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Abstract

Public transport systems in rural and peri-urban areas are in many cases characterized by
long travel times, low frequencies and irregular services. Because of this, motorized private
transport is often the only practicable mode of mobility in this regions. The use of Demand
Responsive Transport (DRT) as feeder systems to mass public transport modes presents a
great potential for improvement. This paper investigates the potential of such a system applied
to a case-study of a peri-urban area of Brunswick, Germany. For that, the current bus line was
replaced by a Bus Rapid Transit (BRT) line with DRT as feeder systems. In order to evaluate
the performance of the proposed system and provide a benchmark against the current public
transport offer, multiple trips to the city center with the different transport modes were
simulated. The agent-based microscopic simulation Eclipse SUMO (Simulation of Urban
MObility) was used as framework. The scenario of the DRT systems was simulated by SUMO
coupled to a developed dispatching algorithm. The results show the potential of the proposed
system due to the lower travel times, higher frequency and grater service area. Travel times
were even comparable with the travel times of private car-based modes, which could lead to a
potential increase in demand.
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1 Introduction

The demographic and social changes that have taken place in recent decades pose increasing
challenges to classic public transport in rural and peri-urban areas. The increasing migration
to the cities mainly by young people as well as the increasing motorization of the population
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has generated a centralization of public administration, social infrastructure and service offers
[38]. As a result, many supply structures in rural areas have collapsed [45].

Public transport in these areas, if provided at all, are characterized by long travel times, low
frequencies and irregular service [41]. Its main function is often reduced to school transport,
which accounts for 50 % of the demand in many districts and up to 90 % in some areas [13, 22].
The motorized private transport is often the only alternative to mobility in these regions,
because of the low density of supply and the long distances [18].

To address this problem, since 1970 different demand-based forms of public transport have
been tested in rural and peri-urban areas in Germany [27]. In practice, it has been shown that
the costs of flexible offers surpass the cost of classic public transport due to human resource
planning costs and generally lower vehicle capacity. This is particularly pronounced if the nec-
essary bundling and collection effects cannot be achieved and trips are limited to the transport
of individual passengers [8].

In recent years, technological advances and improvements in computer power and digitiza-
tion have made it possible to develop new forms of demand-based mobility, which are a booming
market and are already being used or tested in several cities worldwide. Demand Responsive
Transport (DRT) also referred to as ride-sharing services like ”UberPool” and ”Lyft Shared”
are an example of latter. This shared service without fixed routes seeks to bundle requests in
minimizing the number of vehicles and route lengths without compromising passenger travel
times. Resulting, according to various simulations, in a more efficient service compared to taxi
and ride-hailing services (”Uber” or ”Lyft”) [7, 28, 40]. A significant impact on vehicle mileage
and traffic in general only occurs if many customers switch from individual car-based transport.
According to Feigon et al. [20], only New York City has so far published sufficient data on DRT
systems to analyze and evaluate their impact. Based on the latter data, Schaller [37] found that
in fact only 20 % of the trips are shared and that the majority of the customers switched from
non-vehicle-based modes of transport (e.g. public transport, bicycle and walking). Additionally
most of the times the service is only used by one person, which leads to an increase in traffic
instead of the planned reduction. The acquisition of passengers from public or non-motorized
transport is a critical point, since DRT systems are not well suited for high-demand connections
[29]. Conventional high capacity public transport, such as trains, subways or Bus Rapid Transit
(BRT) are best suited for this purpose due to their higher operational efficiency [33]. Hence,
the combination of both systems by using the DRT as a feeder system for high capacity transit
would be the first best solution.

The objective of this paper is to evaluate the optimization potential of public transport in
peri-urban areas through the use of DRT as feeder systems for a BRT line. This is done by
assessing the performance of the conventional and proposed public transport system using the
microscopic traffic simulation Eclipse SUMO (Simulation of Urban MObility). As a case-study
an area near the city of Brunswick (Germany) was chosen.

The paper is organized as follows. First the case study is described in detail. Then the
adopted methodology is outline. Next, the simulation results are presented and discussed. At
last the main conclusions derived from this study are summarized.

2 Study case
The study area includes six villages located in the west of the city of Brunswick along the federal
highway B1 (Figure 1). With 250,361 inhabitants, the city of Brunswick is the second largest
city in the state of Lower Saxony. The number of inhabitants of the villages varies between
552 in Vechelade and 6,108 in Vechelde with most of the area being residential or of mixed use
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Figure 1: Study case: current and proposed public transport system

[10, 43]. Less than 10 % of the inhabitants of the villages live and work in the same place, while
48 % are working in Brunswick [23]. The short distance to the city center (about 13 km from
Vechelde) and the limited local supply of education, health care and leisure activities result in
a high number of daily trips to Brunswick.

The private vehicle constitutes the main mode of transport due to the fast and easy access
to the city along the federal highway B1 and the limited public transport offer. The bus line
450 is the main public transport service in the area connecting most villages, with the exception
of Wahle and Lamme, with the center of Brunswick (purple line in figure 1). The bus line 418
(green line in figure 1) connects Lamme with the city center while Wahle currently does not have
a public transport service connection to Brunswick. Both bus services are characterized by an
indirect route through secondary streets and mixed traffic lanes, long travel times, high bus stop
density and low frequency (30 minutes at peak times) [44]. Vechelde also has a regional train
service to Brunswick main station with a travel time of 10 minutes but with a low frequency of
1 hour [5].

The study area shows a high potential for growth and expansion due to its relatively short
distance to the city and the availability of free areas [23]. However, due to the lack of measures
to improve public transport offer, this growth will be associated with an increase of private car
trips and its negative effects, such as noise and air pollution, traffic congestion and growing
demand for parking space.

In relation to this problem, this work investigates the optimization of the current public
transport service through a BRT line with DRT as feeder systems. The BRT service was
planned to offer a direct and fast connection from and to the city center with a frequency of
15 minutes (blue line in figure 1). The route of the BRT line starts at the Vechelde train
station and runs along the federal highway B1 and in the urban area along a BRT corridor
with dedicated lanes to the last stop in the city center. Between Vechelde and the urban area
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the BRT line has only three stops, which were designed as mobility hubs. The location of each 
mobility hub was determined considering the bus acceleration, accessibility, safety and available 
area.

For the first/last mile, from the mobility hub to the respective home, three different DRT 
feeder systems with a door-to-door service are proposed. Figure 1 shows the service area of the 
DRT system Vechelde in pink, Denstorf in green and Lamme in blue. The DRT feeder systems 
are designed primarily to serve the BRT line, hence trips to or from the mobility hub have 
priority and a good transfer with short waiting times should be guaranteed. The DRT system 
fleet was set based on a previous study that analyzed the efficiency of each DRT system under 
different fleet configurations [4]. Therefore a fleet of 3 vehicles was adopted for the DRT system 
Vechelde and a fleet of 2 vehicles for the DRTs Denstorf and Lamme. Each DRT vehicle has a 
capacity of 6 passengers.

In addition to the DRT feeder system, the usage of non-motorized modes as first/last mile 
option is contemplated. This requires a good cycling infrastructure, including safe cycle paths 
and adequate parking facilities in the mobility hubs.

2.1 Simulated scenarios
In order to compare the current with the proposed public transport system two different simula-
tion scenarios were built. The Scenario 0 represents the current mobility situation in the study 
area simulating the bus lines 450 and 418. The scenario 1 simulates the proposed DRT and 
BRT systems as well as the bicycle trips for the first/last mile. In the following the construction 
of both scenarios and the use data is explained.

The network was generated based on an existing SUMO network from the project ”Intelligent 
Mobility Application Platform” (AIM) [39]. Missing network areas and bus stops were added 
using data from c©OpenStreetMap, c©Google Maps and the transport company Braunschweiger 
Verkehrs-GmbH.

Both scenarios simulate the demand of a typical working day type Tuesday/Thursday. The 
surrounding traffic in the sub-urban area was modeled based on the average daily traffic volume 
from existing traffic counters [35] and distributed spatially according to the number of inhab-
itants. The temporarily distribution was made according to data from a permanent counting 
station near Vechelde [6]. For the surrounding traffic in the city area the existing data from 
the AIM project was used [39].

In order to analyzed the current and proposed public transport system 10 different demand 
profiles of trips with origin in the respective home and destination in the city center between 
5:30 and 20:00 were generated. First the daily demand of trips from each location to Brunswick 
were estimated. This was done with the calculation method of Bosserhoff [9] based on

• the number of inhabitants in each town,

• the proportion of the O-D pair town-Brunswick, and

• the modal split of the trips.

The trips with destination in Brunswick were determined according to commuter traffic data
from [23]. The modal split was estimated on the basis of the trip distance and the characteristics
of the transport network, taking into account several analyses of traffic behavior [32, 21, 24].
Secondly, the daily demand was distributed temporally using a typical daily traffic flow profile
for peri-urban areas [19]. Lastly, the spatial distribution was done by assigning a random point
in the service area to represent the respective home.
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Figure 2: Simulated daily traffic volumes

Figure 2 shows the simulated daily traffic volumes in the entire network. The maximum
number of vehicles in a simulation step is around 2,200. The simulated traffic volumes proved
to be comparable with the daily traffic volume published by the city of Brunswick [11]. The
potential decrease in traffic due to the implementation of the proposed system will not be taken
into account.

3 Methodology

For the simulation of DRT services it is necessary to know the start time, origin and destination
of each request, as well as the capacity and location of each vehicle in the fleet. A dispatching
algorithm then distributes the travel requests among the available vehicles. This requires the use
of a microscopic and agent-based simulation model. Most of the microscopic traffic simulations
do not provide a link between freely operating vehicles and several passengers that are assigned
to them at different times [33], requiring the development of an algorithm. The traffic simulation
Eclipse SUMO [3] proves to be the best option in this context, since it allows the simulation
of large road networks with different modes of transport on a microscopic level and its open
source license allows the implementation and testing of new algorithms. The main features
of the developed algorithm allows to simulate the DRT, which is explained in detail in the
following section.

Different measurements were evaluated in order to compare the improvements between cur-
rent and proposed transport system. To assess the bus line and BRT service the travel time
between the start and end point of the route were determined. The proportion of stopping
time at bus stops and time-losses, for example due to congestion or stopping at traffic lights,
were also analyzed. Other service parameters, such as frequency, bus stops density, capacity
and vehicle fleet were also considered. To evaluate the service from the passenger point of view,
the travel times with the different transport modes from the respective home to the city center
were evaluated.
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3.1 DRT modeling

The fleet management of a demand responsive transportation system is often referred to as 
a Dial-A-Ride Problem (DARP) [17]. The DARP consists of designing vehicle routes and 
schedules for n requests or users that specify travel requests between an origin and destination 
point. The objective is to plan series of vehicle routes that can accommodate the largest number 
of requests under certain conditions [16]. Due to the wide and varied constrains that a DARP 
can present, there are different methods and models for solving them either approximately or 
exactly.

For the present study it was assumed that all requests are known in advance and that the 
DRT vehicles start and end each trip at the respective mobility hub. On-street parking is not 
allowed while waiting for next request. The DRT service is planed as a feeder system, so the 
connection with the BRT buses must be guaranteed. Each DRT vehicle starts its trip when a 
BRT bus arrives at the mobility hub and has a maximum time of 12 minutes (BRT frequency 
minus 3 minutes for transfer) to serve the requests and be on time at the mobility hub for the 
next BRT bus. To find the best route for each vehicle, a static DARP will be solved. If a 
request can not be served, it will be rejected and removed, not taken in consideration for future 
trips. These model simplifications are possible as this study seeks to analyze the capacity and 
travel times with the system and not to simulate real situations of the service, such as waiting 
for the passenger or passenger ”no-show”, cancellation of requests, etc.

To solve the described DARP, an algorithm based on the exact resolution method of [2] was 
developed. The algorithm was written in Python 3 and uses the SUMO tool DUAROUTER to 
calculate the routes of each vehicle and passenger. The steps performed by the algorithm are 
explained briefly below.

First, the algorithm loads the necessary inputs. These are the network, the mobility hub 
location, the desire pick-up time and origin/destination edge of each request as well as the 
capacity, the maximum travel time and the cost of each vehicle. The cost parameter of the 
vehicle prevents the random use of the vehicles of the fleet by trying to use the vehicles with 
lower costs.

The second step is to generate a pairwise graph with the possible combinations between 
vehicles and requests and between two different requests. The shortest route and corresponding 
travel time between the objects in a pair is calculated using DUAROUTER.

Based on the pairwise graph, all possible combinations of pairs forming a trip are searched. 
A trip is possible if the vehicle capacity is not exceeded at any time, all passengers are taken to 
their destination and the maximum travel time for each passenger and vehicle is not surpassed.

The next step is to find the best trip for each vehicle that minimizes the cost. This is 
done by solving an integer linear programming (ILP) using the Python tool ”Pulp” [31]. The 
objective function minimizes three costs: the first one represents the travel time (including stop 
time for pick-up/drop-off). To penalize the rejection of a request, a high and constant cost is 
defined. Finally, a small and constant cost is introduced to avoid the use of several vehicles 
when the same requests can be served at a comparable cost with fewer vehicles. There are 
two constraints to the problem: each vehicle has no more than one route and each request is 
assigned to only one vehicle or is ignored. Finally, the best routes found for each vehicle and 
request are saved as a SUMO route file, which can be used as input for further simulations.
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4 Results and discussion
The results of the simulations for each scenario are first presented and then discussed. The six 
different towns were grouped into three areas for an easier visualization of the results. In the 
following the results of Vechelde includes the towns of Vechelde, Vechelade and Wahle. The 
towns of Wedtlensted and Denstorf are grouped together as Denstorf and Lamme refers to the 
town with the same name.

4.1 Scenario 0: current public transport system
According to the simulation a complete trip with the bus line 450 with direction Vechelde-
Brunswick takes in average 40 minutes. The bus is only 45 % of this time in motion without 
disturbances, 32 % of the time standing at bus stops and the remaining 22 % of the time is 
driving below the ideal speed. The bus line has a frequency of 30 minutes and a round trip of 
approx. 80 minutes, which requires a fleet of minimum three vehicles. The capacity of the bus 
line is approx. 200 passengers per hour and direction (adopting standard buses of 12 m) and 
the service area has a total of 26,347 inhabitants.

In the simulation different person trips from the respective home to the city center with 
the bus line 450 or 418 in case of Lamme were analyzed. Denstorf and Lamme show similar 
results for walking time to the nearest bus stop with average 5 minutes and maximal length 
of 800 m. Vechelde (Wahle not inclueded) shows higher values with 9 minutes average and a 
maximal length of 2,250 m. These results exceed the commonly adopted values of 400 m or the 
equivalent of 5 minutes as an acceptable walking distance [34, 14, 26]. Trips to the bus stop by 
bicycle were not considered as there is no existing parking infrastructure. The travel time with 
the respective bus line to the city center is on average 33 minutes from Vechelde, 27 minutes 
from Denstorf and 24 minutes from Lamme.

In this scenario, private car trips between the respective home and the city center were also 
evaluated. The travel times vary for this mode between 14 and 17 minutes. The parking search 
time should be as well consider. This value is in average 6 minutes according to the results 
from [15], in which the time lost in searching for a parking space in 10 cities in Germany were 
analyzed.

4.2 Scenario 1: proposed public transport system
The travel time for a complete trip in direction Vechelde-Brunswick with the BRT is on average 
21 minutes. 56 % of this time the BRT bus is in motion without disturbances, 28 % of the time 
is standing at bus stops and the remaining 28 % of the time is driving below the ideal speed. For 
the adopted frequency of 15 minutes a fleet of at least four vehicles is required. The service area 
of the proposed system comprises 43,538 inhabitants thanks to the incorporation of Wahle and 
Lamme. The BRT system was designed to operate with articulated buses and has a capacity 
of 620 passengers per hour and direction.

The use of each DRT vehicle varies significantly. The DRT Vechelde uses one vehicle only 
6 % of the time, whereas two vehicles are needed 46 % of the time to cover the demand. Finally, 
the complete fleet of three vehicles are used the 47 % of the time. In Lamme 46 % of the time 
the use of the two vehicles was mandatory. The results for the DRT Denstorf show lower 
values, with the use of the two vehicles only the 16 % of the time. These differences in the fleet 
utilization arise mainly from the function of the algorithm to avoid the use of multiple vehicles, 
when similar costs with one vehicle can be achieve. According to the simulations, the DRT 
systems show a good shareability potential. The vehicles of the DRT Lamme and Vechelde
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Metric Current Proposed
system system

Frequency [min] 30 15
Travel time (one-way) [min] 40 21
Fleet size [veh] 3 4
Capacity [p/h/d] 200 620
Service area [inhab] 26,347 43,538

Table 1: Current bus line vs. BRT Figure 3: Travel time distribution for buses

transport at least four passengers more than 60% of the time. Up to 9 requests for Vechelde
and 7 requests for Denstorf and Lamme could be combined in one trip. Regarding the low
demand values of the DRT Denstorf, the system serves four or less passengers the 85% of the
time.

In the proposed public transport system a trip to the city center consists of two legs. The
first leg is the trip from the respective home to the mobility hub, which is made by bicycle
or with the DRT feeder service. The second leg represents the trip with the BRT line from
the mobility hub to the city center. The average cycling time varies between 4 and 6 minutes
depending on the location. Vechelde shows the longest trip with a length of 3 km and a travel
time of 10 minutes. Most bike-and-ride users are willing to travel about 2.5 km (and up to 5
km for faster modes) to a public transport stop [42, 1, 30]. However, this willingness is strongly
associated with cycling facilities and safety, which underlines the importance of investment in
cycling infrastructure. The three DRT feeder systems showed similar results. The travel time
takes on average 5 minutes and has a standard deviation of 3 minutes. The waiting time at
the mobility hub was on average 4 minutes with a 3 minutes standard deviation. All simulated
persons could transfer without problems from the DRT to the desired BRT bus. The travel
time with the BRT line is on average 17 minutes from Vechelde, 15 minutes from Denstorf and
12 minutes from Lamme with standard deviations of less than a minute.

4.3 Current vs. proposed transport system
Based on the simulation results, the BRT line shows a more efficient service compared to the
current bus line 450. The travel time for a complete trip with direction Vechelde-Brunswick
was reduced by 52 %, from 40 to 21 minutes. This is primarily due to an important reduction
of the number of scheduled stops. This travel time improvement allows to double the frequency
with only one more vehicle in the fleet. Thanks to the connection of Lamme and Wahle to the
BRT line the service area increased by 67 % (17,191 inhabitants). The construction of a BRT
corridor in the city center makes the system independent of congestion and other disturbances
that could cause delays. Lower travel times could be achieved by the implementation of transit
signal priority. Figure 3 and table 1 summarize the main characteristics of both public transport
lines.

The proposed transport system also includes the DRT service. The DRT simulation results
show that the entire fleet is used only half the time. The DRT Denstorf shows, due to its low
demand values, worse results with a use of both vehicles only 16 % of the time. The decrease
of the number of vehicles (even by adopting vehicles with higher capacity) is not possible,
as the ability to combine requests and therefore the capacity of the entire service would be
strongly reduced. A possible option to improve the use of vehicles and the trips shareability
would be to group orders in 30 minute intervals instead of 15. This would, however, mean an
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important decrease in the service quality for the user. Another proposal would be to evaluate the 
performance of the service by defining a single service area, with a single fleet serving all 3 hub 
stations independently. Regarding the higher operating costs due to drivers, several studies 
considered that autonomous vehicles could provide considerable cost and service advantages 
[25, 36]. However, other authors assume that these advantages will in turn be lost due to 
increased maintenance and cleaning costs of these vehicles [12].

The travel times from the respective home to the city center show important improvements. 
Figure 4 summarizes the average travel times with the different transport modes depending 
on the origin of the trip. Regarding the difficulty of defining their values, the waiting times at 
stops and the parking search time for trips with the private car were not considered. In all three 
cases, the travel times with the proposed public transport system were significantly reduced, 
being even competitive with the private car. This was possible due to the implementation of the 
BRT corridor in the urban area, allowing buses to avoid congestion. In the case of Vechelde, the 
average travel time was reduced by 45 % from 40 minutes with the bus line 450 to 22 minutes 
with the proposed system. For Denstorf the travel time reduction resulted in 33 % and for 
Lamme in 38 %. The use of the DRT system or bike for the first/last mile shows similar travel 
times. Although the average cycling times for Lamme and Denstorf are slightly higher than 
the walking times to the current bus stops, the overall values show an increase in the transit 
area of influence. The maximum walking distance recorded was 800 m, which is higher than 
the conventional willingness value of 400 m. In contrast, the registered cycling distances are up 
to 2.4 km, being lower than the range of 2.5 to 5 km associated with the willingness to cycle.

Another important difference between both systems is the implementation of mobility hubs. 
Due to the limited supply of services in the study area, the incorporation of service amenities 
in the mobility hubs, such as mail/courier services, ATM and kiosks, makes traveling via the
offered mobility services efficient and convenient.

5 Conclusion and future work

The increase in the number of private vehicles has led to a sharp rise in traffic and environmental
pollution as well as a lack of appropriate public space management in cities. In rural and peri-
urban areas, the private vehicle is still the main mode of traffic. This is mainly due to inefficient
public transport services, which are characterized by long and indirect routes, limited schedules
and low frequency. This situation could be enhanced by the implementation of DRT as a feeder
system for high capacity public transports.

In this paper the optimization potential of the public transport service in a peri-urban area
of the city of Brunswick (Germany) was analyzed. As proposal, the existing bus service was
replaced by a BRT line with DRT feeder systems. For the comparison of both public trans-
port service, simulations were conducted using the microscopic traffic simulation SUMO. The
simulation of the DRT feeder was performed by coupling SUMO with a developed algorithm.
This determined the best vehicle routes based on the requests, the available vehicles and the
network. As metrics the average travel times on a typical Tuesday/Thursday day with the dif-
ferent transport modes were used. For that, a series of trips with origin at the respective home
and destination in the city center were generated using different demand profiles. The demand
was modeled only on the basis of demographic characteristics. To compare the current bus line
and the BRT line, the travel time between the route start and end was evaluated. Other design
parameters like capacity and frequency were also assessed.

The simulation results show the potential and advantages of the proposed public transport
system. The travel times from the respective home to the city center were on average reduced
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Figure 4: Travel times home-city center with the analyzed transport modes

by 45 % for Vechelde, 33 % for Denstorf and 38 % for Lamme. Considering the time-loss due to
searching a parking spot, the travel times with the proposed public transport are similar to the
travel times with the private car. The increase in frequency from 30 minutes to 15 minutes and
the implementation of mobility hubs with different amenities (e.g. secured bike parking, parcel
lockers and kiosks) make the system more attractive for costumers. The reduction of the round
trip travel times of the BRT line allows for a frequency of 15 minutes with only 4 buses. The
construction of a BRT corridor in the urban area provide for a fast route without time-losses
due to traffic and it can be served by multiple bus routes. Travel times could be still reduced
by integrating transit signal priority.

According to the simulations, the three adopted DRT feeder systems show low travel times
to the mobility hub and waiting times for the BRT line. This paper assumed a specific service
area for each DRT feeder system, so they work independent from each other. In this respect,
further analysis of the DRT feeder systems under different service areas or working as a unique
system are relevant for further optimization.

The higher costs of the proposed transport system due to the bigger fleet and the increased
mileage could be counteracted by a potential increase in ridership. This not only given because
of the larger service area by the append of two more towns, but also by a better quality of service
due to faster and comfortable connections. To asses the economic viability of the system, a
cost-benefit analysis should be done. Therefor a detailed modeling of the demand and a mode
choice model should be developed.
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The proposed system is not intended to operate alone but to be a part of an extensive BRT 
network with DRT feeders for the city of Brunswick. In consequence a viability analysis of such 
a system network in a macro- or mesoscopic level is also recommended.
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nischen Universität Darmstadt, Darmstadt, 2018.

[34] C. Mulley. Explaining walking distance to public transport: The dominance of public transport
supply. Journal of Transport and Land Use, 6, 01 2011.

[35] NWSIB-NI. Online-Auskunft der Straßeninformationsbank Niedersachsen. Straßeninformations-
bank Niedersachsen (NWSIB-NI). https://www.nwsib-niedersachsen.de/application.jsp.

[36] M. Pavone. Autonomous mobility-on-demand systems for future urban mobility. Springer, 2015.

[37] B. Schaller. The New Automobility: Lyft, Uber and the Future of American Cities. 2018. Available
at http://www.schallerconsult.com/rideservices/automobility.pdf.
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