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1 Introduction

Demand responsive transport (DRT) has been increasingly tested and applied in recent years as
a new form of transportation that seeks to address mobility problems in cities and rural areas.
DRT seeks to serve trip requests from passengers using a fleet of vehicles without fixed routes.
Depending on how the system operates and which constraints are considered, different types
of DRT services can be given. For example, DRT can operate as a shared system, allowing
the passengers to share their trips. DRT has also been studied to support public transport,
being used as a transportation mode for the first or last mile. Depending on how the requests
are made and managed by the service, the DRT system can be online (requests arrive and are
managed in real-time), offline (requests are known in advance), or a mix of both [9].
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Abstract

Demand responsive transport (DRT) has been increasingly tested and applied in recent 
years as a new form of transportation that seeks to address mobility problems in cities and 
rural areas. The planning of DRT systems is a challenging task for transport planners since 
the performance of the service depends significantly on the demand, how the scheduling is 
made, and how the routes are computed. Transport simulations are a useful option to evaluate 
these systems. The paper presents a Python tool, which aims to simulate di-verse DRT 
services using the software package for microscopic simulations Eclipse SUMO (Simulation of 
Urban MObility) as a framework. The fleet and requests of the DRT are handled dynamically 
by the scheduling module of the tool. This module is also responsible for calling a solver 
algorithm for the Dial-a-Ride-Problem (DARP), processing its results, and dispatching the 
DRT vehicles according to them. The tool also enables easier imple-mentation of other 
methods to solve the DARP. To demonstrate the use of the tool, a DRT service operating in 
two central neighborhoods of the city of Brunswick (Germany) is presented. The tool is called 
drtOnline.py and is included in SUMO since version 1.9.0.
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Regarding the different forms of the DRT services, its planning is a demanding task for
transport planners. The use of micro-simulations, like the open-source Eclipse SUMO (Simu-
lation of Urban MObility) [2], constitutes an important tool for this aim. Since version 1.5.0
SUMO supports the simulation of demand responsive transport (DRT) via the taxi device.
Vehicles with this device can receive trip reservations from persons in the simulation. The re-
quests are processed by a dispatch algorithm that manages the route of each vehicle to serve the
larger amount of requests under certain constraints. This problem statement is referred to in
the literature as the Dial-a-Ride-Problem (DARP). SUMO counts with four different dispatch
algorithms (greedy, greedyClosest, greedyShared, and routeExtension). However, due to the
vast diversity of DRT services, these are sometimes not sufficient. The user has then the option
to implement their dispatch algorithms using the TraCI API.

The taxi device is under continuous development. Since this year in version 1.9.0, the TraCI
API enables the re-dispatching of taxis or DRT vehicles. This was an important step since it
allows simulating shared DRT with a dynamic dispatcher. If the dispatcher finds a better route
that can serve more requests, the vehicles can now change their route while driving.

In the literature, different methods to solve the DARP have been investigated. In [5] a
study of different models and algorithms used in the literature to solve the DARP is presented.
For large scenarios, finding an exact solution for the DARP can lead to long calculation times.
For these cases, approximate solution methods, like metaheuristics are advisable. In [8], three
different metaheuristics (Adaptive Large Neighborhood Search, Hybrid Bees Algorithm with
Simulated Annealing, and Hybrid Bees Algorithm with Deterministic Annealing) were com-
pared to solve a multi-depot and multi-trip heterogeneous DARP. [6] applies a multi-objective
optimization to solve the DARP with time windows, whereas [7] implements an online rejected-
reinsertion heuristics to solve a multi-vehicle DARP. Finally, other heuristics methods to solve
the static and dynamic DARP are presented in [10]. The performance results of the DRT can
depend significantly on the method used to solve the DARP, for which its election plays an
important role.

To simulate DRT not only a DARP solver is needed, but also a scheduling module for the
management of the fleet and reservations.

Based on this, a Python tool to simulate different types of DRT in SUMO was developed.
The tool uses the taxi device and TraCI to implement a scheduling module that calls a DARP
solver to simulate DRT services. The same scheduling module can be used with different DARP
solvers to simulate different DRT services. It also allows users to implement their dispatching
algorithms more easily and faster, and to compare their results with other methods. Since
the dispatcher algorithms that are currently included in SUMO are not well suited to simulate
shared DRT modes, a DARP solver to simulate these services is implemented as a first option.

In the next section, the tool and its modules are explained. After this, a user example is
shown and finally, the conclusion and further work are presented.

2 Methodology

The aim of the proposed Python tool is not only to simulate shared DRT services but to
allow the users to compare the performance of different DARP solvers and to enable easier
implementation of its solvers. The tool was written in Python3 and uses the TraCI API to
control the DRT requests and vehicles in real-time.

The tool consists of two modules: the scheduling module and the DARP solver. The inputs
are the standard SUMO files. The tool needs at least information about the DRT vehicles,
which are the ones equipped with a taxi device, and information about the requests, which are
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modeled as persons having a ride element with the DRT lines. The scheduling module starts
the simulation via TraCI and manages the DRT requests and fleet. This means that the module
detects when a new request arrives or requests are waiting to be served and it calls the DARP
solver to find the best route for each DRT vehicle. What makes a route the best, depends on
the model of the DARP solver. The solver returns the routes to the scheduling module and
dispatches the DRT vehicles with them. The tool has with a default DARP solver, which allows
it to simulate shared DRT services (persons can share a trip).

The tool also accepts adding the surrounding traffic and other SUMO elements to the
simulation. This allows obtaining more realistic results for the performance of the DRT service.

In the following sections, the scheduling module and the DARP solver of the tool are ex-
plained in detail.

2.1 Scheduling module

Figure 1 shows a flowchart of the scheduling module. The first step is to call TraCI with the
given inputs. The required inputs are the SUMO network, and the DRT vehicles and requests.
As mentioned before, other SUMO inputs (e.g. surrounding traffic) can be given. The tool also
supports the use of SUMO configuration-files to manage the simulation options.

Once TraCI has been called, the simulation starts. For each simulation step, the tool checks
if new reservations have arrived or if some reservations from the last steps have not been yet
assigned to a vehicle. If this is not true, then TraCI calls the next step.

The new reservations are retrieved using the TraCI call ’traci.person.getTaxiReservations(1)’.
If new reservations have been made, the tool processes these and adds them to the reservation
pool. The process of a reservation consists not only in reading the minimal required parameters
(departure time and origin and destination edges) but also in adding new parameters that are
required for the simulation. At least four new attributes are added to each reservation element:

• direct attribute: the travel time from origin to destination taking a direct route,

• the vehicle attribute: includes the ID of the vehicle, when the reservation is assigned to
one, and

• the time windows for pick up and drop off: set the allowed times for the DRT vehicle to
pick up and drop off the person.

Depending on the DRT service, the definition of the requests may require other attributes.
This can be defined using SUMO GenericParameters. After a reservation is processed, it is
added to the reservation pool, which contains all current reservation elements.

Next, the DRT fleet is retrieved using ’traci.vehicle.getTaxiFleet()’. This retrieves the ID of
all vehicles in the simulation that are equipped with a ’taxi.device’.

As a further step, the module checks if reservations have been served or rejected during the
last step of the simulation and if so, these are removed from the reservation pool. The rejected
reservations or persons are then removed from the simulation. The remaining reservations are
then classified by:

• new: if the reservation has been made during the current simulation step,

• unassigned: if the reservation has not been yet assigned to a vehicle,

• assigned: if the reservation is included in the route of a DRT vehicle, and
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• picked up: if the reservation has already been picked up by a vehicle and it is on the route
to its destination.

The reservations that have been already picked up but not yet dropped off are retrieved
using the TraCI call ’traci.person.getTaxiReservations(8)’.

This classification plays an important role for the DARP solver, which is called in the next
step. The DARP solver finds the best routes for each vehicle, based on the DRT fleet, the
reservations, and the defined constraints.

It is possible that the DARP solver only finds all possible routes, with their respective costs,
for each DRT vehicle and then, the best routes should be found using an ILP (integer linear
programming). For this purpose, the Python LP solver PuLP 1 is included in the scheduling

Figure 1: Flowchart of the scheduling module

1https://coin-or.github.io/pulp/ last access 17. May 2021
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module. After calling the DARP solver, the module checks if an ILP is needed and if so, the
PuLP solver is called.

Once the best routes have been found, the module will compare them to the current ones.
This step is relevant since many DARPs are not solved with exact methods. As a result, the
new best route of a vehicle can contain the same reservations but with a different order, which
may not be better than the current one. To avoid this, the module compares the current route
of each vehicle with the new best route found. If the new route is better, then the vehicle is
rerouted using the TraCI call ’traci.vehicle.dispatchTaxi()’.

When a vehicle is dispatched with a new route, the ID of the vehicle is added to the attribute
’vehicle’ of the reservations that are on the route.

After all the found routes are checked, TraCI calls for the next step and the loop starts
again.

When the simulation step reaches the given end-time, the simulation is ended and TraCI is
closed.

2.2 DARP solver

Having a group of reservations and vehicles that should serve them, the DARP solver will
find the best route for each vehicle under certain constraints. There are different methods to
solve a DARP, starting with the differentiation of an exact or approximate method, to which
constraints should be considered (e.g., time windows constraints) and which objective should
be optimized (e.g. passenger waiting times and vehicles idle times). Depending on the solver,
the simulation results of the same DRT service can be different.

The goal of this tool is therefore not only to offer certain DARP solvers but also to allow
the user to implement its algorithms. To solve the multiple vehicle DARP, many methods find
as a first step all possible routes with their costs and then call an ILP solver to find the best
ones. For this, the ILP solver PulP has been included as an option in the scheduling module.

The tool counts with a default DARP solver that simulates shared DRT. The solver applies
the method of [1], which was also implemented in previous DRT studies [4, 3], but for solving
the static or offline DARP case. This means that all reservations were known in advance and
are not being processed in real-time or online, as is the case for the present tool.

The solver is called from the scheduling module and as input, the reservations, the DRT fleet,
and the constraints are given. The solver searches first for all possible combinations between a
vehicle and a reservation and between two reservations. A combination is possible if the pick-up
and drop-off time windows can be regarded. For example, if the origin of reservation 2 wants
to be paired with the destination of reservation 1, but the latest drop-off time of reservation
1 is at 10:00 and the earliest pick-up time of reservation 2 is at 10:05, then the pair is not
possible. Reservations that have already been assigned or picked up by a vehicle can no longer
be combined with another vehicle.

After searching all possible pairs, a pair-wise graph with each pair and its travel time is
saved. The travel time is calculated using the TraCI call ’traci.simulation.findRoute()’, which
considers the surrounding traffic for the calculation.

Next, the pairs of the mentioned graph are explored to find feasible trips for each vehicle.
This proceeds incrementally in trip size (i.e. number of stops), starting from the vehicle-request
pair. For each size, an exhaustive search is conducted. The time complexity of the algorithm
depends on the number of vehicles and requests, and their shareability. If all vehicles can serve
all requests and all requests can be combined with each other, the complexity will be O(mnv)[1].
To allow for a faster (but not exact) solution, a timeout for the search of trips of each size can
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be set.
A trip is primarily feasible if the requests are picked up and dropped off between the specified

time windows and if the capacity of the vehicle is not surpassed. Since the simulation of the
DRT is dynamic, this means that vehicles can be rerouted, other considerations have to be
made. If some reservations have been assigned to a vehicle in a previous step, then these
reservations have to be included in the new possible routes. Nevertheless, the order of the stops
may be changed and new reservations may be added.

Idle vehicles with the same current edge and capacity will have the same possible trips. To
avoid searching for the same trips multiple times, the exhaustive search will be performed only
once and then the trips will be transferred to the other vehicles. In scenarios with large fleets
and repeated origin or destination edges, this will speed up the simulation time notably.

Once all possible routes with their travel times are found, the best route for each vehicle
that optimizes the entire DRT service has to be found. This optimization problem can be solved
with an ILP solver. As the last step, the routes are written in a format that can be processed
by the ILP solver module PuLP and are returned to the scheduling module.

3 Application example

As a study case, a DRT service operating in the city center (Innenstadt) and in the Nordstadt
neighborhood of the city of Brunswick (Germany) was simulated. The operating area of the
DRT service is shown in figure 2. The demand and sumo network were adapted from the
publicly available Brunswick scenario 2, which simulates the motorized individual traffic in the
city for a typical working day. For the DRT simulation scenario, a simulation time window
between 6 a.m. and 10 a.m. was considered. An extra warm-up and cool-down time of 30
minutes each was adopted.

The requests to the DRT service stem from the demand of the Brunswick scenario. First,
only persons that have made all their daily trips inside the DRT operating area were considered
to use the DRT service instead of the private car in the simulation. For this, each of its trips
was written as a DRT request. Between 6:00 and 10:00 in the morning, 758 persons made
956 trip requests. Once the reservation is made, the person should be picked up in the next
15 minutes. If there is no DRT vehicle available for this, the reservation is rejected and the
person is removed from the simulation. In addition, to offer a trip with the DRT service, the
estimated travel time should not be longer than twice the direct travel time with the private
car (equivalent to a detour factor of 2) or surpass it by 10 minutes.

The DRT fleet consists of 50 vehicles with a capacity of 6 passengers each, allocated in
three different depots (see figure 2). When the simulation starts, the vehicles wait for the
requests at the given depot. The simulation step was set to 10 seconds, which means that the
reservations are also processed within this time-step. Figure 3 shows the simulation. The red
vehicles represent the DRT fleet and the blue points are the persons making the requests. The
surrounding traffic was hidden in the figure for a better overview.

The described simulation scenario was run 5 times. Since the proposed DRT tool only con-
trols the routing of the DRT vehicles and passengers via TraCI, all standard SUMO outputs (i.e.
trip-information, stop-information, and emissions output) can be generated. In the following,
some examples of the analysis that can be carried out with the tool are shown.

2https://github.com/DLR-TS/sumo-scenarios/tree/master/brunswick/miv last access 17. May 2021
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Figure 2: DRT operating area (background im-
age from OSM)

Figure 3: DRT sumo-simulation

3.1 Results

The results presented below were obtained from the simulation-log, trip-information, and stop-
information outputs. Table 1 shows the results regarding the performance of the simulation
and the DRT fleet for each time the scenario was run.

The five hours simulated (from 5:30 to 10:30) had an actual average duration of 95 minutes
(1.58 hours), which is equivalent to a real-time factor of 3.20. According to the results, not
all 50 DRT vehicles were used. The maximum number of vehicles used was 46 vehicles for the
third simulation run. The mileage of all DRT vehicles was on average 2765.78 km. The total
mileage of the first simulation run was 2757.73 km. The sum of the direct route lengths of
the passengers served in this run was 1534.19 km. Hence the mileage of the DRT service is
equivalent to 1.79 the mileage of the private cars. But the number of vehicles used is reduced
from 758 in the case of all passengers using the private vehicle to only 43 DRT vehicles. In the
five simulation runs, not all 956 trip requests were able to be served. This can be related to

Simulation run 1 2 3 4 5
Duration [min] 113.96 91.56 87.00 98.20 82.18
Real time factor 2.63 3.27 3.44 3.05 3.65
DRT vehicles used 43 42 46 43 41
Mileage DRT fleet [km] 2757.73 2709.89 2811.28 2799.67 2750.33
Max. passengers at same time 4 3 3 4 3
Requests served 871 835 869 876 884
Requests rejected 85 121 87 80 72

Table 1: Simulation performance and DRT fleet
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Figure 4: Simulation results for passengers as mean value of simulation runs

a longer than 15 minutes travel time from the depots to the pick-up of these passengers. But 
in the case of simulation run 3, where more requests were rejected, these extra rejections are 
most probably related to the ability of the proposed tool to find a compatible route (solve the 
DARP problem). This can be improve by setting a higher timeout to solve the DARP. The 
DRT vehicles have a capacity of 6 passengers, but as it is shown in the table, the maximum 
number of passengers at the same time was only 4.

Figure 4 shows the waiting time, route length, travel duration, and the direct route factor 
(relation between the travel duration with the DRT and the private car) for each passenger as 
box plots. The results for each passenger represent the mean value of the 5 simulation runs. 
The first plot shows the waiting time for the pick-up. As it was mentioned previously, this time 
should not exceed 15 minutes. Only in a few cases, this was not the case and it can be related 
to delays and congestion. On average the waiting time for pick up was 7.8 minutes. The direct 
route factor (last plot) was limited to a value of 2 or for the case of short routes, to 10 minutes 
longer travel time than with the private car. On average, the direct route factor was 1.28. But 
in some cases, it was greater than 2, which is related to the cases with short travel duration.

4 Conclusion and future work

This paper presents a SUMO Python tool to simulate Demand Responsive Transport (DRT) 
with a dynamic dispatcher using the SUMO taxi device and TraCI. The tool consists of two 
modules: a scheduling module, where the fleet and requests are managed and vehicles are 
dispatched, and a DARP solver module. The latter calculates the possible routes for the DRT 
vehicles by solving a Dial a Ride Problem (DARP).

The tool aims to simulate complex DRT systems and to make it easier for the users to 
implement their methods for solving the DARP.

The tool includes a DARP solver that enables the simulation of shared DRT. As an appli-
cation example, a DRT service operating in the Innenstadt and Nordstadt neighborhoods of 
the city of Brunswick was simulated. The DRT service consists of a fleet of 50 vehicles with a 
capacity of 6 passengers each. A total of 758 persons made 956 trip requests between 6:00 and 
10:00. The tool supports the global configurations and outputs that SUMO allows for persons 
and vehicles with taxi devices. For the application example, the surrounding traffic was consid-
ered in the simulation for a more realistic result. Only 43 of the 50 DRT vehicles available were
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used to serve 871 requests. 85 requests of the 956 (8.89%) had been rejected by the service.
The reason for the rejections is most probably related to the limited time of 15 minutes for the
pick-up. These results are only an example of the analysis that can be made with the proposed
DRT tool. The simulation time was on average 1.58 hours, which is equivalent to a real-time
factor of 3.20.

The current DARP solver is not a good solution when dealing with large scenarios, for
example, for the simulation of DRT services at a city scale. According to the literature, other
heuristics methods like Variable Neighborhood Search (VNS) or Adaptive Large Neighborhood
Search (ALNS) are a better solution for this purpose. As further work, the implementation of
such methods, as well as the extension of the tool to manage other DRT options (e.g. first/last
mile DRT, multiple person booking) are planned.
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