includes terms related to
clinical care, translational and basic research, public information, and admin-
istrative activities, with 96,177 instances for training and 24,045 for testing,
covering 125 classes.

• MEDCIN. Contains medical terminology such as symptoms, medical history,
physical examination findings, diagnostic tests, diagnoses, and treatment op-
tions, with 277,028 instances for training and 69,258 for testing, spanning 87
classes.

• SNOMEDCT US. A foundational general terminology used in electronic health
records (EHRs), with 277,028 instances for training and 69,258 for testing,
encompassing 87 classes.

4. Gene Ontology. This dataset includes three sub-ontologies:

• Biological Process. Describes biological processes occurring in living or-
ganisms at the cellular level, with 195,775 instances for training and 108,300
for testing, across 792 classes.

• Cellular Component. Describes the positions or structures within a cell, with
228,460 instances for training and 126,485 for testing, covering 323 classes.
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Table 1. MAP@1 Scores for Our Approach Compared to the Baseline Across Datasets

WordNet GeoNames NCI MEDCIN SNOMEDCT US
Baseline 0.9170 0.4330 0.3280 0.5180 0.4340
Our Approach 0.9368 0.3863 0.6009 0.7397 0.6707

• Molecular Function. Describes the activities of gene products, with 196,074
instances for training and 107,432 for testing, spanning 401 classes.

After that, we split the data into 90% for training and 10% for validation in the WordNet,
UMLS, and Gene Ontology datasets. For the GeoNames dataset, due to its large size,
we split the data into 99% for training and 1% for validation. During the prompt tuning
process, the UMLS and Gene Ontology datasets are sampled to 50,000 instances, and
the GeoNames dataset is sampled to 100 instances per class. The entire WordNet
dataset is used as it is.

4.2 Experimental Setup

Our study investigates a range of LLMs, including BLOOM-1B7, BLOOM-3B, BLOOM-
7B1, LLaMA-7B, LLaMA-2-7B-HF, LLaMA-2-7B-CHAT-HF, Meta- Llama-3-8B, Meta-
Llama-3-8B-Instruct, BioMistral-7B, and LLaMA-OpenBioLLM-8B. Based on the re-
sults from the validation datasets, we selected the following models for each dataset:
BLOOM-3B for WordNet, NCI, and SNOMEDCT US; Meta-Llama-3-8B-Instruct for Geo
Names and Biological Process; BLOOM-1B7 for MEDCIN; and BioMistral-7B for Cel-
lular Component and Molecular Function. We implemented the models using Auto-
ModelForCasualLM and set the hyperparameters as follows: learning rate: 3e − 2,
epochs: 2-4, train size: 15% for WordNet and 5% for GeoNames, and 30% for other
datasets. The max token length is 10, and the virtual token size is 15 for WordNet, 40
for GeoNames, 30 for UMLS, 30 for Biological Process and Molecular Function, and 29
for Cellular Component. The choice of models and hyperparameters is based on the
results obtained from experiments on the validation datasets 1.

We used the best results presented in the study [6] as the baseline. Please note that
only WordNet, UMLS, GeoNames, NCI, MEDCIN, and SNOMEDC US were investi-
gated. For evaluation metrics, we use MAP@1 (Mean Average Precision at rank 1)
[6] to compare our results with the baseline. MAP@1 measures the precision of the
top-ranked result for each query, providing an assessment of the model’s effectiveness
in retrieving the most relevant results. For reporting the results of our approach on this
challenge, we use the standard metrics of precision, recall, and F1 score as provided
by the challenge organizers.

5 Result and Discussion

Table 1 presents the MAP@1 scores for our approach compared to the baseline, using
the same datasets and evaluation metrics as described in LLMs4OL: Large Language
Models for Ontology Learning [6]. Our approach shows enhanced performance across
datasets such as WordNet, NCI, MEDCIN, and SNOMEDCT US, indicating improved
term retrieval precision. However, the results for GeoNames reveal persistent chal-
lenges related to place name ambiguity. The results of the term typing task across
different datasets are summarized in Table 2. The results indicate that the system per-
forms well on the WordNet, NCI, SNOMEDCT US, and MEDCIN datasets. However, in

1https://github.com/themes12/Prompt-Tuning-for-LLMs4OL/blob/main/result-validation.pdf
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Table 2. The result on term typing task

Dataset F1 Precision Recall
WordNet 0.9392 0.9389 0.9395
GeoNames 0.1489 0.1461 0.1519
NCI 0.5370 0.4450 0.6769
MEDCIN 0.5328 0.4183 0.7336
SNOMEDCT US 0.5275 0.4266 0.6910
Cellular Component 0.1877 0.1653 0.2171
Biological Process 0.1025 0.0964 0.1095
Molecular Function 0.1270 0.1278 0.1261

the NCI, SNOMEDCT US, and MEDCIN datasets, the recall is significantly higher than
the precision, which may be due to class imbalance. The performance on the GeoN-
ames and Gene Ontology datasets is significantly worse. For GeoNames, the problem
may stem from the ambiguity of place names and the fact that these names are often
proper nouns, making them difficult to predict. Additionally, datasets like the Biological
Process dataset, which has 792 classes, or the Geonames dataset, with 680 classes,
are more challenging compared to smaller datasets like WordNet, which has only 4
classes, or the NCI dataset, with 125 classes. The larger number of classes in these
bigger datasets can make predictions harder. For the Gene Ontology dataset, the poor
results may be due to the biological nature of the data, which includes information on
genes, molecules, and structures. This domain is highly specialized and contains a
vast number of possible classes.

6 Conclusion

In this study, we explored the use of soft prompt tuning for the term typing task as
part of the LLMs4OL Challenge @ ISWC 2024. Our approach demonstrated strong
performance on several datasets, particularly WordNet and UMLS sub-datasets (NCI,
MEDCIN, SNOMEDCT US), indicating the viability of soft prompt tuning for ontology
learning tasks. However, the results on GeoNames and Gene Ontology datasets were
less satisfactory, highlighting challenges such as class imbalance and the complexity of
specialized domains. To improve the results, future work could focus on incorporating
additional contextual information beyond just the term, which may help the LLM make
better predictions. Additionally, employing techniques other than soft prompts, such as
Retrieval-Augmented Generation (RAG), could enhance the LLM’s ability to access up-
to-date knowledge and external information, potentially leading to improved prediction
capabilities. These strategies could address the current limitations and further advance
the effectiveness of soft prompt tuning for ontology learning tasks.
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Abstract: We introduce semantic towers, an extrinsic knowledge representation method,
and compare it to intrinsic knowledge in large language models for ontology learning.
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extrinsic knowledge compared to a fine-tuned model’s intrinsic knowledge. We report
our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024
challenge.
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1 Introduction and related work

Large language models (LLMs) have seen widespread applications across different
tasks in the fields of Natural Language Processing and Knowledge Representation.
Particularly, LLM-based systems are used to tackle ontology-related tasks such as
ontology learning [1], knowledge graph construction [2], ontology matching [3][4] and
ontology generation [5]. Retrieval-Augmented-Generation (RAG) systems, which build
on the capabilities of LLMs by enhancing retrieval using external knowledge sources,
have also shown promising results in tasks involving the use of ontologies [6]. On the
other hand, symbolic methods like semantic representation using primes and univer-
sals [7] form another research frontier in the area of knowledge representation which
is at the heart of ontologies [8].

In this work, we evaluate and compare the performance of fine-tuned models on
Task A of the LLMs4OL [9][10][11] 2024 challenge1 using intrinsic LLM knowledge and
external knowledge sources we define as semantic towers. The rest of the work is or-
ganized as follows. In section 2, we present our methodology. Section 3 describes our
experimental framework. In section 4, we report our results and discuss our findings.
Finally, we conclude in section 5.

1https://sites.google.com/view/llms4ol/home
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2 Methodology

This section describes the methodology for creating a semantic tower ST which we
define as:

ST = {s1, s2, .., sn}, (1)
where s is a domain semantic primitive pointing to a semantic property for a given
domain and n is the minimal number of primitives needed to define the domain. The
rest of this section details the construction of domain semantic towers from semantic
primitives.

2.1 Domain semantic primitives

For each domain, we use the Wikidata Query Service2 to retrieve semantic information
for each term type category. This body of information, or semantic set, serves as the
base for the domain semantic primitives.

The WordNet semantic set consists of: {subclass,instance,part,represents,description}.
The GeoNames semantic set consists of: {subclass,instance,part,category,description}.

2.2 Semantic towers

The construction scheme of semantic towers is domain-invariant and summarized in
the following steps:

1. The values of the semantic set for each term type are tokenized into a bag of
words, cleaned and normalized through lowercase transformation and stop word
removal.

2. The result is transformed to a comma-separated list.
3. Empty values and duplicates are pruned from the list.
4. The list of primitives is transformed to vector embeddings of size 1024 using the

gte-large3 model by Google [12].
5. The resulting domain vector embeddings are stored in a MongoDB4 collection to

form a vector store, i.e. the semantic tower.
6. The semantic tower is indexed on embeddings search for optimized performance.

Figure 1 shows examples of the WordNet and GeoNames semantic towers.

3 Experiments

This section describes our experiments in terms of data, models and training process.

3.1 Dataset description

We consider two datasets for our experiments: WordNet and GeoNames. Both datasets
are used for training and testing our models in the respective subtasks (A.1 and A.2).
The dataset descriptions are detailed in the following subsections.

2https://query.wikidata.org/
3https://huggingface.co/thenlper/gte-large
4https://www.mongodb.com/
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Figure 1. WordNet and GeoNames semantic towers with examples.

3.1.1 WordNet

The dataset consists of 40,559 train terms and 9,470 test terms. It contains four types
to classify each term: noun, verb, adjective, adverb. Figure 2 shows example data.

Figure 2. Subtask A.1 term typing WordNet examples.

3.1.2 GeoNames

The dataset consists of 8,078,865 train terms and 702,510 test terms. It contains 660
categories of geographical locations. Example data is presented in Figure 3.

Figure 3. Subtask A.2 term typing GeoNames examples.

3.2 System description

This section describes the models as well as the setup of our experiments.
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3.2.1 Models

We train one model for each subtask. We use the same base flan-t5-small5 model
and fine-tune it on the subtask datasets respectively. The training hyperparameters
for both models are configured identically: {learning rate: 1e-05, train batch size: 4,
eval batch size: 4, num epochs: 5, question length: 512, target length: 512, optimizer:
Adam}. For subtask A.1, the model is trained on 70% of the provided WordNet dataset
and the remaining 30% is used for validation. Table 1 shows the training results.

Table 1. Subtask A.1 model training results.

Training Loss Epoch Step Validation Loss
0.1725 1.0 1000 0.0640
0.1250 2.0 2000 0.0535
0.1040 3.0 3000 0.0469
0.0917 4.0 4000 0.0421
0.0830 5.0 5000 0.0384

For subtask A.2, the length of the data makes fine-tuning challenging. To remedy this
problem, we curate a subset from the original dataset using the following algorithm:

1. Each type category is counted into a length variable cat len.
2. For each category represented less than 100 times (i.e. cat len < 100), all terms

classified in that category are selected and kept in the dataset.
3. If cat len ≥ 100, only the first 25 terms classified in that category are selected.

The threshold of 25 keeps the size of the dataset relatively small given the large
number of categories.

We obtain a curated dataset of 2041 terms representing all possible categories. The
model is trained on 70% of the curated dataset and the remaining 30% is used for
validation. Table 2 shows the training results.

Table 2. Subtask A.2 model training results.

Training Loss Epoch Step Validation Loss
2.6223 1.0 1000 1.5223
2.1430 2.0 2000 1.3764
1.9100 3.0 3000 1.2825
1.7642 4.0 4000 1.2102
1.6607 5.0 5000 1.1488

The training of both models is done on a Google Colab instance using an A100
High-RAM GPU. Both A.1 and A.2 models are available publicly on Hugging Face re-
spectively under the names flan-t5-small-wordnet6 and flan-t5-small-geonames7.

3.2.2 Features

The same feature engineering method is applied for both models. It consists in em-
bedding input text into vectors of size 1024 using the gte-large model. For the flan-t5-
small-wordnet model, the input is the concatenation of the term and the sentence when
provided. For flan-t5-small-geonames, the input text is the term.

5https://huggingface.co/google/flan-t5-small
6https://huggingface.co/HannaAbiAkl/flan-t5-small-wordnet
7https://huggingface.co/HannaAbiAkl/flan-t5-small-geonames
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3.2.3 Setup

We conduct two experiments per subtask for a total of four.

For subtask A.1, the first experiment (WN1) consists in prompting the fine-tuned
WordNet model on the test split of the provided dataset which is used as an unofficial
test set ahead of the official submission. The prompt used for the model is: Give the
entity for the term X. Select the answer from this list Y , where X is dynamically
replaced by the input term and Y is replaced by the list of possible term types.

The second experiment (WN2) leverages the RAG pipeline shown in Figure 4 in
conjunction with a user prompt to retrieve the best term type for each input term. The
input is vectorized and compared to the embeddings of the WordNet semantic tower
for each term type. A cosine similarity score is used to determine the closest type from
the semantic tower vector store to return the top 1 candidate. The answer is then used
as an additional input to the user prompt given to the model: Give the entity for the
term X. Select the answer from this list Y relying on the search result Z , where X
and Y are as previously defined and Z represents the best-matched term type from the
semantic tower.

For subtask A.2, both experiments GN1 and GN2 mimic WN1 and WN2 respec-
tively. For GN1, the fine-tuned GeoNames model is evaluated on the test split of the
curated dataset. The user prompt for the model is the same as that of WN1, with the
only changes being the X term values and the Y list of types which now refers to the
geographical categories.

In experiment GN2, the same pipeline from Figure 4 is reproduced with the only
difference being the replacement of the WordNet semantic tower with the GeoNames
semantic tower. The user prompt used for the fine-tuned model is the same as that
of WN2, with the Y list reflecting the geographical categories. All experiments are
conducted on a Google Colab instance using a L4 High-RAM GPU. The code for our
experimental setup is publicly available on GitHub8.

Figure 4. RAG system architecture.

8https://github.com/HannaAbiAkl/SemanticTowers
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4 Results

Table 3 shows our experimental results on the WordNet test set. The results of the
GeoNames experiments are presented in Table 4. The F1 scoring metric reflects the
criteria of performance assessment set by the task organizers.

Experiments WN1 and GN1 perform better than WN2 and GN2 respectively, with a
performance gain close to 10%. At first inspection, the results seem to suggest that the
flan-t5 model, with a little fine-tuning, can rely on its existing knowledge regarding the
dataset domains to correctly classify terms by type. The use of an external knowledge
base, such as a semantic tower, seems to create more errors in the model answers.
However, closer examination of a subset of the outputs reveals that semantic towers
effectively ground certain semantic notions in the model that are otherwise lost if the
model only relies on its existing knowledge. Examples include correctly classifying
the term into the bargain as adverb with the aid of the WordNet semantic tower (as
opposed to classifying it as noun without it). While the word bargain dominates the term
in the example, the flan-t5-small-wordnet model misses out on the correct classification
which attributes an important weight to the adverb into that becomes more prominent
with the semantic tower embeddings representation. A similar case can be made for
the GeoNames experiments, where the usage of the semantic tower in conjunction with
the model improves the classification choice for plural categories (e.g. terms classified
as mountains, peaks, streams). The outputs of experiment GN1 show that the model
alone has a tendency to choose the singular forms of these categories which count
for incorrect classifications. Moreover, experiment GN2 also shows that the semantic
tower helps ground nuances between categories (e.g. stream versus section of stream)
which leads to a more fine-grained (and accurate) typing.

For the official test sets released by the task organizers, we evaluate only the A.1
subtask using WN1 and WN2 and present our results in Table 5. Both WN1 and WN2
demonstrate a slight drop in performance of around 1% but perform competitively well.
The results demonstrate that the model training as well as the WordNet semantic tower
construction are sound enough to avoid catastrophic drift.

We refrain from submitting to the other subtasks, most notably A.2, because of the
length of the official test set which is extremely challenging to run on our available
resources.

Table 3. Experimental results on the WordNet set.

Experiment F1
flan-t5-small-wordnet (WN1) 0.9820
flan-t5-small-wordnet + WordNet semantic
tower (WN2)

0.8581

Table 4. Experimental results on the GeoNames set.

Experiment F1
flan-t5-small-geonames (GN1) 0.6820
flan-t5-small-geonames + GeoNames se-
mantic tower (GN2)

0.5636
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Table 5. Subtask A.1 (few-shot) WordNet term typing leaderboard.

Teal Name F1 Precision Recall
TSOTSALearning 0.9938 0.9938 0.9938
DSTI (WN1) 0.9716 0.9716 0.9716
DaseLab 0.9697 0.9689 0.9704
RWTH-DBIS 0.9446 0.9446 0.9446
TheGhost 0.9392 0.9389 0.9395
Silp nlp 0.9037 0.9037 0.9037
DSTI (WN2) 0.8420 0.8420 0.8420
Phoenixes 0.8158 0.7689 0.8687

5 Conclusion

In this shared task, we investigate and compare intrinsic knowledge in LLMs with exter-
nal semantic sources for ontology learning. While the introduction of semantic towers
proves there is still some way to go to achieve semantic resonance in LLMs, it shows
promising results in grounding these models semantically and fine-graining their knowl-
edge. Our fine-tuned models demonstrate that ontology term typing is a task within the
reach of LLMs based on their existing knowledge. In future work, we will explore the
potential of semantic towers and expand their implementation to existing LLM-based
systems.
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Abstract: Taxonomy discovery in ontologies refers to extracting the parent class from
the child class. By modeling this task as a classification problem, we addressed it us-
ing two different approaches. The first approach involved fine-tuning the “BERT-Large”
model with various prompts and using it in a classification system. In the second ap-
proach, we utilized the “LLaMA 3 70B” model, experimenting with different prompts
and modifying them to achieve the best results. Additionally, we evaluated the correct-
ness of the answers using substring and Levenshtein distance functions. The results
indicate that, with appropriate fine-tuning, the BERT model can achieve performance
levels comparable to those of more recent and significantly larger language models,
such as LLaMA 3 70B. However, with appropriate prompts, LLaMA 3 70B performs
slightly better than BERT, highlighting the importance of prompt quality. Ultimately, fur-
ther experiments on different settings for fine-tuning BERT, few-shot learning, and using
knowledge graphs for validating the model’s answers for LLaMA are recommended to
improve the results. Additionally, testing other models and examining the results of
various encoder-based and decoder-based models can be employed.

Keywords: Large Language Models, LLMs, Ontologies, Ontology Learning, Fine-tuning,
Prompting, Prompt-based Learning, BERT, LLaMA 3

1 Introduction

One of the applications of large language models (LLMs) is learning ontologies from
input text. This process is divided into three sections: term typing, taxonomy discov-
ery, and non-taxonomic relationship extraction [1]. In the LLMS4OL challenge [2], the
goal is to develop models to perform these tasks automatically. The task selected by
the authors of this paper is Task B, i.e., taxonomy discovery. Among the available
datasets in the challenge [3], the GeoNames dataset was chosen for this project. This
dataset is extracted from the GeoNames ontology [4], which is a geographical database
that provides information about locations and geographical features around the world.
This data includes place names, geographic coordinates (latitude and longitude), place
types (such as city, village, river, mountain, lake, etc.), elevation above sea level, postal
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codes, population, and other attributes. Among the features available in this ontology,
the place name along with its type has been extracted.

For solving this problem, the language models BERT-Large and LLaMA 3 70B are
being used. The following reasons were involved in choosing these two models:

• BERT performs very well in many traditional NLP tasks such as classification and
information extraction.

• In the studies of BabaeiGiglouet al.[1], BERT was able to achieve remarkable
results without the need for fine-tuning, with its results in this task being close to
other mentioned LLMs like GPT-3.

• Fine-tuning BERT model was doable for the authors of the article given their hard-
ware access.

• LLaMA 3 70B has a larger size and more modern architecture comparing to BERT.

As shown by BabaeiGiglou et al. [1], in Task B with the GeoNames dataset, the
best result was achieved by the GPT-3.5 model, with an F1-score of 67.8. Among the
fine-tuned models, FLAN-T5 Large obtained the best result with an F1-score of 62.5.
The BERT and LLaMA 7B models also reached scores of 54.5 and 33.5, respectively,
without fine-tuning. However, these scores were based on the model’s performance in
binary classification, determining whether there is a relationship between a child and
parent or not. In contrast, the task in this project is to identify the parent of each child.

In this project, the competition training dataset was first received, and additional nec-
essary data was generated. Then, with the help of two different approaches using the
mentioned language models, various methods were presented for solving the problem.
The final results of each method and their analysis are discussed, and finally, ideas for
improving these models are provided.

2 Augmentation of Training Data

The dataset provided to participants for this challenge includes 476 records of (child,
parent) pairs from the GeoNames ontology. In this dataset, the parent column contains
9 distinct values; therefore, this dataset can be considered a classification dataset with
9 classes. To train a classifier using BERT, in addition to this dataset, we also needed
a negative dataset, which we generated through the procedure described below.

From the 476 records in the initial dataset, 76 records were separated for validation to
ensure no overlap between the training and validation datasets. Then, using a consis-
tent pattern, negative data was generated for both the training and validation datasets.
Two approaches were considered for generating negative data:

1. Generating reversed records: Reversed records are records that are exactly copied
from the positive dataset, with the parent and child swapped.

2. Generating manipulated records: Manipulated records are also exactly copied
from the positive dataset, with one of the other 8 parents randomly replacing the
original parent in each record.

The number of records in the generated negative dataset for each dataset equals
the number of records in the original dataset. Approximately one-third of the negative
dataset consists of reversed records, and two-thirds are manipulated records. For
example, for a set of 400 positive records in the training data, 133 reversed records
and 267 manipulated records were generated. In the final dataset, we have a set of
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records where the positive or negative status is indicated by a column titled “label” that
can be True or False.

3 Proposed Methods for Taxonomy Discovery

As mentioned earlier, two different approaches were used to solve this problem. One
was fine-tuning BERT, and the other was using the LLaMA 3 70B model. Details of each
approach are explained below. Before continuing, since the discussed problem can
also be considered a classification problem, from here onward, the concepts of class
and parent (destination of the is-a relationship) and also instance and child (source of
the is-a relationship) are considered synonymous. Additionally, since the main focus is
on identifying the class (in classification problem) or the parent (in ontology hierarchy),
any mention of class refers to the parent and vice versa.

3.1 BERT-Based Approach

To solve this problem using BERT, we modeled it as a multi-class classification task with
9 classes. The method involves using a single binary classifier iteratively for each of the
9 classes. The classifier determines whether an instance belongs to a specific class
or not by receiving the instance and class as inputs. For example, when predicting a
child’s parent, the classifier first determines if the child belongs to class 1 or not, then
class 2, and so on for all subsequent classes.

Other approaches could have been applied, such as using a separate classifier for
each class or employing a single 9-class classifier for all classes. Our method in using
a single binary classifier is scalable to larger datasets and a greater number of classes
without requiring the training of multiple models or designing a separated multi-class
classifier when the classes are changed.

We used the BERT-Large model to solve this problem. Initially, this model was fine-
tuned on the training dataset as a binary classifier. This means that the final model can
determine whether there is an is-a relationship between the given (parent, child) pair or
not. To use this model for a 9-class classification problem, we need to check whether
a child belongs to a parent once for each parent, and based on the output, the relevant
class is extracted. Details of this method are explained below.

During the fine-tuning and testing of the models, an additional prompt (the ninth in
the following list) was added to the 8 prompts used by BabaeiGiglou et al. [1], resulting
in a total of 9 prompts. The complete set of prompts is as follows:

1. parent is the superclass of child. This statement is [MASK].
2. child is a subclass of parent. This statement is [MASK].
3. parent is the parent class of child. This statement is [MASK].
4. child is a child class of parent. This statement is [MASK].
5. parent is a supertype of child. This statement is [MASK].
6. child is a subtype of parent. This statement is [MASK].
7. parent is an ancestor class of child. This statement is [MASK].
8. child is a descendant class of parent. This statement is [MASK].
9. ”parent” is the superclass of ”child”. This statement is [MASK].

In these prompts, parent and child are replaced with the appropriate parent and
child, and [MASK] is the token that the model needs to predict. In this set, there
are 4 superclass statements, 4 corresponding subclass statements, and 1 additional
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superclass statement grouped together. This set of prompts has been used in different
ways to fine-tune BERT, which will be discussed in section 4.1.

To determine the parent class for a child class, we initially ask the model nine ques-
tions, each corresponding to one of the potential parent classes. These questions are
posed in the format of the first prompt. If the model answers ”True” to only one of these
nine questions while answering ”False” to the remaining eight, the parent class asso-
ciated with the ”True” response is selected. If no single parent class stands out, we
proceed with two additional prompts in sequence. At each stage, only parents with the
highest score, meaning those for which the model has returned True for more prompts,
advance to the next stage. This process continues until the end of the prompt list. In the
final step, if multiple parent classes still have the highest score, the system randomly
selects one from these parents. The percentage of instances where random selection
was used relative to the total number of instances can be a criterion for evaluating
different systems.

3.2 LLaMA-Based Approach

After evaluating Task B using the fine-tuned Bert-Large model, it was decided to per-
form the evaluation using the LLaMA 3 70B as well. In this phase, the focus was mainly
on the prompts. The general structure of the prompts follows two main concepts:

1. Classification Concept (instance and class)
2. Hierarchy Concept (is-a) (parent and child)

In the first category, the prompts contain a classification definition, asking the model
to identify the class based on the given input. However, in the second category, the
problem is defined as an is-a hierarchy, and the model is asked to identify the destina-
tion of the relationship (parent) based on the input (child).

After observing the model’s responses, one challenge identified was the class names.
Each class title is a combination of several terms (e.g., ”mountain, hill, rock”). Despite
mentioning the class titles in the prompts, in some cases, the model only used part of
the class title in its responses. For example, in response to the question about ”cattle
dipping tank,” which corresponds to the class ”spot, building, farm,” the model only used
”spot” as the answer. Given these conditions, during the evaluation phase, in addition
to evaluating the model’s output separately, the substring function and Levenshtein dis-
tance [5] were applied to the model’s output.The substring function returns the class
title that the output of the model is a part of. The Levenshtein function returns the class
title that is closer to the output of the model based on the Levenshtein distance.

In addition to the mentioned actions, to save time, instead of providing samples one
by one, a set of samples formatted in a specific way was fed to the model, and re-
sponses were received in batches. To manage this issue, each sample was assigned
a unique number, and the model was asked to separate the response sections and in-
clude the number of each question alongside its response. Subsequent results indicate
that batch questions are not as accurate as individual questions.
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4 Experiments

In this section, we present the experiments conducted on the two groups of systems
discussed: BERT-based systems and LLaMA-based systems. Implementations and
datasets used in these experiments are available in a GitHub repository1.

4.1 Experiments on the BERT-Based Systems

In this section, we examine the details of the systems implemented using BERT. All
systems are fine-tuned using the methods mentioned in the previous section, with the
goal of predicting the parent of each child. Due to time and hardware constraints
during the competition, the BERT model was fine-tuned using fixed hyperparameters.
Hyperparameter tuning could potentially lead to improved results.

The first category of our systems consists of those where BERT was trained sequen-
tially with 1, 2, 3, ... up to 8 different prompts, with one epoch of training for each
prompt. Since the terms ancestor and descendant used in prompts 7 and 8 differ
somewhat from those used in the other prompts, two more systems were trained sep-
arately: one on the set of prompts 1 to 4 and 7, and another on prompts 1 to 4, 7, and
8. For the testing phase of all the aforementioned models, 9 prompts were used.

By analyzing the results and performance of the systems, and considering the func-
tioning and structure of BERT, we hypothesized that using one set out of superclass
statements and subclass statements could help improve the results. For this purpose,
in the next category of systems, BERT was trained only on superclass statements, as
follows: once with prompt 1, once with prompts 1 and 3, once with prompts 1, 3, and
5, etc. Each prompt is being trained for one epoch. For the testing phase of these
models, the same 5 prompts are used.

Table 1 presents the results of the different systems on the validation dataset. As
mentioned, in each system, the predicted parent in some instances was randomly se-
lected from among the candidate parents. The last column of this table indicates the
percentage of parents that were not randomly selected. The metric values are reported
in percentage. These values are rounded to one decimal place in all columns except
the last one, where they are reported without decimal places. Additionally, weighted av-
erages were used in calculating precision, recall, and F1-score. In this table, the best
result in each column is bold and underlined, and the second and third best results in
each column are bold.

4.2 Experiments on the LLaMA-Based Systems

The initial results using the prompts on the evaluation dataset, which was submitted
for the competition, are presented in Table 2. The values are rounded to one decimal
place in all columns.

In both prompts, the classification problem and the is-a relationship were defined
precisely:

• “The problem under consideration is classification. X is a subclass of Y, meaning
that X shares common features and properties with other members of class Y.”

• “If we say ”X is a Y,” it means that X is a specific instance of Y and inherits all the
features and behaviors of Y.”

1https://github.com/s-m-hashemi/llms4ol-2024-challenge
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Table 1. Evaluation results of different BERT-based systems on validation dataset.
*SC: Superclass Statements

No Model Precision Recall F1-Score % of Non-Randoms
1 Prompt 1 6.6 18.4 8.4 71
2 Prompts 1, 2 56.8 22.4 21.9 95
3 Prompts 1-3 44.7 40.8 38.8 92
4 Prompts 1-4 54.2 25.0 23.5 95
5 Prompts 1-5 53.8 44.7 44.3 49
6 Prompts 1-6 45.2 34.2 34.4 66
7 Prompts 1-7 67.5 61.8 63.0 54
8 Prompts 1-8 37.0 25.0 23.1 53
9 Prompts 1-4, 7 63.0 0.5 52.9 62
10 Prompts 1-4, 7, 8 64.7 18.4 12.0 83
11 SC* Prompt 1 8.9 19.7 10.1 71
12 SC Prompts 1, 2 7.2 21.1 10.3 70
13 SC Prompts 1-3 50.5 51.3 45.6 32
14 SC Prompts 1-4 42.2 50.0 45.0 29
15 SC Prompts 1-5 66.2 59.2 60.8 50

Table 2. Evaluation results of LLaMA 3 70B tested using different prompts on validation dataset.

Prompt / Eval metrics Precision Recall F1-Score
Extra function None Sub Levn None Sub Levn None Sub Levn
Class concept 64.9 64.8 57.1 51.3 51.3 51.3 54.6 54.6 51.9

Is-a (individual query) 21.4 72.6 47.2 7.8 64.4 21 10.1 62.9 18.7
Is-a (batch query) 0 68.4 16.8 0 39.4 13.1 0 46.4 8.2

An example of the prompts is as follows:

• “If we say ’X is a Y,’ it means that X is a specific instance of Y and inherits all the
features and behaviors of Y. Given an instance as ’X,’ select the most appropriate
’Y’ from (city, village) or (country, state, region) or (forest, heath) or (mountain, hill,
rock) or (parks, area) or (road, railroad) or (spot, building, farm) or (stream, lake)
or (undersea).”

In order to improve the results, several iterations of modifying the prompt definitions
were undertaken, leading to improved outcomes, which are detailed below.

In the initial prompts, a sample was included to clarify the definition. For example,
in the classification prompt, it was stated: ”wadi mouth” is considered a subclass of
”parks, area.” We observed that the model tended to favor the mentioned class. Based
on this observation, this example was removed from the new prompts. Furthermore,
the class names, due to their specific structure and the presence of commas between
them, needed to be more precisely distinguished. Therefore, each class title was en-
closed in a pair of parentheses, and the term ”or” was used between them.

In the initial prompt, it was written: ”In lexical networks, a concept known as a triplet is
discussed. This triplet is formed between two words and a relationship between them.”
However, in the improved prompt, the definition was changed to: ”If we say ’X is a Y,’
it means that X is a specific instance of Y and inherits all the features and behaviors
of Y.” The results with the evaluation data using the modified prompts are presented in
Table 3. The values are rounded to one decimal place in all columns.

108



Hashemi et al. | Open Conf Proc 4 (2024) ”LLMs4OL 2024: The 1st Large Language Models for Ontology Learning Challenge
at the 23rd ISWC”

Table 3. Evaluation results of LLaMA 3 70B tested using improved prompts on validation dataset.

Prompt / Eval metrics Precision Recall F1-Score
Extra function None Sub Levn None Sub Levn None Sub Levn
Class concept 75.8 75.7 73.4 64.4 71 67.1 67.7 72 67.7

Is-a 76.2 76 73.8 65.7 72.3 68.4 69.1 73.1 68.9

By examining the results of batch and individual submissions, it was found that the
results in the batch mode were weaker, so in this phase, batch question evaluations
were not conducted.

4.3 Results of the Systems on the Test Dataset

The results of the BERT-based and LLaMA-based systems on the final test dataset
are presented in Table 4. This table includes the results of the three best BERT-based
and two best LLaMA-based systems, both with the best F1-scores on the validation
dataset. In each column, the best result is bold and underlined, and the second-best
result is bold. The two best LLaMA-based systems are those mentioned in Table 3 with
substring function applied.

However, since the results for the LLaMA-based models in this table are based on a
new prompt that was tested after the competition, the best result during the competition
was achieved by the BERT-based models.

Table 4. Evaluation results of best systems on test dataset.

No Model Precision Recall F1-Score % of Non-Randoms
1 Prompts 1-7 67.2 62.7 62.8 56
2 SC Prompts 1-5 78.1 56.4 62.5 47
3 Prompts 1-4, 7 64.6 47.1 51.4 70
4 Prompt with class concept 69.4 67.6 66.5 -
5 Prompt with is-a concept 68.0 63.2 62.3 -

5 Results Analysis

5.1 Analysis of BERT-Based Systems Results

The BERT model, when exposed to various prompts, can learn to focus on the relation-
ship between the two target words rather than other words in the sentence. This ability
generally leads to improved results as the number of training prompts increases. How-
ever, when subclass statement prompts are introduced, except for the second prompt,
performance decreases, as shown in Table 1. Consequently, the improvement trend
continues until prompt 7, but with the addition of prompt 8, the results significantly de-
teriorate. It seems that the sharp decline in results with prompt 8 is due to the different
words used in prompts 7 and 8. This pattern is also observed when comparing models
9 and 10, where the inclusion of prompt 8 leads to a noticeable drop in various metrics.

During the system design phase, it was hypothesized that BERT might perform better
if it consistently sees the (parent, child) pairs in sentences in a fixed order. Therefore,
in systems 12 through 16 in Table 1, only prompts in which the parent comes first and
the child second, referred to as superclass statement prompts, were used. Although
these systems do not perform well with a small number of prompts, as the number of
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prompts increases to three, the results improve significantly, reaching their best with
five prompts.

Looking at the last column in Table 1, it is observed that the models with the lowest
F1-scores produce the least random results. However, our best models generate 50 to
60 percent of their results randomly. The reason for this is that while the initial models
are more confident in their generated answers, the quality of those answers is not suf-
ficient. On the other hand, in many cases, this random selection is made from between
two or three parent candidates, which contributes to the better performance of the fi-
nal systems. Nevertheless, efforts to reduce the percentage of randomly-generated
answers could be a focus for future stages.

Examining the results of the systems on the test dataset, as shown in Table 4, also
shows that these results are fairly close to the validation dataset results, and the pattern
of results across different systems is consistent. This consistency suggests that BERT
has been able to generalize significantly even with a relatively small dataset. The
best result comes from the system trained with the first seven prompts, achieving an
F1-score of 62.8 percent. Close behind is the system trained with five superclass
statement prompts, scoring 62.5 percent.

5.2 Analysis of LLaMA-Based Results

The following points are noteworthy after reviewing the results obtained from structural
changes in the prompts:

• In the initial prompt, where concepts were defined broadly, the class concept per-
formed better than the is-a relationship, which was not well understood by the
model.

• Using variable names in the prompt definitions and introducing how each concept
fits into the prompt helped in understanding the relationships.

• Since the answers are drawn from a set of nine options, including an example in
the prompt tends to bias the model toward that answer.

• Contrary to the initial prompt, where classification results were better than the is-
a relationship, after modifications in the prompt definitions, the is-a relationship
shows better results.

• After structural changes in the prompts, the results for both classification and is-a
methods are very close.

• Applying the substring function on the results derived from the improved prompts
increases the F1-score on the evaluation dataset to 73.1, which is notable.

• The results from the improved prompts (which were not used in the competition)
on the test data show an F1-score of 66.5.

6 Conclusion and Future Work

As observed, BERT, when properly fine-tuned, can yield outstanding results in the
taxonomy discovery task in the competition. However, spending more time and ex-
perimenting with different combinations of prompts could significantly improve these
results. It was also seen that by using appropriate prompts for the LLaMA 3 70B model
and adding an auxiliary function like substring, even better results can be achieved.
Although this model produces better results than BERT-based systems, the small gap
indicates that BERT, when fine-tuned properly, is well-suited for this task. Our results
show a significant improvement over the best results reported by BabaeiGiglou et al.
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[1] in Task B on the GeoNames dataset, in which the task was simplified as a binary
classification problem. This suggests that the methods examined in this paper perform
very well in taxonomy discovery.

Future work could explore the following ideas for extending this work.

• For the BERT-based systems:

– Adding more prompts to the set of prompts.

– Increasing the number of epochs per prompt while training the model.

– Using a set of subclass statements instead of superclass statements.

– Not generating inverted records in the negative dataset.

– Utilizing other encoder-based language models.
• For the LLaMA-based systems:

– Using Few-Shot Learning in the prompts and examining its impact on results.

– Applying the same prompts used in this study to GPT-4 and comparing the
results with LLaMA 3 70B.

– Comparing the results of LLaMA 3 8B and LLaMA 7B.

– Using knowledge graphs to analyze the relationship between the model’s re-
sponse and the correct answer.
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