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Abstract. The rapid expansion of photovoltaics (PV) requires intelligent operational strategies 
for energy storage systems. These strategies help manage PV surpluses during peak 
generation periods, reducing grid stress while optimising storage system performance. By 
minimising long periods of high state of charge and maintaining efficient operating conditions, 
such strategies also help to extend the lifetime of storage systems. However, effective 
implementation requires accurate forecasting of both PV generation and load demand. This 
study investigates the impact of forecast errors caused by shading, in particular by stationary 
objects, on storage system operation. An adaptive forecasting approach that dynamically 
adapts to shading conditions was developed and compared to a non-adaptive method. The 
analysis, based on real PV generation and load data over ten days, showed that the adaptive 
approach reduced grid consumption by 24% and the time spent at high state of charge by 
29%. These results highlight the potential of adaptive prediction models to improve the 
efficiency and durability of storage systems. 
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1. Introduction

The increasing deployment of distributed PV systems highlights the need for accurate PV 
power forecasting to optimize energy management systems (EMS). Forecast inaccuracies, 
particularly those arising from shading, can significantly affect the economic efficiency of 
operational strategies in residential battery storage systems. In this study, we investigate the 
influence of shading on forecast accuracy and its impact on an age-optimized charging strategy 
for a real home storage system. A data-driven approach is proposed to dynamically adjust 
forecasts based on shading conditions, thereby reducing errors and improving storage 
operation, with a conventional forecast serving as a benchmark. 

There are several approaches to incorporate shading into forecasting models. Physical 
models can compensate for shading using geometric data, as demonstrated by Mayer et al. 
[1], who accounted for direct obstructions from nearby PV systems. Similarly, Masa-Bote et al. 
[2] employed statistical ARIMA models with correction factors to adjust predictions for shading
effects caused by surrounding trees. Automated prediction frameworks, such as the AutoPV
approach by Meisenbacher et al. [3], improve generalization by averaging pre-trained models,
although they do not explicitly account for shading variability. Despite these advances, the
validation of dynamic shading effects remains underexplored, even though it is critical for
accurate predictive energy management.
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PV forecasting is a core component of an EMS that optimizes self-consumption and guides 
the intelligent operation of batteries to enhance the economic return on investment. One well-
established strategy is PV peak shaving, which avoids curtailment by delaying battery charging 
until the midday peak rather than storing excess energy earlier in the day [4]. Alternatively, an 
age-optimized charging strategy aims to mitigate the effects of calendar aging in battery 
chemistries such as NMC, LFP, and NCA by minimizing high state-of-charge (SOC) periods 
[5]. Barry et al. [6] proposed a forecast-based approach that determines the last possible 
charge time to minimize prolonged full charge states, thereby reducing calendar aging. 
Although aging-optimized strategies have been validated in real-world applications [7,8], the 
impact of PV forecast accuracy on these strategies remains largely unexamined. Forecast 
errors can lead to suboptimal energy dispatch, making it essential to incorporate advanced 
error mitigation techniques. For example, Stein et al. [9] compared different load forecasting 
models for small EV charging stations and evaluated their influence on operational costs. Their 
results indicate that precise load and generation forecasts reduce costs, highlighting the 
importance of advanced forecasting methods in cost-efficient EV charging operations. Jiang 
et al. [10] further contributed by proposing a stochastic online forecast-and-optimize framework 
for real-time energy dispatch in virtual power plants, effectively mitigating uncertainty through 
optimization. Additionally, Masa-Bote et al. [11] investigated the impact of PV generation 
forecast uncertainties on residential energy systems equipped with Demand-Side 
Management (DSM) and local storage. Their study demonstrated that integrating DSM and 
storage reduces energy exchange uncertainty with the grid, significantly improving self-
consumption and grid stability. Finally, Gandhi et al. [12] reviewed the economic implications 
of solar forecasting errors across various applications, emphasizing that inaccuracies can 
significantly impact electricity market bidding, power system operations, and household energy 
management, ultimately leading to increased operational costs. 

In summary, these studies emphasize the critical role of accurate forecasting in EMS and 
present various methods to mitigate forecast-induced inefficiencies. By integrating shading-
aware forecasting techniques, this work addresses a major source of prediction error in PV 
generation, leading to improved energy storage utilization, reduced curtailment, and enhanced 
economic performance. 

The novelty of this research lies in the direct integration of an adaptive, shading-aware 
forecasting approach into a real-world EMS and the systematic assessment of its impact on 
storage operation and self-consumption. While previous studies have considered forecast 
errors in energy management optimisation, they have primarily focused on general forecast 
inaccuracies rather than explicitly addressing dynamic shading effects. Existing forecasting 
models either rely on static correction factors, or use machine learning approaches that do not 
continuously adapt to changing shading conditions. In contrast, this study introduces a real-
time adaptation mechanism that continuously refines PV power predictions based on observed 
shading deviations. By incorporating an adaptive drift detection algorithm, our approach 
dynamically adjusts forecasts to mitigate prediction errors caused by variable shading, an 
aspect that has been largely overlooked in previous research. Furthermore, while forecast 
improvements are often evaluated in isolation, our study goes beyond forecast error metrics 
by analysing the direct impact of adaptive forecasting on EMS performance. We quantify how 
reducing forecast errors affects storage utilisation, grid interaction and economic outcomes, 
providing empirical evidence of the operational benefits of adaptive forecasting. By bridging 
the gap between forecast adaptation and real-world EMS optimisation, this work provides 
novel insights into how shading-aware forecasting increases self-consumption, minimizes 
reliance on the grid, and improves battery longevity. This research advances the field by 
demonstrating that the ability to dynamically learn and correct for forecast deviations is critical 
to maximising the efficiency of distributed PV battery systems, particularly in environments 
where shading effects fluctuate over time. 
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2. Methodology 

This study examines a real-world system, consisting of a photovoltaic (PV) system and a 
battery storage system, operated over several days using an energy management system 
(EMS). The EMS was designed to maximize self-consumption while ensuring optimization of 
battery ageing, based on forecasts of PV generation and load demand. Two forecasting 
models have been used, one with and one without consideration of PV shading. The aim of 
this analysis is to quantify the impact of these different forecasts on actual system operation. 
The methodology compares a conventional PV forecasting approach with an advanced 
adaptive model that dynamically updates its parameters when significant deviations in forecast 
errors occur. The adaptive model incorporates a drift detection mechanism to identify 
persistent errors in predicted PV power due to environmental changes such as shading. Once 
a drift is detected, the model is retrained using newly available data to maintain forecast 
accuracy. The methodology is structured as follows: 

• The first subsection describes the System Configuration and Components, which 
includes the PV system, battery storage, and load profile used for the study. 

• The second subsection introduces the Adaptive Forecasting Model, including its ability 
to respond to forecast errors and adapt dynamically. 

• The third subsection presents the Energy Management Strategy, explaining how the 
forecasting models are integrated to optimize battery operation. 

2.1 System Configuration and Components 

In this study, a system at the Karlsruhe Institute of Technology (KIT) was used to assess the 
impact of improved forecasting on the strategy of the EMS. The system consists of a PV 
system, a battery storage system and a building load. A characteristic of the PV system is the 
presence of a chimney, which casts shadows on the modules throughout the day (see Figure 
1). 

Figure 1. Shaded PV System 

The PV system has an installed capacity of 7.2 kWp and is connected to the grid. As the 
system is undersized for the task, it is effectively scaled to a 10 kWp system for the study. The 
power for a sunny day, shown in Figure 1, clearly illustrates the shading effects on the modules 
throughout the day. To optimize the use of the PV system and increase the self-consumption, 
a battery storage system with a capacity of 10.2 kWh and a charging capacity of 10 kWp was 
integrated. Like the PV system, the battery storage system is connected to the grid on the AC 
side. A realistic load profile from the ADRES [13] research project at the Vienna University of 
Technology was used for the building load. The load data, recorded with a resolution of one 
second, includes both three-phase active and reactive power from 30 households. For this 
study, household 6 was selected as a representative profile with an annual energy 
consumption of 3756 kWh. This profile was chosen to ensure a sufficient load for optimal 
battery capacity utilization during the evaluation period. 
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2.2 Adaptive Forecast 

Accurate solar power forecasting is essential for efficient energy management, but traditional 
machine learning models rely on historical training data and lack mechanisms to adapt to 
environmental changes such as shading. This limitation can lead to unreliable predictions 
when real-world conditions differ from those observed during training. To overcome this, an 
adaptive forecast model is proposed that incorporates a drift detection mechanism that 
continuously evaluates forecast errors and updates the model when persistent deviations 
occur. 

2.1.1 Description of Dataset 

The dataset used in this study consists of two separate datasets, one for the PV power 
forecasting and one for the drift detection. 

The first dataset is used for PV forecasting. It includes meteorological weather forecasts 
from the ICON-D2 model, which provides forecasts with a spatial resolution of 2 km and a 
temporal resolution of 15 minutes, providing forecasts up to two days ahead. This dataset also 
includes PV power data measured on site from the previous day to improve forecast accuracy. 
Global Tilted Irradiance (GTI) and other irradiance variables such as Direct Tilted Irradiance 
and Diffuse Tilted Irradiance are calculated using PVLib [14] based on the weather forecast 
and location.  

The following PV-specific variables are included in the forecast model in addition to the 
meteorological variables used in the forecast dataset to improve forecast accuracy: 

• Solar elevation angle 
• Solar azimuth angle 
• Lagged power from the previous time step 

Feature importance analysis performed on the forecast dataset shows that GTI and sun 
elevation are the most influential predictors, with importance scores of 0.94 and 0.90 
respectively. The second dataset is used for drift detection and consists of historical weather 
data and corresponding historic PV power data. For drift detection, the model integrates 
historical weather data from the European Centre for Medium-Range Weather Forecasts - 
Integrated Forecasting System (ECMWF IFS). The following meteorological variables are used 
as inputs to evaluate differences between the ideal unshaded system power and the actual PV 
power output: 

• Global tilted irradiance (GTI) 
• Air temperature at 2 meters 

These references help to identify persistent errors in PV power forecasts caused by 
environmental changes such as shading or other factors, thereby improving forecast accuracy 
over time. 

2.1.2 Drift Detection and Adaptive Learning 

The prediction model is pre-trained on an unshaded reference PV system with a total installed 
power of 10 kWp, with a tilt of 30° and a south orientation of 0°. The system described in 
section 2.1, which operates under an EMS, has a PV array that is affected by shading from a 
chimney. The shading effect results in deviations in power generation, making it different from 
the idealized unshaded system. In order to account for the differences between the unshaded 
reference system and the shaded PV system used in the EMS, the model uses a PV power 
model. This model generates the power of the idealized unshaded system, which is then 
compared with the actual measured power of the shaded PV system. This reference power 
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output is obtained using a PV model that estimates the maximum possible power generation 
under given environmental conditions. The Feiman model [15] is used to estimate the module 
temperature 𝑇𝑇module based on the ambient air temperature 𝑇𝑇air and the global tilted irradiance 
𝐸𝐸𝑛𝑛. The relationship is given by: 

𝑇𝑇module = 𝑇𝑇air +
E𝑃𝑃𝑃𝑃𝑃𝑃
𝑈𝑈1

 

where 𝑇𝑇module is the module temperature, 𝑇𝑇air is the ambient air temperature, 𝐸𝐸POA is the 
solar irradiance, and U1 is the heat loss coefficient of 25 W

m2K. While the Feiman model includes 
an additional term that incorporates wind speed to better account for convective heat loss, this 
term will be neglected in this study. This is due to the fact that the historic wind speed forecast 
data does not exhibit a meaningful correlation with the actual wind speed, rendering its 
inclusion unnecessary for the purpose of this analysis. Using the estimated module 
temperature, the ideal PV power output 𝑃𝑃ideal is computed as: 

𝑃𝑃ideal = 𝜂𝜂 × 𝐴𝐴 × 𝐸𝐸POA × �1 + 𝛼𝛼 × (𝑇𝑇module − 𝑇𝑇ref)� 

where η is the efficiency of the PV module, A denotes the total surface area of the PV 
modules, α is the temperature coefficient of power, and 𝑇𝑇ref is the reference temperature. This 
ideal power output provides a baseline for assessing the accuracy of the forecasted power. If 
the measured power is significantly lower than the ideal power, it may indicate shading or other 
environmental disturbances affecting the PV system. 

The error at time index n, denoted as 𝑒𝑒𝑛𝑛, is calculated as the difference between the 
measured PV power output, 𝑃𝑃measured, and the predicted output from the PV performance 
model, 𝑃𝑃model: 

𝑒𝑒𝑛𝑛 = 𝑃𝑃measured𝑛𝑛 − 𝑃𝑃forecasted𝑛𝑛 

Significant and persistent deviations in 𝑒𝑒𝑛𝑛 indicate that the model is no longer well 
calibrated to current conditions. To enhance sensitivity to shading-induced errors, the error is 
first segmented into specific time slots, reflecting typical shading patterns. This targeted 
approach improves drift detection by isolating periods with higher forecast deviations. The 
ADaptive WINdowing (ADWIN) drift detection algorithm is then applied separately to each time 
slot. ADWIN dynamically adjusts the window size based on the error distribution, ensuring an 
optimal balance between sensitivity and stability. It is based on a sliding window of past 
observations and detects statistically significant changes in the mean of the incoming data 
stream. When such a change is detected, the model is retrained using the latest available data, 
ensuring continuous adaptation to environmental changes. 

The forecasting model is based on a neural network architecture with two LSTM layers of 
60 neurons each. These layers are followed by a fully connected layer with 15 neurons, and a 
tanh activation function is applied between the layers. The model is trained using the Adam 
optimizer with a learning rate of 1 ∙ 10−3. A batch size of 96 ∙ 7 samples is used, and early 
stopping is implemented with a validation patience of 10 epochs.  
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Figure 2. Overview of proposed forecast approach 

2.3 Energy Management Strategy 

The EMS used in this study can be described as a two-tier system. The higher-level control 
unit calculates the battery's charging and discharging power based solely on the actual PV 
generation and building load. In doing so, it must comply with the operational power limits in 
the charging direction, which are dynamically adjusted by the lower-level control unit to 
optimize battery aging behaviour. 

In this context, the low-level control unit plays a crucial role in minimizing the operationally 
accelerated calendar aging of the battery. Accelerated aging occurs particularly when the 
lithium-ion battery (LIB) is charged to a high state of charge too early and remains unused for 
a significant portion of the day [5]. To mitigate this effect, the EMS schedules the charging 
process so that the battery is fully charged only at the latest possible time when PV surpluses 
are still available. To determine this point in time, the EMS utilizes forecasts of PV power 
generation and load demand. These forecasts are not only used to define the optimal charging 
time but also to recursively plan the entire charging process using a state-of-charge prediction 
algorithm. Such an algorithm was first introduced by Barry et al. [6] and later applied to real-
world systems in studies by Palaniswamy et al. [7] and Strobel et al. [8]. In these studies, the 
algorithm by Barry et al. was extended with logic that considers only efficient charging power 
levels of the storage system. The specific methodology used by the algorithm for charge 
planning is described in detail in the following section. 

1. Forecasting PV and Load Power: In the first step, the algorithm retrieves the 
forecasts for PV power generation and building load applicable to the current day. The 
PV power forecasts used in this study are described in Chapter 2.2. A perfect forecast 
is assumed for the building load, ensuring that only uncertainties in the PV forecast 
impact the EMS, while deviations in the load forecast are excluded. Therefore, the load 
forecast is defined as the actual ADRES power profile, averaged to a 15-minute 
resolution. 
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2. Calculating the optimized end of charge: To determine the last point in time with 
PV surplus, up to which the battery storage should be fully charged, the forecasts of 
load and PV power generation are compared. Starting from the end of the day, each 
value of the PV forecast is recursively analyzed against the load forecast. The latest 
time at which PV generation exceeds the load, thereby creating a surplus, defines the 
charging end time. After this point, no further battery charging is possible, and the 
storage system is only discharged until the following day. 

3. SoC Prediction Algorithm: Based on the planned end of charging, the EMS 
predicts the battery’s SoC. For this purpose, it utilizes an integrated battery model that 
accounts for energy content while considering inverter and battery losses. The 
simulation is performed recursively, starting from the planned end of charging and 
moving backward in time until the predicted SoC matches the current SoC. This point 
then defines the start of charging. In each time step, the predicted available PV surplus 
that can be stored in the battery is calculated. Based on this power, the initial SoC 
required to reach the planned end SoC, assuming charging exclusively from PV 
surplus, is determined. This process is iteratively repeated for all preceding time steps. 
The algorithm terminates under two conditions: either when the computed initial SoC 
matches the current system SoC, or when all time steps up to the beginning of the day 
have been simulated without reaching the current SoC. An additional feature of this 
algorithm segment is the consideration of an efficient charging power threshold to limit 
excessive charging rates and prevent unnecessary losses. In this study, the efficient 
charging power was set to -3 kW, meaning that all charging power values below this 
threshold are capped at -3 kW. The whole Process can be described by the diagram in 
fig. 3. 

Figure 3. SoC prediction algorithm in the lower-level controller to optimize calendar ageing 

By implementing the lower-level control unit, the start of charging is delayed to the latest 
possible time. Fig. 4 illustrates this behaviour and compares the simulated operation of an 
EMS with and without lower-level control. Without this control, the battery would be fully 
charged by approximately 12:00. In contrast, the optimized EMS delays the charging process 
to the latest possible time when PV surplus is available. This approach reduces the battery's 
dwell time at the maximum SoC thereby mitigating operationally induced calendar aging. 
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Figure 4. Comparison of SoC development with and without lower-level controller within the EMS 

3. Results 

The results are structured in two sections: first, the improvements in forecast accuracy 
achieved through the adaptive approach are presented, followed by an analysis of how these 
improvements impact the EMS. 

3.1 Forecast Accuracy Improvements 

In the first stage, the performance of the adaptive forecasting model is evaluated by comparing 
the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for both shaded and 
unshaded PV arrays. For the unshaded array, the MAE is 0.39 kW, and the RMSE is 0.79 kW. 
In contrast, for the shaded array without any adaptation, the MAE increases to 0.54 kW and 
the RMSE to 1.09 kW, highlighting the significant impact of shading on prediction errors. 
However, after applying the adaptive approach, the RMSE is reduced to 0.51 kW, and the MAE 
to 0.31 kW. This demonstrates a 53.2% improvement in RMSE and a 43.6% improvement in 
MAE, confirming the effectiveness of the drift detection and retraining mechanism in 
maintaining forecast accuracy under dynamic shading conditions. 

3.2 Impact on Energy Management System 

In the second stage, the impact of improved forecasts on EMS operation is analyzed. The SoC 
deviation of the battery is significantly reduced from 32% to 6.8% (see Figure 4a), ensuring 
more stable and reliable operation. Additionally, improved forecast accuracy leads to a 
reduction in overall grid consumption over a four-day period by 2 kWh, as the enhanced 
predictions enable better scheduling of charging and discharging processes, minimizing 
unnecessary reliance on the grid. This optimization also results in an increase in cost savings 
from -0.20 EUR to 0.86 EUR (see Figure 4b), reflecting the financial benefits of reduced grid 
consumption. Furthermore, the deviation in the optimal crossover time is reduced to 14 
minutes, compared to 52 minutes in the baseline forecast (see Figure 4c), demonstrating the 
efficiency gains achieved through the adaptive forecasting approach. 

The improvements in EMS performance can be directly attributed to the reduction in 
prediction errors caused by shading. When shading effects are not taken into account, the PV 
power output is systematically overpredicted. This overprediction results in a delayed start of 
battery charging, as the system expects higher future generation than actually occurs. As a 
result, the storage system is charged too late, preventing it from reaching 100% SoC. Even 
more critically, this delay increases the frequency of periods of low SoC, which in turn 
increases the risk of increased consumption from the grid in the evening, when the PV 
generation is no longer available. Without adaptation, the EMS operates on the assumption of 
inaccurate forecasts, resulting in sub-optimal charging schedules. To match the performance 

  Time / h
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of the adaptive model, the start of the charge would need to be reduced by an average of 52 
minutes, bringing the battery charge cycle more in line with actual PV generation. This 
highlights the need for an adaptive learning mechanism that continuously adapts to dynamic 
environmental conditions, ensuring that charging strategies remain optimal despite variations 
in shading patterns. 

Figure 5. a) Deviation from 100% SoC at the end of the load period for both adaptive and baseline 
forecasts. b) Cost savings achieved by the EMS using the adaptive and baseline forecasts. c) 

Deviation in true crossover time between adaptive and baseline forecasts. 

Moreover, the adaptive forecasting model improved the distribution of the SoC. Periods 
with a high SoC were reduced by up to 29% as seen in Figure 5 compared to a scenario without 
a dedicated charging strategy. In the reference forecast, inaccurate predictions often resulted 
in a lower SoC, forcing the system to rely more heavily on the grid. The improved forecast, 
however, ensured a more balanced distribution of stored energy, allowing the system to make 
better use of its available resources. 

Figure 6. Impact of adaptive forecast on SoC distribution 

The economic impact of these improvements was also substantial. High forecasting errors 
typically lead to increased costs, as inaccurate predictions result in suboptimal battery 
operation and greater grid consumption. In the reference forecast, a lower SoC meant that 
more electricity had to be drawn from the grid, increasing operational expenses. By reducing 
forecasting errors, the adaptive approach minimized these additional costs, improving the 
overall economic efficiency of the energy system. 

These findings underscore the necessity of adaptation mechanisms in PV power 
forecasting. The ability to adjust to dynamic environmental changes, such as shading, not only 
ensures more accurate predictions but also enhances energy management and delivers 
significant economic benefits. 
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4. Discussion 

The findings highlight the critical role of adaptive learning in PV power forecasting, particularly 
in addressing the challenges posed by environmental variability. Traditional forecasting models 
struggle with dynamic factors such as partial shading, as observed in this study. The chimney-
induced shading introduced localized fluctuations in solar irradiation that a static model failed 
to capture accurately, leading to systematic forecast errors. In contrast, the adaptive model 
effectively detected these variations and adjusted its predictions accordingly, significantly 
improving forecast accuracy. Beyond predictive accuracy, the benefits of adaptive forecasting 
extend to energy storage optimization and grid reliance. A well-balanced SoC distribution 
reduces grid dependence and enhances battery utilization, leading to lower operational costs 
and improved system efficiency. The observed reduction in avoidable grid consumption 
underscores the potential for adaptive forecasting to increase self-sufficiency in PV-based 
energy systems. Moreover, the improvement in SoC stability ensures that stored energy is 
more effectively allocated, minimizing periods of low charge that could otherwise force reliance 
on external power sources. 

However, one limitation of this approach is its reliance on real-time data availability. Any 
disruptions in data transmission or sensor failures could delay model retraining, temporarily 
reducing the effectiveness of the adaptation mechanism. Future work should focus on 
enhancing system resilience against data interruptions by integrating predictive maintenance 
for sensors or hybrid forecasting strategies that combine adaptive learning with physical 
modeling techniques. 

In conclusion, this study demonstrates that adaptive forecasting is essential for accurate 
PV power predictions in dynamically changing environments. By incorporating drift detection 
and continuous retraining, forecasting models can maintain high accuracy, ultimately 
improving energy management and economic performance. Future research should explore 
the scalability of this approach, particularly its applicability to PV systems with more complex 
environmental conditions, to further optimize distributed energy resource management. 
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