
40. PV-Symposium 2025

Conference papers

https://doi.org/10.52825/pv-symposium.v2i.2636

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 27 Aug. 2025

Predicting the Shading of Photovoltaic Systems 
Using Machine Learning 

Maximilian Schönau1,2,* , Joseph Jachmann2 , Markus Panhuysen1 , 
Alexander Schönau3 , Darwin Daume2 , Achim Schulze4 , Bernd Hüttl2 , 

and Dieter Landes2 

1smartblue AG, Germany 
2Coburg University of Applied Sciences, Germany 

3Catholic University of Eichstätt-Ingolstadt, Germany  
4Rosenheim Technical University of Applied Sciences, Germany 

*Correspondence: Maximilian Schönau, Maximilian.Schonau@smartblue.de

Abstract. In the operation of photovoltaic power plants, precise knowledge of shading is es-
sential in order to carry out differentiated yield and site analyses and to guarantee reliable 
monitoring and fault detection. A study on the causes of shading carried out with the help of 
GPT4-o is presented. Subsequently, an innovative approach for predicting shading using a is 
introduced. By combining physical and data-driven machine learning, it is possible to efficiently 
complete incomplete shadow analyses and eliminate erroneous data points of a physical 
model. The presented method utilizes data from 1380 photovoltaic devices with various shad-
ing scenarios to train an autoencoder on PV system shading. The autoencoder enables accu-
rate prediction of shading within a detection time of only a few weeks. 
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1. Introduction

When monitoring photovoltaic systems, shading is a critical factor that causes an average of 
around 7 % of power losses [1]. Shading is caused by site-specific conditions, self-shading, 
and temporary factors such as snow, foliage or vegetation.  

Site-related and self-shadowing are often accepted to increase the degree of area utiliza-
tion, yet it is crucial to precisely determine their timing and extent. This enables differentiated 
yield analyses, allowing operators to evaluate the efficiency and planning of their photovoltaic 
power plants and to optimize future projects by making adjustments such as changing row 
spacing or module connections [2]. Temporary shading, such as grass growth, should be mon-
itored so that it can be corrected if necessary. Last but not least, a precise evaluation of shad-
ing plays a major role in the fault monitoring of PV power plants. Shading on strings causes 
short-term power losses, which can lead to false error messages to the operator if these shad-
ing periods are not excluded from the error detection [3]. 

Shading of PV systems is an issue, that O&M Managers often addressed in reports. Sim-
ilar to our previous work [4], these reports were analyzed using GPT4-o by OpenAI [5], [6], [7], 
to get statistical information about the origin of shading issues. 
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The dataset consists of 5,089 medium to large-scale ground-mounted and rooftop PV 
plants constructed between April 1999 and January 2025. About 25 % were built before Octo-
ber 2013, with 75% completed by September 2020. These plants primarily feature traditional 
silicon module technologies representative of the past decade in Germany. Thin-Film modules 
and tracker systems account for less than 0.3% and 3% of installations, respectively [4]. 

O&M reports were anonymized and then filtered by using keyword identification of the 
word shading, which resulted in 12487 comments. Most of these comments were filtered out 
by GPT4-o, as they did not specify the reason of the shading issue. In addition to that, many 
reports containing the word shading did not specify physical and external shading issues, but 
problems like snow instead. The filtering process resulted in 530 comments from Asset Man-
agers, who specified the origin of the shading issue of the monitored string. 

After manual data inspection, the following categories were defined for the classification 
task: 

• Trees - Shading caused by trees or bushes
• Gras - Shading caused by grass or other growing vegetation
• Self - Shading caused by the solar panels themselves
• Buildings - Shading caused by buildings or structures such as the roof, chimneys
• Others - A category if none of the above fit

The full prompt used for the classification task is specified in the Appendix. 10 % of the 
categorized comments were randomly picked and manually reviewed, yielding no instance of 
misclassification. 

Figure 1. Origins of shading, as stated by 530 reports of asset managers in Germany. 

Figure 1 displays the result of the classification task. About a third of all shading issues 
stem from building related shading, such as shading because of the structure of the roof of 
rooftop PV plants. Another third of the reported shading issues stem from trees. Self-shading 
and shading because of vegetation / gras accounted for 15.3 % and 14.4 %, respectively. 5 
reports were classified as ”Others”, which account for reports of shading because of mountains 
and cleaning activities.  
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While shading issues stemming from buildings and self-shading can mostly not be modi-
fied on a PV plant, it is still important to quantify the resulting losses for accurate asset man-
agement. Around half of the shading issues however stem from vegetation, which can in many 
cases be removed if the power losses justify the expenditure. 

The methodology may not be representative for PV plants in Germany since the comments 
may have been biased. Among others, biases could stem from asset managers being more 
aware and thus reporting some shadow origins more frequently than others. In addition to that, 
the PV plants monitored by smartblue may be not representative for Germany. Nevertheless, 
the 530 comments that could be accurately classified by GPT4-o do still hold relevant infor-
mation about the most pressing shading issues.  

2. Prediction of Shading

To detect shading, algorithms are often used that calculate the shading of a string from periodic 
power reductions using photovoltaic models [8]. Another method for determining shading is IV 
curves [9], [10], [11]. However, the measurement technology and model parameters required 
for this make these methods complex in practice. We therefore used a simpler and universally 
applicable method that only uses electrical power data from an inverter: By evaluating the 
photovoltaic power during clear-sky, a power reduction in direct sunlight is determined, from 
which the shading of a string is calculated [12]. The shading matrix 𝜂𝜂𝑖𝑖𝑖𝑖 results from the quotient 
of the measured power 𝑃𝑃meas

𝑖𝑖𝑖𝑖  and the modeled theoretical power 𝑃𝑃gen, cs
𝑖𝑖𝑖𝑖   under clear-sky [13] 

for all azimuth and elevation angles 𝑖𝑖𝑖𝑖 [12]: 

𝜂𝜂𝑖𝑖𝑖𝑖 =
𝑃𝑃meas
𝑖𝑖𝑖𝑖

𝑃𝑃gen, cs
𝑖𝑖𝑖𝑖 (1) 

Figure 2 shows the shading matrix of an example string at a resolution of 28×28 over the 
azimuth 𝛼𝛼 and the elevation angle 𝜙𝜙. Low values of efficiency and thus shaded points are 
marked with darker colors, while white light grey resembles high efficiencies and thus shadow 
free sun positions. The string is heavily shaded to the east and slightly shaded to the west at 
low sun elevations. 

Figure 2. Exemplary shadow matrix. 

A physically calculated gap-free shadow matrix such as displayed in Figure 2, requires a 
detection time of up to several years. In addition to that, the accuracy of the method is limited: 
Uncertainties in the clear-sky model and in the modeling of the photovoltaic power result in 
deviations, which can be recognized in Figure 2 by noise in the matrix. This can be improved 
with the help of machine learning.  
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A method for the correction and prediction of the shadow matrix is presented, which ena-
bles a detailed detection of shadows with a short detection time. A denoising CNN autoencoder 
is used to correct and complete incomplete shadow predictions. This is possible because shad-
ows have cyclical patterns: For example, if the contours of a building are apparent in an in-
complete shadow matrix, an intelligent model can complete these contours without needing 
the irradiance efficiency for all azimuth and elevation angles over a year. In addition, noise can 
be removed, as shadows usually have regular and uniform shapes, which can be recognized 
and corrected by the autoencoder. 

2.1 Data 

A comprehensive dataset was generated using strings for which shading was specified by the 
asset manager. The shading matrix was exported for 1380 strings covering the periods from 
January 2021 to January 2025, from which 30 datasets per string were created for training and 
testing. Sparse matrices were created by randomly selecting time slices ranging from 1 to 75 
weeks, presenting incomplete data that the model is required to predict. To enhance dataset 
diversity, each matrix was inverted along the azimuth axis, effectively doubling the data. The 
resulting shadow matrices were then down sampled to a resolution of 28×28 values. Finally, 
the entire dataset was randomly split into 80% training and 20% testing sets, with a strict sep-
aration of PV strings between the two subsets to prevent overfitting. For the model training and 
evaluation, the dataset was filtered by using only datapoints with a simulated clear-sky power 
over 100 W

kWp
. The visualizations of the shadow matrices were done without this filter. 

2.2 Clear-Sky Correction 

The physical clear-sky model [12] of the modeled power 𝑃𝑃gen, cs
𝑖𝑖𝑖𝑖  deviates from the measured

power, especially for aged strings. Thus, a clear-sky correction was incorporated into the pre-
processing of the model, by correcting the aging losses of the string using the 75th percentile 
of the shadow matrix as an estimate of a strings aging 𝛼𝛼. This percentile estimates the normal 
power output of a string during clear-sky. The corrected shadow matrix 𝜂𝜂corr

𝑖𝑖𝑖𝑖  was thus calcu-
lated by: 

𝛼𝛼 = 𝑃𝑃75��𝜂𝜂𝑖𝑖𝑖𝑖�� (2) 

𝜂𝜂corr
𝑖𝑖𝑖𝑖 =

⎩
⎨

⎧𝜂𝜂
𝑖𝑖𝑖𝑖

𝛼𝛼
if 
𝜂𝜂𝑖𝑖𝑖𝑖

𝛼𝛼
≤ 1,

1 if 
𝜂𝜂𝑖𝑖𝑖𝑖

𝛼𝛼
> 1.

(3) 

The correction enables using the “background color” of the shading matrix as a reference 
value, by which all shadow matrix points are corrected, with a limit to 100 % efficiency. This 
adjustment enhances the accuracy of the methodology by sharpening the contrast within the 
shadow matrices, facilitating more precise modeling of string power based on irradiance con-
ditions and the refined shadow matrix.  

2.3 Model 

A proprietary denoising CNN autoencoder is used for shadow prediction. Figure 3 outlines the 
structure of the model.  
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Figure 3. Schematic representation of the architecture of the denoising CNN autoencoder. 

Autoencoders are neural networks that are trained to encode and then reconstruct input 
data by learning a representation of the data in a hidden intermediate layer [14]. This repre-
sentation is usually compressed and contains meaningful features that the neural network had 
to learn to reconstruct the original data. 

Figure 4. Test input and output of an autoencoder trained with complete shadow matrices. 

Figure 4 shows a test input and reconstruction of an autoencoder that was trained with 
complete shadow matrices as input and output variables. The autoencoder is fed with the input 
data matrix (represented by the blue image), which is compressed and mapped in the inter-
mediate dense layer. This dense layer is then reconstructed into the output data matrix (rep-
resented by the green image). Through the encoding and decoding, only the relevant shadings 
are transmitted in the form and characteristics, instead of a complete reconstruction of the data 
points. For this reason, the shading of the decoding is more structured and uniform as well as 
freed from noise of the original image.  

Denoising autoencoders are a special form of autoencoder in which data points are spe-
cifically removed from the input data [15]. The shadow prediction masks were created by ran-
domly selecting time intervals from 1 to 75 weeks of the full shadow matrix to create incomplete 
datasets. The masked shadow matrix was used as input to the model, with a Boolean matrix 
as the second channel, which specifies data points to be completed. Training of the model has 
been done on full shadow matrices. 
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A convolutional network (CNN) was used as the basis for the denoising autoencoder [16]; 
a scaled-down version of the VGG architecture [17] proved to be advantageous.  

2.4 Physics-Informed Machine Learning 

The autoencoder used is a hybrid model that combines knowledge-driven and data-driven as-
pects [18]: The completion of the shading was implemented in a data-driven manner using 
classical machine learning. However, the process could be optimized by incorporating the 
physical knowledge about the sun’s course at the given location into the model.  

A shading pattern, such as that of a building, should always be completed with the same 
learned patterns, regardless of the direction in which the building is located in relation to the 
PV system. It was attempted to enforce this by not requiring the model to take into account the 
position of the sun, but only training it by completing shadows. 

This was implemented by adapting the error function 𝐿𝐿: For each training data set 𝑘𝑘, the 
mean squared deviation 𝑀𝑀𝑀𝑀𝑀𝑀 from the masked and complete shading matrix (𝜂𝜂masked

𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖)
was multiplied by a sun position matrix 𝜒𝜒𝑖𝑖𝑖𝑖, which maps the course of the sun at the respective 
location in Boolean values: 

𝐿𝐿 = 𝑀𝑀𝑀𝑀𝑀𝑀 =
1

𝑛𝑛𝑖𝑖 ⋅ 𝑛𝑛𝑗𝑗 ⋅ 𝑛𝑛𝑘𝑘
�����𝜂𝜂masked

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑗𝑗𝑗𝑗� ⋅ 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖�
2

𝑛𝑛𝑖𝑖

𝑖𝑖

𝑛𝑛𝑗𝑗

𝑗𝑗

𝑛𝑛𝑘𝑘

𝑘𝑘

(4) 

The root mean squared error of the shading matrix was used to evaluate the model per-
formance: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (5) 

By adapting the error function in this way, the model can complete all shading according 
to the learned patterns, regardless of the actual position of the sun. The CNN is also free to 
complete those “shadings” that occur outside of all physical sun positions.  This improves the 
generalization of the method, as the model is able to complete shadows independently of azi-
muth and elevation.  

3. Results

After model training, the test results were evaluated and compared to each other using the 
masked 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. All model evaluations were done by a 5-fold cross-validation. The model was 
trained and tested on data over all seasons for time spans of 1 to 75 weeks, which resulted in 
an 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of 7.0 % with a standard deviation of 0.1 %.  

This value displays a relatively high similarity between prediction and reference data com-
pared to the training dataset, however it does not directly state the ability of the shadow matrix 
to correct the power value that a PV device should deliver. With the autoencoded shadow 
matrices being more refined than the original training dataset and missing outliers, there is an 
argument to be made that shadow predictions with high 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are in some cases better than 
the original train dataset, having corrected outliers (see Figure 4).  

The accuracy of the shadow matrix in terms of its ability to correct the power that a PV 
device should generate will be investigated in future work. In this work, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of the pre-
dicted shadow matrix to the full matrix will be used as an indicator of model performance for 
different train and test datasets. In addition to the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 visual inspections were used to assess 
the quality of the predicted shading patterns.  
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Figure 5. Sparce, Predicted and Full shadow matrix. 

Figure 5 contains an incomplete shadow matrix of the test data set with an 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of 
4.3 %. The reference, which took several years of electrical data from the string to generate, 
was predicted with a high accuracy using data points from only four weeks. 

3.1 Advantages of Physics-Informed Machine Learning 

The advantage of the hybrid knowledge- and data-driven model was compared with a data-
driven approach, by training the model without the clear-sky correction of Chapter 2.2 and 
without the custom loss function of Equation (4). 

Table 1. Advantage of Physics-Informed Machine Learning. 

Table 1 displays the models’ performance without clear-sky correction and without the 
custom loss function. Both the clear-sky correction and the custom loss function reduces the 
models 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 by about 30 %, which emphasizes the importance of combining knowledge-
driven with data-driven methodologies. 

3.2 Practical Limitations of the Shadow Prediction 

The prediction of the shadow matrix is not perfect if a small amount of data is available. Figure 
6 shows an incorrect prediction of the shadow matrix for such a case. In this example, the 
autoencoder had no information about the shadows cast when the sun was shining from the 
east. This led the model to incorrectly extrapolate the shading from the west to the east. Only 
with additional information on eastern shading after an increase in detection time does the 
model succeed in making an accurate shadow forecast.  

Clear-Sky  
Corrected 

Custom Loss  
Function 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 
in % 

10.9 ± 0.2 
X 9.1 ± 0.4 

X 9.0 ± 0.4 
X X 7.0 ± 0.1 
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Figure 6. Correction of the predicted shadow matrix with a time interval increase. 

In practice, the shadow forecast can be dynamically adapted to the available data points 
of the irradiance efficiency matrix, whereby the predicted shading becomes increasingly 
accurate as the monitoring period of a PV system increases. For most devices, it is possible 
to reliably forecast a complete shadow matrix within a few months. 

Figure 7. Model performance when increasing the detection time. 

Figure 7 displays the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of the shadow prediction over an increase in detection time. 
Appendix 1 and 2 display examples of shadow predictions after 4 and after 25 Weeks. The 
shadow prediction is very accurate in most cases after 25 Weeks with an 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of 
8 %. Notably, even at 4 weeks, the predictions are sufficiently accurate for effective asset 
management in many cases. This is especially important for avoidable shading such as grow-
ing grass, which must be detected as quickly as possible so that countermeasures can be 
taken. 
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Figure 8. Model performance for different months of the year with 10 Weeks detection time. 

Figure 8 displays the model performance for different months of the year, for a shadow 
prediction with a detection time of 10 weeks. The model’s performance varies about 4 % per-
cent for different months of the year, with the best time intervals being months with medium 
sun heights such as February to April and August to October. The model performs worse at 
solstice, with the summer solstice performing slightly better than the winter solstice, since 
months in the summer have more clear-sky intervals at higher sun positions, which return more 
information about shading patterns. 

4. Conclusion

The integration of physical modeling with data-driven machine learning enables rapid and ac-
curate prediction of shading patterns in photovoltaic systems. The hybrid approach leads to 
more precise shading forecasts and thus facilitates fault monitoring and system management. 
The shadow matrix becomes more precise with increasing monitoring time and thus improves 
the fault and analysis models. As a result, the required maintenance work will be reduced in 
future and the number of false alarms for PV systems will decrease. In addition, the method-
ology will enable precise calculations of yield losses due to shading. 

Appendix 

A.1 GPT-4o Prompt for the Classification of Shading Issues

Below the prompt that was provided to GPT-4o for classifying the origin of shading issues: 

You are a senior photovoltaic asset manager analyzing shading issues. 

IMPORTANT: The input text is in German, but you must respond in English. 

TASK: Classify the comment into these categories: 

1) General - General shading mentioned without reason, or shading reason unclear

2) No_shading - Shading was not the issue

3) Tree - Shading caused by trees or bushes
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4) Gras - Shading caused by grass or plants or other growing vegetation

5) Self - Shading caused by the solar panels themselves

6) Building - Shading caused by buildings or structures such as the roof, chimneys

8) Snow - Shading caused by snow or ice

10) <Other> - Create a new category if none of the above fit at all

CRITICAL RULES: 

- Return a JSON object with a short description of the reason and the categories that
apply. Example: '''{"reason": "Shading caused by trees", "categories": ["Tree"]}''' 

- Try to be as specific as possible, if no reason is given, return the category "General"

- If the shading cause is only speculated about, return the category "General"

- Input is in German, look for words like: Verschattung, Schatten, verschattet

- High attention to context and German language nuances. If a building is mentioned, this
is not automatically the cause of the shading. 

- You will be penalized for incorrect classifications or wrong JSON format

EXAMPLES: 

Input: "Verschattung durch Bewuchs. Referenz ist das sanierte Kiesdach." Output: {"rea-
son": "Shading caused by vegetation", "categories": ["Gras"]} 

Input: "Die Schatten werden länger. S19.3 und S19.6 sind in er unteren Modulreihe und 
werden so von den vorderen Modultischen beschattet." Output: {"reason": "Shading caused 
by the modules themselves", "categories": ["Self"]} 

Input: "Jahreszeitliche Verschattung, auf dem Dach von Garage 1 (untere Strings sind 
verschattet, die ganz unten am dramatischsten) Verschattung." Output: {"reason": "No reason 
given.", "categories": ["General"]} 

10
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A.2 Shadow Prediction after 4 Weeks

Figure 9. Shadow Prediction of the autoencoder after a detection time of 4 weeks. The dataset was 
filtered by using only datapoints with a simulated clear-sky power over 100 W

kWp
. 
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A.3 Shadow Prediction after 25 Weeks

Figure 10. Shadow prediction of the autoencoder after a detection time of 25 weeks. The dataset was 
filtered by using only datapoints with a simulated clear-sky power over 100 W

kWp
. 
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