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Abstract. In this paper, we focus on the segmentation of clouds in All Sky Images using a U-
Net-based Deep Learning model and the subsequent recognition of the same cloud in different 
images. This research lays the foundation for the development of solar radiation forecasts with 
All-Sky Imagers. The implemented model initially extracts relevant features from the input im-
age using convolutions, thereby reducing the resolution. In the subsequent step, the resolution 
is restored to its original level using transposed convolutions. Contours are then created from 
all segmented clouds. Using these contours as references, the same cloud is identified in im-
ages from different All-Sky Imagers through template and contour matching. We demonstrate 
that this segmentation approach yields good results on a small test dataset. Additionally, the 
recognition of clouds in images from different cameras show promising results, with 75 % of 
clouds being correctly matched. 
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1. Introduction

Irradiance Volatility (IV) and Irradiance Enhancement (IE) are primarily influenced by clouds 
and their characteristics [1], [2]. The volatility has a major impact on the power output of pho-
tovoltaic systems (PV) and is therefore crucial for energy production. To accurately model the 
output of PV systems, a temporally and spatially high-resolution prediction of solar radiation is 
required. All-Sky Imagers (ASI) play an important role in this process. By following a sequence 
of procedures, it is possible to forecast the solar radiation and thus the yields of PV systems 
using a network of ASI. A critical step in this process is recognizing cloud formations in images 
taken by two All-Sky Imagers to determine the future positions and heights of the clouds. This 
information is essential for the forecasting model, which is why this paper focuses on cloud 
segmentation and matching in All-Sky Images. 

2. Initial Situation

The data used consists of recordings from two ASIs (ASI-16/51 Advanced, distributed by EKO 
Instruments Europe B.V.), each with a field of view of 180°. Both All-Sky Imagers are mounted 
vertically, looking into the sky, oriented south, and are separated by 942 meters. The ASIs are 
part of a test setup for researching solar radiation at the Technical University of Applied Sci-
ences Rosenheim and are installed on the main campus and at the Rosenheim Technology 
Centre for Energy and Buildings. Every 20 seconds, new images are captured. A sample of 
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these images from both All-Sky Imagers is displayed in Fig. 1. To simplify naming, the cameras 
will be referred to as Camera A and Camera B, as indicated in the captions of Fig. 1. 

  

Figure 1. Original All-Sky Images captured on 06-08-2021 at 14:21:00 (UTC). The left image 
is from Camera A, and the right image is from Camera B. 

For the training of the deep learning model the fully labeled dataset WSISEG was used [3]. 
The input images were captured with similar, but not identical ASIs. The three labels in the 
dataset are the sky, the clouds, and all other objects, such as trees, houses, and the sun. 

3. Methods and Technologies 

3.1 Image Preprocessing 

  

Figure 2. Preprocessed images: The left image displays the distortion-corrected Image A, 
and the right image shows the rotation- and distortion-corrected Image B. 

The preprocessing of the images to prepare them for the deep learning model consists of 
multiple steps. The images of Camera B are rotated 36° counterclockwise compared to the 
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images from Camera A, to orientate the images towards the south. This rotation is corrected 
as an initial processing step. To be able to match clouds between both cameras the distortion 
must be corrected. Otherwise, the shape of a cloud would be different depending on the posi-
tion within an image. The distortion correction is done with a polynomial model for correcting 
radial distortion [4], [5], [6]. The first correction was done with manually determined parame-
ters. This method was used for the images presented above. For a second correction, pictures 
containing calibration pattern placed around the camera were used to create a camera specific 
calibration. With this, a highly effective correction was achieved, with the tradeoff of reducing 
the field of view (FOV). Therefore, in this paper, the manual calibration with a larger field of 
view is used. The corrected images from those in Fig. 1 are displayed in Fig. 2. To maintain a 
manageable training and inference time for the Deep Learning model, the images are scaled 
down to a size of 224x224. Additionally, the pixel values are normalized to a range of 0 to 1. 

3.2 Cloud Segmentation 

The segmentation of the clouds from the sky and other objects, such as trees and buildings at 
the edges of the All-Sky Image, is achieved with a deep learning model based on the U-Net 
architecture, as described by Ronneberger et al. [7]. 

Such a model consists of a down-sampling stack and an up-sampling stack. In each 
step of the down-sampling stack, the resolution is halved, and the number of feature maps is 
doubled. In the model used, each step comprises two convolution layers to extract the fea-
tures, a max-pooling layer to reduce resolution, and a dropout layer to prevent overfitting. 
The up-sampling stack mirrors the structure of the down-sampling stack but with transposed 
convolution instead of max-pooling to double the resolution of the input. Before passing the 
feature maps to the dropout layer, the feature maps from corresponding resolution in the 
down-sampling stack are appended to them. Two convolution and one dropout layer are 
used to connect the down- and up-sampling stacks. 
 

  

Figure 3. Image with the steps of the cloud segmentation. The left image shows the predic-
tion by the deep learning model for the distortion-corrected image A from Figure 2. The right 

image shows only the clouds from the prediction.  
The model was trained on the WSISEG dataset for a total of 40 epochs. A sample prediction 
for the distortion corrected image from Fig. 2 is displayed in Fig. 3. The label 0 (purple) de-
notes the sun and all objects like trees and buildings. The labels 1 (green) and 2 (yellow) 
stand for the sky and the clouds, respectively. 
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3.3 Cloud Detection 

To isolate a specific cloud within an image, the number of labels is first reduced from three to 
two combining labels 0 and 1. This simplification is feasible since only the clouds are of im-
portance, and distinguishing between the sun and the sky is not relevant. The result for the left 
image from Fig. 3 is shown on the right in Fig. 3. This process creates a binary image, which 
is then used to retrieve the contours of all clouds using an algorithm by Suzuki et al. [8], as 
implemented in OpenCV. To remove small errors from the segmentation, an area threshold of 
80 pixels is used to discard clouds that are too small.  

3.4 Cloud Recognition 

As a first solution for recognizing a cloud in the second image, template matching is used. 
Based on the bounding boxes of the found contours, a rectangular template is cut out of the 
input image. To ensure that the entire cloud is included in the template, an additional margin 
of 5 pixels is added around the boundaries of the contour. For the image from Fig. 2, this is 
shown in Fig. 4. To make the template matching more reliable, parts of the input image are 
removed if it can be guaranteed that the cloud is not in that part. For example, for cloud number 
5 from Fig. 4 it is guaranteed that the cloud is also in the right half of the image from Camera 
B. Therefore, only the right half is used for template matching. With this logic, an attempt is 
made to find the relevant half of the image for each cloud. If the cloud is in the center, the 
whole image is used. The result of the template matching is shown in Fig. 4 on the right.  

  

Figure 4. Examples of the template matching. The left image shows the bounding boxes 
used to cut out the templates from image A, and the right image shows the resulting bound-

ing boxes after the template matching on image B. 
The second solution to achieve cloud recognition is based on the contours. Instead of running 
the cloud segmentation on only one image, both images are segmented. Binarization is done 
for both, and the contours are determined. 

The extracted contours are then matched with an algorithm based on Hu-Moments [9] as im-
plemented in OpenCV. The matching method titled I3 was used, which is based on Equation 
(1). Where 𝑚𝑚𝑖𝑖 are the Hu-Moments for the shapes A and B, respectively. 

𝐼𝐼3(𝐴𝐴,𝐵𝐵) = max
𝑖𝑖=1…7

�𝑚𝑚𝑖𝑖
𝐴𝐴−𝑚𝑚𝑖𝑖
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𝐴𝐴�
      (1) 
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The resulting scores for the contours from Fig. 5 are shown in Table 1. 

Figure 5. Examples of contour matching. The left image shows the contours for image A, 
and the right image shows the contours for image B. 

 
Table 1. Similarity of the contours based on Hu-Moments; lower is better. The columns rep-
resent the contours from image A, and the rows represent the contours from image B. The 

best match for each contour is highlighted in bold text. The correct combinations are: B0-A1, 
B1-A6, B2-A7, and B3-A8 

 
 A0 A1 A2 A3 A4 A5 A6 A7 A8 

B0 1.45 0.25 0.31 0.26 0.99 0.29 0.62 0.27 0.30 
B1 0.88 0.48 0.47 0.77 1.11 0.20 0.55 0.16 0.37 
B2 0.91 0.28 0.46 0.53 0.91 0.07 0.41 0.15 0.37 
B3 1.57 0.31 0.28 0.36 1.09 0.36 0.70 0.14 0.18 

To improve the matching further, two more metrics are included. For the first one, the area 
within each contour is determined in pixels. For each possible match, the absolute difference 
between the contour areas is calculated. The second metric consists of the distance between 
the centers of two matched contours. To determine the center, the bounding box for a given 
contour is used. By multiplying these metrics with the shape matching scores, the values from 
Table 2 are received. The values can also be interpreted as a confidence score, where a lower 
value is better. 
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Table 2. Scores for matching the shapes, including the distance between centers and area of 
the contours. Lower is better. Highlighting is done as described in the caption of Table 1. The 

correct combinations are: B0-A1, B1-A6, B2-A7, and B3-A8 

 A0 A1 A2 A3 A4 A5 A6 A7 A8 
B0 35 61 92 36 642 208 720 177 109 
B1 991 1292 56 529 96 367 4 60 171 
B2 633 646 174 239 449 56 144 1 26 
B3 30 521 214 62 1055 179 431 9 6 

4 Results 

Currently, the evaluation of the results has been done preliminarily due to the absence of ded-
icated datasets. The evaluation was performed visually based on a small test dataset. These 
results indicate that the cloud segmentation using a deep-learning-based approach is effective. 

For matching clouds in two images, template matching shows good performance for most 
clouds. However, the matching sometimes fails, particularly at the edge of an image and 
around the sun. The approach based on contour shapes, area differences, and distances per-
forms well for contours found by segmentation. Some clouds at the image edges and around 
the sun are not detected in both images and therefore cannot be matched. 

5 Conclusion and Outlook 

The algorithm created based on a deep learning model achieves promising results, suggesting 
that segmentation and recognition are possible with the approach used. 

The preprocessing can be further improved by determining the position of the sun within 
the images and either mask it before inputting the image into the model or providing the model 
with information about the sun in another way. 

For the algorithm based on contours better results might be achieved by improving the 
initial cloud segmentation. This could be accomplished by adjusting the model architecture and 
optimizing training. To achieve better accuracy, a labeled dataset for the cameras used should 
be created, which preferably not only distinguishes the clouds from the sky but also differenti-
ates individual clouds from each other. Currently, using the distance between contour centers 
does not account for the expected shift due to the kilometer distance between the cameras. 
Including this consideration could further optimize the algorithm. 
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