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Abstract
New mobility concepts such as shared, autonomous, electric vehicle (SAEV) fleets raise 

questions to the vehicles’ technical design. Compared to privately owned human driven cars, 
SAEVs are expected to exhibit different load profiles that entail the need for newly 
dimensioned powertrain and battery components. Since vehicle architecture is very sensitive 
to operating characteristics, detailed SAEV driving cycles are crucial for requirement 
engineering. As real world measurements reach their limit with new mobility concepts, this 
contribution seeks to evaluate three different traffic simulation approaches in their ability to 
model detailed SAEV driving profiles. (i) The mesoscopic traffic simulation framework MATSim 
is analyzed as it is predestined for large-scale fleet simulation and allows the tracking of 
individual vehicles. (ii) To improve driving dynamics, MATSim’s simplified velocity profiles 
are enhanced with real-world driving cycles. (iii) A sequential tool-coupling of MATSim with 
the microscopic traffic simulation tool SUMO is pursued. All three approaches are compared 
and evaluated by means of a comprehensive test case study. The simulation results are 
compared in terms of driving dynamics and energy related key performance indicators (KPI) 
and then benchmarked against real driving cycles. The sequential tool-coupling approach 
shows the greatest potential to generate reliable SAEV driving profiles.

1 Introduction

SAEV load profiles a nd t echnical r equirements a re e xpected t o  d iffer f undamentally f rom conven-
tional private cars. While the latter feature (a) small daily mileages, (b) long times of non-use,
(c) high driving ranges and (d) have access to a dense refueling infrastructure, SAEV operating
characteristics are rather opposite when used for urban passenger transport. Higher daily
mileages and shorter (battery-limited) driving ranges entail the need for frequent recharging.
This, however, is counteracted economically by the request for little idling times and technically
by long charging durations within a comparatively thin network of charging stations. As the
complexity of vehicle development increases, detailed SAEV driving profiles b ecome m ore and
more important for virtual prototype testing. For this purpose, they need to meet the following
key requirements: (KR1) The profiles n eed t o  m i rror t he v ehicles’ m ovement throughout
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entire metropolitan areas for 24 hours accounting for all range and charging constraints as 
well as for different routing, dispatching and pricing strategies. (KR2) They need to provide 
information on the vehicles’ states such as idling, relocating, charging or occupied to enable 
optimal climate control or battery preconditioning. (KR3) The driving cycles must be accurate 
enough to derive reasonable velocity profiles t hat r eflect fo r au tonomous dr iving, ro ad  congestion 
and diverse transport infrastructures. (KR4) Depending on the road network’s topography or 
the driving cycle’s purpose, further time-series such as altitude or occupancy profiles a re a l so of 
interest. To the authors’ best knowledge, the problem of deriving representative SAEV driving 
profiles t hat m eet a ll a bove s tated r equirements h as n ot b een t ackled b y t he s cientific community 
yet. There are many publications that deal with conventional driving cycle generation, the 
modeling of autonomous driving behavior or large-scale SA(E)V fleet s i mulation. H owever, no 
holistic approach is known that combines all three areas.

For the automotive industry driving cycles play a major role in state-of-the-art emission 
modeling, performance prediction and virtual prototype testing. Driving cycles most commonly 
designate second-by-second time-velocity profiles and can b e distinguished in m o dal and transient 
cycles. Modal cycles are highly simplified a nd c onsist o f d ifferent i dling, s traight a cceleration and 
steady speed phases. They often feature unrealistic dynamics in the transition zones [1, 9, 24]. 
Transient cycles in contrast, reflect r e a l-life d r i ving b e h avior u n d er o n - road c o n ditions [12]. 
A common technique to derive new driving cycles comprises four steps: route choice, data 
collection, data clustering and cycle generation [1, 40, 43]. Route choice involves selecting 
the route on which data are to be collected. The driving data are gathered by means of on-board 
measurement, GPS-tracking and/or chase car method. As stated in [43], on-road measurements 
reflect t he s elected r oute m ost a ccurately b ut f eature a  s trong b ias d ue t o  u nusual congestion 
pattern which entails the need for repetitive measurements. The chase car method is less 
cost-intensive and involves randomly following target vehicles by imitating their driving behavior. 
This approach, however, comes at the price of route choice. The collected profiles a r e  often 
decomposed into micro trips1 which are clustered according to traffic condition, vehicle type or 
other KPI. Common trip clustering techniques are k-means cluster algorithms [15, 41] or hybrid 
approaches of k-means and support vector machine (SVM) clustering [43]. Despite their validity, 
cluster methods often require large computational resources [1]. The final c y c le i s  typically 
constructed from a pool of available micro trips [1, 40, 43]. The idea of the micro-trip-based 
methodology is to find t hose m icro t rips t hat r eflect th e di versity of  re al  wo rld dr iving well 
enough but in a more compressed manner to be practical and cost effective [1, 40]. Generally, the 
micro trips are selected by algorithms based on predefined p e rformance m e a sures. Alternatively, 
Monte Carlo engines serve to generate multiple candidate cycles by randomly picking several 
micro trips and determining their KPI. The best fit i n  p e rformance i s  t hen fi nally chosen.

Another statistical approach consists in using real world driving databases to generate 
synthetic driving cycles by means of Markov chain processes. As done in [18, 35, 36], the 
measured velocity profiles s erve t o  c onstruct a  t ransition p robability m atrix o f  a  M arkov chain. 
At this, each matrix element corresponds to a certain state (denoted by current velocity and 
acceleration) and within each state, the transition probabilities to jump from one state to 
another are stored. Yet another data-driven approach of driving cycle deduction is referred 
to as route information mapping. A new concept of defining a utomotive d r iving c ycles is 
introduced in [12] by stressing the need to incorporate external conditions such as weather, traffic 
and terrain data. This is also done in [16] by joining data on slope, road curvature and speed

1A micro trip denotes a trip between two idling phases.
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limit with traffic information and driver models to form a control problem that is numerically 
solved to generate velocity profiles. H owever, p rerequisites f or s uch d ata-driven a pproaches are 
(a) large databases of GPS-tracked driving cycles, (b) detailed maps and/or (c) access to traffic 
information.

As all previous methods rely on measured or historical data, they are not suited to deduce 
driving cycles for future autonomous vehicles. Autonomous driving behavior is often ap-
proached by applying filter o r  s moothing t echniques o n  h uman d riven p rofiles [2 , 19 , 28 ]. In 
this context, the smoothing approach is justified by k inetosis p r e vention2 o n t he o ne h and a nd by 
the vehicle’s improved perception on the other hand. Advanced sensors and car2x-communication 
will enable autonomous vehicles (AVs) to respond more smoothly to ambient traffic conditions. 
However, smoothing techniques tend to annihilate idling times and cannot reflect f or platooning 
effects or connected driving in a methodologically sound manner.

As conventional approaches to deduce representative driving cycles reach their limit with new 
mobility concepts, microscopic traffic simulation became increasingly popular in this regard. 
Microscopic frameworks have been used for cost-optimized driving cycle deduction [1] and to 
assess the impact of automated driving on fuel consumption [10, 21, 37]. In [21], the capability of 
VISSIM3 to model real world driving cycles is evaluated. Compared to human-driven cycles, the 
simulated profiles fi t we ll  in  ae rodynamic sp ee d bu t po or  in  ac ce le ration: hu man dr ivers te nd  to 
have higher acceleration rates at lower speeds and the simulation neglects stochastic oscillations 
around the target velocity. Similar conclusions are drawn in [1] which combines microscopic traffic 
simulation and micro-trip-based methods to deduce representative driving cycles. According to 
the authors, default parameters from micro-simulation produce unrealistic driving behavior: 
simulated velocity profiles a r e  t o o  a g g ressive a s  t h e ir g r adients a r e  o f t en s e t  t o  t h e  vehicle’s 
maximum capability. This is also evidenced in [37] by emphasizing that the driving cycles’ 
quality is directly tied to a well calibrated traffic model. Due to the same reason, the relevance 
of microscopic traffic models for estimating the impact of traffic strategies on fuel consumption 
is questioned in [10]. The authors pinpoint the fact that microscopic traffic simulation 
models have a validation problem when driving dynamics are concerned: even though 
they produce detailed velocity profiles, m icroscopic t raffic m odels a re u sually d esigned t o  meet 
macroscopic objectives such as signal timing or transportation planning. Consequently they are 
calibrated by traffic flow parameters l ike s peed, density or queue l ength rather than instantaneous 
speed and acceleration [10, 37]. Thus, speed profiles a re o ften t oo s implified an d th erefore might 
not be applicable for environmental studies or requirement engineering. However, even though 
microscopic traffic simulation tools have weaknesses in capturing human driving behavior, they 
are likely to cope well enough with fully automated driving as fewer stochastic terms are involved.

There is plenty of literature dealing with the acceptance, simulation and impact of 
autonomous vehicle fleets. For one t hing, AV fleets ar e expected to improve ne twork capacity 
due to connected driving and improved safety [34]. Then again, AVs may also increase traffic 
volumes due to induced travel demand arising from improved travel comfort, additional empty 
rides and smaller vessel sizes in contrast to public transport means [22]. Due to their disruptive 
character, AV fleet s imulations h ave b e en a nalyzed f rom m any d ifferent p e r spectives. I n  this 
context, especially the mesoscopic Multi-Agent Transport Simulation framework4 (MATSim) [20]

2To ensure the passenger’s well being, the lateral and longitudinal acceleration is limited. 
3https://www.ptvgroup.com/de/loesungen/produkte/ptv-vissim/
4https://www.matsim.org/
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is well established. In [4] and [14], for example, the city-wide replacement of private cars 
with shared autonomous vehicle (SAV) fleets i s  s imulated f or B erlin a nd A u s tin. B oth studies 
conclude that each SAV could potentially replace ten privately owned cars. Further contributions 
evaluate the impact of different SAV pricing schemes on mode choice [23, 27] or deal with SAV 
electrification and i ts implication f or charging i nfrastructure p lanning [ 5, 8 , 29, 4 2 ]. The influence 
of routing and dispatching algorithms on taxi services are extensively discussed in [7, 31, 32]. 
However, even though MATSim has its strong points in large-scale fleet s imulation, mesoscopic 
traffic simulation tools generally lack the necessary level of detail to simulate reasonable dynamics 
of individual vehicles [38].

To conclude, there are numerous publications dedicated to partial solutions but as those 
approaches are often too narrow in their objective, they either lose viability or lack feasibility 
in a broader context. This contribution seeks to elaborate an overall concept to deduce rep-
resentative 24h SAEV driving cycles that meet all above stated key requirements. 
To this end, three different traffic simulation approaches are evaluated and discussed. To gain 
deeper insights in terms of large-scale feasibility, the methods are applied to a set of test cases. 
To reduce modeling effort, several simplifications a r e  m a d e: t h e  p r e-study h a s  n o  fl ee t character 
yet, nor does it reflect f or a utonomous d r iving b e h avior. T hese l imits, h owever, d o  n ot affect 
this study’s validity: The main objective at this stage is to quantify the approaches’ suitability 
by means of different evaluation criteria, such as (a) their ability to model detailed driving 
dynamics, (b) their capability to simulate large-scale areas and (c) the approaches’ feasibility in 
terms of data availability and automation capacity (KR5).

2 Methodological approach
This section serves to outline each of the three simulation approaches in more detail as their 
understanding is essential for the test case analysis in Section 3.

2.1 MATSim’s capabilities and limits in drive cycle deduction
MATSim is a open-source framework for large-scale, agent-based traffic simulation. Its traffic 
assignment relies upon a co-evolutionary algorithm where so-called agents optimize their daily 
activity schedules in an iterative fashion by varying their initial departure time, transport mode 
or route choice to maximize their personal benefit. A t  t his, t hey c ompete w i th o ther a gents for 
space-time resources in the transportation network until a quasi equilibrium state is reached5. 
MATSim allows the deduction of vehicle trajectories and status profiles b y  d e s ign. E very action 
an agent performs – such as entering or leaving a certain road segment (link) – is recorded. 
Based on this information, daily status and speed profiles c an e asily b e  d erived a s  exemplarily 
shown in Figure 1. However, as MATSim uses a simplified q ueue m odel t o  a pproximate traffic 
dynamics, the framework does not provide any reasonable information on a vehicle’s position 
on a link itself. Only average link-speeds can be extracted. The queue model further leads 
to limitations in congestion modeling [3] as the tool’s primary purpose is to simulate large 
scenarios in decent time which requires simplifications i n  t raffic a nd d r iving d y n amics. A s  the 
understanding of those shortcomings is essential for this work, a brief recap of MATSim’s traffic 
dynamics is given next. MATSim relies on the discrete cell transmission model (CTM) [11] and 
the queuing model described in [17]. In the CTM, the length of the homogeneous network cells

5For more information on the user equilibrium, replanning process or plan scoring please refer to [20].
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Figure 1: Status (top panel) and average link speed profile (bottom) for a chosen MATSim car

is defined by the distance a vehicle travels in the time step T at free-flow velocity. As defined in
Equation 1, the number of vehicles ni(t+ T ) in a cell i depends on the number of cars ni(t) in
that cell at the previous time step and the difference of inflowing and outflowing vehicles.

ni(t+ T ) = ni(t) + Yi−1(t)− Yi(t) (1)

Here, the vehicles’ movement Yi−1 into the cell i is limited by three restrictions as depicted in
Equation 2, where the flow capacity Qi represents the maximum number of vehicles allowed to
enter a cell and the storage capacity Ni the cell’s capacity to store vehicles.

Yi−1 = min


ni−1

Qi × T with n,N,Q ∈ N
Ni − ni

(2)

With the improved queue model by [17], the road network is represented by so-called links
of different length instead of homogeneous cells. Additionally, priority queues are introduced in
MATSim that sort vehicles on a link according to their order of entrance or earliest exit time.

Under certain conditions MATSim’s queue model leads to false congestion patterns and
therefore misleading vehicle dynamics especially on short links or in sample runs6. The flow
capacity basically acts like a batch system: A flow capacity of 600 cars/h means that only every
sixth second a vehicle is allowed to leave a link. Otherwise the exit is blocked. Consequently,
newly arriving vehicles queue up on the link and wait for their turn to leave which sometimes
leads to unrealistic long passing times. Consider, for example, two subsequent vehicles on a 15m
link: even with a free flow velocity of 50 km/h the rear car would need at least 6 s to pass 15m
as the exit is blocked this long by the first vehicle. The stucktime parameter7 complicates this
even further as it temporarily allows a car surplus on a link: 10% sample runs reveal vehicle

6Sample runs increase computational performance, as only a subset of agents is simulated. In a 10% run for
example, each simulated vehicle gets the weight of ten and therefore occupies a net-space of 75m on the network
(the default vehicle length in a 100% sample is 7.5m) [20]. To preserve traffic dynamics, the flow and storage
capacities are adjusted accordingly and multiplied by a factor ff,s = 0.1.

7To counteract gridlocks, the stucktime parameter has been introduced to bypass the storage capacity
constraint in case the first vehicle in the queue is stuck too long. In doing so, a minimal flow even under very
congested traffic conditions is maintained [20].
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queues of 300 m length on a single link 10 m long. At this, the second vehicle needs at least 1 min 
to pass the link, the third a minimum of 2 min and the third even 3 min8. Technically, even 
four vehicles of weight 100 (which sum up to a queue of 3 km) can be enforced to stand on a 
single short link without throwing an error. It has to be stressed at this point, that under those 
circumstances the queues do not line up on upstream links, which hinders MATSim to model 
spatial congestion patterns in detail (even though they might be correct on a pure temporal 
level as the flow c apacity h as i t ’s m ethodical legitimacy).
To conclude, short links act as temporary vehicle sinks, storing too many vehicles which otherwise 
would have spilled back in upstream links. Consequently, the average link-speed profiles are 
faulty under congested traffic conditions as they often show average link speeds near zero on 
short links but nearly free flow v elocities o n  l inks p r ior t o  t hose e rror-prone s hort links.

2.2 MATSim drive cycle enrichment with real-world driving profiles
To improve driving dynamics, MATSim’s average link speed profiles a re e nhanced w ith synthetic 
and real-world driving cycles. For this, five d i fferent d r i ving c y c les a r e  c hosen t h at m i r ror a 
wide range of driving maneuvers and road types. All together, they account for a total driving 
time of 228 min. The cycles’ normalized velocity and acceleration distributions are given in 
Figure 2. As the names suggest, the CADC cycles9 for urban, road and motorway predominately 
represent slow (< 60 km/h), medium (< 100 km/h) and high velocities (< 150 km/h). The DS
urban cycle10 provides further driving data for slower velocity, whereas the mixed FKFS cycle11
covers a wide range of velocities up to 150 km/h. As to the acceleration rates, all driving cycles
exhibit a rather similar behavior. Solely, DS urban features a more conservative driving style.

The drive cycle enrichment is performed as follows: First, the velocity profile of a chosen
MATSim vehicle is calculated and aligned with the trajectory’s legal speed limit. Next, the
simulated profile as well as all synthetic drive cycles are cut into 1min-segments whose average
and maximum speeds are determined. By enhancing the profile minute-wise (rather than
link-wise) some of MATSim’s deficient inter-link dynamics are compensated. In a first rough0 50 100 150
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Figure 2: Normalized velocity (left) and acceleration distribution (right) of the considered drive
cycles. All distributions are normalized to their local maximum and flattened by moving average.

8Given a nominal flow capacity of 600 cars/h which corresponds to 60 cars/h in a 10% sample run. 
9Common Artemis Driving Cycles (CADC): https://dieselnet.com/standards/cycles/artemis.php 
10The DS urban is a RB-internal cycle through Stuttgart city used for load collective deduction.
11The FKFS cycle was conceived by the Research Institute of Automotive Engineering and Vehicle 
Engines  Stuttgart as representative driving cycle for the Stuttgart region.
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Figure 3: Exemplary representation of an enriched velocity profile without improvement measures.
The red dashed lines indicate the transition of two consecutive 1min-segments.

approach, an algorithm goes through all MATSim segments and identifies the CADC/DS/FKFS
segment with the lowest discrepancy in average speed without bothering about unrealistic
driving dynamics in the transition zones. In case the maximum speed limit of the MATSim
segment is lower than the corresponding tabulated one, the segment with the next best fit in
average speed is chosen. This prevents congested motorway cycles from being mixed into urban
MATSim profiles. Figure 3 displays the outcome of this approach. At this, the orange and
blue line represent MATSim’s simplified and enriched profile respectively. As expected, the
latter looks more realistic, but still features unrealistic acceleration rates between consecutive
segments that require further improvement: (i) As discussed in Section 2.1, MATSim often
features velocities near zero on short links. As those are hard to match with real driving cycles,
the average speed of those 1 min-segments is set to zero if vseg < 0.5 km/h. (ii) To make up for
the lost distance, the chosen synthetic driving cycles are allowed to exceed MATSim’s speed
limit by 20%. This is further justified by the fact that real world drivers tend to overspeed as
well. (iii) Moreover, acceleration rates in the transition zones are limited to realistic values. If
the acceleration exceeds 5 m/s2, the identified CADC/DS/FKFS segment is discarded and a
better one is iteratively chosen. The so generated profile is considered acceptable if the daily
traveled distance of both profiles vraw(t) and venr(t) have a relative error of less than 5%. The
relative error eday, rel

veh is calculated as follows

eday, rel
veh =

∣∣∣( N∑
n=1

T∫
t=1

venr, veh(n, t)dt
)
−

NT∫
t=1

vraw, veh(t)dt
∣∣∣

NT∫
t=1

vraw, veh(t)dt

(3)

where veh is the vehicle’s identification number, N the maximum of 1440 1 min-segments per
day and T the total of 60 s per minute.

2.3 Microscopic drive cycles from sequential tool-coupling
Another approach to enhance MATSim’s speed profiles consists in subjecting the simulated
vehicle trajectories to an additional microscopic traffic simulation. In this context, Simulation
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of Urban Mobility (SUMO)[30] constitutes a rather natural choice as it is the most popular 
open-source microscopic traffic simulation framework12. SUMO is well established in the fields 
of traffic management, traffic light evaluation and (in recent years) the simulation of vehicular 
communications. It provides many interfaces that allow external applications to interfere online 
with the traffic simulation. In this work, the Traffic Control Interface (TraCI) is used to retrieve 
and instantaneously manipulate object attributes.

Network generation To build a SUMO network based on an existing MATSim model, 
the geographical area of interest is independently imported from OpenStreetMap with SUMO 
NETCONVERT 13. Network differences in MATSim and SUMO are exemplarily depicted in 
Figure 4 for the Bergheimer Steige in Stuttgart. In MATSim, networks can be imported via 
the OsmNetworkReader with varying degree of resolution, e.g. rather simple networks with 
reduced number of links (4b) or more complex ones which account more accurately for curved 
road shapes (4c)14. In general, it can be noted that MATSim paths (regardless of their import 
resolution) already account for corrective measures for road geometry and altitude differences. 
Consequently, the path lengths fit r ather well i n d irect c omparison w ith G o ogleMaps. SUMO 
networks in contrast, feature the most sophisticated network design but additional length gains 
by altitude differences are not projected to the 2-dimensional network by default. In our work, 
those data are loaded from an additional elevation model.

Travel demand transfer MATSim-SUMO The travel demand in our SUMO simulation 
comes entirely from MATSim. For that purpose, all MATSim links bordering a chosen test case 
are identified. N ext, a ll v ehicles p assing t hose l inks a re r ecorded d uring MATSim simulation 
with (i) vehicleID, (ii) vehicle route and (iii) time of test case entrance and exit. In case of a 
MATSim sample run, the travel demand in SUMO is upscaled accordingly by injecting cloned 
vehicles. To prevent severe gridlocks in SUMO, a random time offset (sampled from a Gaussian 
distribution) is added to the network entering time of the cloned cars. Having all departure

Figure 4: Network differences based on the Bergheimer Steige test case as defined in Section 3.

12https://sumo.dlr.de/docs/index.html
13In principle, SUMO networks can also be imported from MATSim. This proceeding, however, proved not 

beneficial for our purpose as MATSim discards some network information which is required in SUMO.
14This network, however, behaved poorly in our simulation, as it has too many short links where the artefacts 

discussed in Section 2.1 occur.
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times settled, the linkIDs from MATSim are translated into corresponding edgeIDs in SUMO to 
write the final t rips-file fo r SUMO si mu lation. Fi nally, al l ve hi cle tr ip s in  SUMO ar e converted 
in vehicle routes by DUAROUTER. Due to the small test case sizes in this work (see Sect. 3), 
the SUMO routes match with those in MATSim.

Microscopic traffic dynamics Traffic dynamics in SUMO are realized by car-following 
models (such as Krauss [26] or Intelligent Driver Model (IDM) [39]) and lane-change models 
(such as LC2013 [13]). In this contribution we use the default Krauss-model according to which 
the vehicles drive as fast as possible while maintaining a perfect safety distance to the leading 
car. The safe speed is computed as follows [25]:

vsafe(t) = vl(t) +
g(t) + vl(t)τ

v
b + τ

(4)

where vl(t) represents the speed of the leading vehicle, g(t) the gap to the leader, τ the reaction
time, b the maximum deceleration of the follower and v the mean velocity of following and
leading vehicle. As vsafe may exceed the legal speed limit of the road or surpass the vehicle’s
capability, the actual targeted velocity is limited to the minimum of those three. On top of that,
a driver imperfection σ has been introduced in SUMO that causes random deceleration to model
speed fluctuations that lead to spontaneous jams at high traffic densities. Furthermore, each
vehicle draws an individually chosen speedFactor from a normal distribution to represent a
wider variety of human driving styles, e.g. drivers that notoriously stay above or below the legal
speed limit. Figure 5 displays an exemplary velocity profile extracted from SUMO simulation
by also providing information on the current speed limit and the vehicle’s elevation profile.

Figure 5: Elevation (top panel) and velocity profile (bottom) for an exemplary vehicle.

3 Test case analysis
This section evaluates all approaches elaborated in Section 2 in their ability to deduce reasonable
velocity profiles. The test case analysis relies on an existing MATSim model for the Stuttgart
region. Following an approach similar to [6], the MATSim model has been built (by RB)
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on the basis of a mobiTopp [33] travel demand model for the Stuttgart region provided by 
the Verband Region Stuttgart as part of a research collaboration. In total three different test 
cases were identified t hat d iffer i n r oad t ype, n etwork t opology a nd r ight o f w ay r u les: ( i) The 
Bergheimer Steige features no crossroads but sharp turns and road gradients up to 15 %. This 
test case seeks to analyze to what extent slope and curves influence v ehicle s peed i n simulation.
(ii) The Motorway A8 (Kreuz Stuttgart to AS Stuttgart Möhringen) allows the analysis of traffic
dynamics on motorways. (iii) The Kräherwald test case (leading from Kräherwald/junction
Zeppelinstraße to University of Stuttgart) is of mixed inner-city and highway character and is
part of the FKFS cycle as illustrated in Figure 6 (center and right panel).

Figure 6: The right plot illustrates the FKFS circuit. Here, the grey rectangle borders the
actual Kräherwald test case whose zoomed trajectory is given at center. To the left, the spatial
velocity profiles of 22 measured FKFS cycles are provided for the Kräherwald test case.

All test cases are simulated in MATSim and SUMO for one day. For each test case,
driving cycles are deduced by means of (a) pure MATSim simulation, (b) enhanced MATSim
simulation with real driving cycles and (c) sequential MATSim-SUMO tool-coupling. The driving
cycles are then compared based on aggregated dynamics such as velocity and acceleration
distributions, overall traveled time and distance as well as average congestion ratio and energy
consumption (Sec. 3.1). As further evaluation criteria serve the accuracy of time- and space-
dependent velocity profiles (Sec. 3.1 and 3.2) as well as the simulation approaches’ large-
scale feasibility and automation capability (Sec. 3.3). Energy related KPI are derived from
vehicle simulation in GT-Suite15. For this purpose, the following vehicle specifications have
been used: vehicle mass (including battery and powertrain components) m = 1545 kg, constant
tire rolling resistance cR = 0.011, vehicle front area Af = 2.2m2, vehicle air resistance coefficient
cW = 0.27, road friction coefficient cfric = 1, battery capacity Ebat = 60 kWh and engine power
Peng = 200 kW. Driving dynamics and energy related KPI are additionally compared to 22
measured and GPS-tracked FKFS cycles for the Kräherwald test case16. To ensure comparability,
the measured velocity profiles are equally passed to GT-Suite simulation.

15https://www.gtisoft.com/gt-suite/gt-suite-overview/
    16All data were gathered by the Research Institute of Automotive Engineering and Vehicle Engines 
Stuttgart based on a contract research "Bordnetzmessungen am Elektrofahrzeug (cZero)" with the Robert 
Bosch GmbH.
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3.1 KPI comparison
The following assessments refer to Table 1 which summarizes for each test case and simulation 
approach the most important aggregated KPI. For each test case, only a sample of simulated 
vehicles have been tracked microscopically. The exact numbers of tracked and simulated vehicles 
are indicated within the table as well.

Aggregated vehicle dynamics and energy related KPI In general, the average traveled 
distance of all tracked vehicles is similar in all simulation scenarios. Differences mainly arise 
due to different network designs and import functionalities. Every time a road attribute changes 
in OSM both MATSim and SUMO create a new link/edge. In contrast to SUMO, MATSim links 
are represented by straight lines only. In case this straight line deviates strongly from the actual 
road shape, MATSim inserts artificial n odes t o p reserve t he n etwork g e ometry. B y consequence, 
one SUMO edge often represents several MATSim links which leads to longer SUMO distances 
especially in small test cases like ours. The calculated distances of the enriched scenario are 
purely artificial a s t hey d o n ot c orrespond t o t he a ctual t arget t r ajectories. N evertheless, they 
are reasonable enough considered the little effort it took to implement the enrichment procedure. 
Solely the Motorway A8 test case reveals discrepancies in traveled distance higher than the 
desired 5 % error margin. This however, is not the fault of the enhancement method itself. Those 
imperfections are caused by an insufficient number of available fast-driving 1 min-segments in 
Section 2.2 which also lead to low average velocities and energy consumptions. The validity 
of the enrichment procedure is therefore directly tied to a wide range of underlying measured 
driving cycles.
The average travel time, velocity and energy consumption are strongly congestion 

dependent. As the approaches base on different traffic dynamics (queue vs. car-following model) 
and network attributes (node vs. signaled intersection), the same ego-vehicle is differently 
delayed throughout the network which leads to different traffic conditions. Naturally, this affects 
average travel time, velocity and energy consumption. The inconsistencies in congestion modeling

Table 1: Aggregated KPI comparsion for all three test case
(no. of tracked/simulated ego-vehicles)
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(3
59
/7
17
0)

KPI MATSim enriched SUMO
average traveled distance in km 2.9 2.8 3.1
average traveled time in min 4.3 4.8 4.6
average congestion rate 0.85 0.72 0.84
average velocity in km/h 43 36 42
average energy consumption in kWh/100km 9.2 11.6 16

M
ot
or
w
ay

A
8

(3
85
/3
79
59
1) average traveled distance in km 6 5 6.8

average traveled time in min 3.7 4.1 3.7
average congestion rate 0.88 0.55 0.97
average velocity in km/h 92 59 101
average energy consumption in kWh/100km 23.8 15.8 24

K
rä
he

rw
al
d

(4
44
/1
10
77
9) average traveled distance in km 5.5 5.4 5.7

average traveled time in min 7.8 8.2 6.6
average congestion rate 0.82 0.76 0.85
average velocity in km/h 52 48 53
average energy consumption in kWh/100km 11.8 12.4 15.6
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Figure 7: Inconsistencies in congestion modeling in MATSim and SUMO for all three test cases 
illustrated as log-log plot where each dot represents a tracked vehicle (left) and congestion ratio 
histograms (right). A congestion ratio of one corresponds to free-flow driving conditions.

are further illustrated in Figure 7 on the left, where the congestion ratio for both MATSim and 
SUMO are compared. At this, each dot represents a tracked vehicle. The congestion ratio is 
defined as the ratio of actual travel t ime and the f ree-flow travel time simulated in  MATSim. A 
congestion ratio of one corresponds to free-flow driving conditions, whereas a  ratio near zero 
signifies a  b locked r oad17. A  p erfect match would theoretically r esult i n a  d iagonal l ine. As 
depicted in Figure 7 this is seldom the case and needs to be investigated further. The histograms 
on the right show that the traffic conditions in MATSim are often too optimistic (presumably 
on links where the spatial queue did not propagate due to the artefacts discussed in Section 2.1) 
or way too pessimistic (presumably on short links).
When comparing the speed and acceleration distributions of all simulations, considerable 
differences in all approaches become apparent. Figure 8 displays the normalized velocity and 
acceleration histograms of all 359 tracked vehicles for the Bergheimer Steige test case. As 
expected, pure MATSim simulation exhibits unrealistic driving dynamics as it only accounts for 
average link speeds with no oscillations around the target velocity. Consequently the acceleration 
rate is predominately zero. In between two links however, the acceleration may jump from zero 
to an value predefined by the next l ink’s speed l imit. The enriched profiles feature more realistic 
driving dynamics, but as will be shown in Section 3.2, they are only as good as MATSim’s 
capability to model spatial congestion patterns (which is limited at the moment). SUMO, 
in contrast, features more bell-shaped distributions (around local maxima) which, however, 
have not been validated yet. In the enriched MATSim and SUMO simulation the maximal 
acceleration is limited by design to ±5 m/s2 absolute. However, compared to real-world driving, 
the acceleration rates in SUMO are distributed too perfectly as equally stated in [1, 21, 37].

17As SUMO allows overspeeding (here: up to 20 %) and as SUMO link lengths do not match those of MATSim 
perfectly, congestion ratios greater one may result.
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Figure 8: Normalized velocity (left) and acceleration distributions (right) for 359 tracked vehicles
within the Bergheimer Steige test case with a temporal resolution of dt = 1 s. The red dashed
lines represent the mean values.
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Figure 9: Time-dependent speed profile of a chosen vehicle of the Bergheimer Steige test case as
simulated by the different simulation approaches.

Time-dependent speed profiles In Figure 9 the time-dependent velocity profiles for the
same vehicle are shown. Even though the starting times are identical for all scenarios for the
chosen vehicle18, the car is differently delayed due to discrepancies in traffic conditions, network
distances, traffic signals and right-of-way rules. Whereas MATSim’s velocity profile is rather
steplike due to the average link speed, SUMO shows strong oscillations around the target velocity
(possibly arising from the driver imperfection σ). However, compared to real world driving,
SUMO’s oscillation amplitude seems too homogeneous and the frequency too high-frequent.
This may be solved by a better parametrized car-following model, but as our approach aims at
autonomous driving (AD) applications in future no further effort was put into this task.

18This might not always be the case. If strong congestion occurs on a vehicle’s departure link, the moment of
network entering can be delayed artificially.
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3.2 Comparison against GPS-tracked FKFS cycles
In this section, the simulated driving cycles for the Kräherwald test case are compared against 
22 measured FKFS cycles to assess the quality of the simulated results. To do so, only the part 
of the FKFS cycle is considered that overlaps with the Kräherwald test case as displayed in the 
right panel of Figure 6.

Space-dependent speed profiles A l l  s i mulated ( i n  S U MO o n l y) a n d  m e a sured driving 
cycles of the Kräherwald test case are spatially compared in Figure 10 top panels. The bottom 
panels provide additional information on the vehicles’ minimum, mean and maximum velocity 
at each location of the test case. As indicated in Figure 6, the trajectory undergoes first four 
successive traffic lights, becomes then a west-heading highway and is finally m erged i nto another 
arterial road before turning abruptly south. Those characteristic become clearly visible in the 
both data sets in the form of sudden drops in velocity. In contrast to the FKFS data (that 
unfortunately reflect f ree-flow dr iv ing co nditions on ly), th e SU MO  si mulation on  th e ri ght side 
exhibits some congestion during the day which leads to longer waiting queues in front of the 
traffic signals and especially when both arterial roads meet. Moreover, in real life locals tend 
to anticipate upcoming speed limit changes and adjust their velocity accordingly before the 
actual traffic sign occurs . This is especially true when the speed limit rises. In our simulation, 
however, the rise and fall of the speed limit is rather step-like. In the context of autonomous 
driving this simplification i s  n ot n ecessarily d isadvantageous a s  f uture AVs m ight a dapt t o  speed 
limits in a similar manner.

Figure 10: Stacked velocity-space profiles for 22 measured FKFS cycles ( left) and 444 simulated 
SUMO vehicles (right) for the Kräherwald test case.

Aggregated vehicle dynamics For further plausibility checks, only those vehicles from 
the traffic simulation are benchmarked with FKFS data that exhibit similar traffic conditions. 
Unfortunately all measured cycles feature free-flow d riving c onditions, c onsequently no con-
clusions to the partly or fully congested state can be drawn. Table 2 summarizes selected 
aggregated KPI for a chosen, simulated vehicle and compares them with three different FKFS 
vehicles. Generally, all listed KPI match rather well for the non congested state regardless of 
the driving cycle deduction approach. A slightly different picture emerges when regarding the 
velocity distribution under free-flow driving conditions. As evidenced in Figure 11 on the
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Table 2: FKFS benchmarking for a chosen simulated vehicle for the non-congested state.

KPI simulated cycles via FKFS cycles
for the non-congested state MATSim enriched SUMO car 1 car 2 car 3
distance in m 5489 5460 5698 5951 5955 5942
average velocity in m/s 16.4 15.2 15.6 15.0 14.5 17.2
travel time in min 5.6 6.0 6.1 6.6 6.9 5.8
energy consumption in kWh/100km 20.1 18.3 18.8 18.8 22.0 19.6
congestion ratio 0.95 0.88 0.9 0.87 0.84 0.99
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Figure 11: Probability density (left) and cumulative velocity distribution function (right).

left side, real world drivers (represented by the FKFS cycles) tend to drive faster than those
simulated in SUMO. Whereas the SUMO simulation exhibits velocity peaks around 45 and
75 km/h, the measured data reach their local maxima around 62 and 82 km/h. Beyond that,
the SUMO simulation features many velocities near zero which are not present in the measured
data. Simulated vehicles obviously stand a higher chance to hit at least one of the four traffic
lights. This also shows as an offset in the cumulative velocity distribution in the right panel
of Figure 11: Whereas the graph gradients of SUMO and FKFS match rather well, SUMO’s
cumulative velocity distribution is shifted considerably more to lower velocities due to the traffic
light downtimes. As further expected, MATSim’s velocity distribution correlates poorly with
the corresponding FKFS data due to the simplified queuing model. The enrichment technique
compensates some of those shortcomings, but follows MATSim’s trend still too closely. Using a
larger sample of measured driving cycles for the enrichment, will likely lead to more realistic
velocity distributions.

At this point, however, it has to be emphasized that the simulated driving cycles cannot be
validated with the measured FKFS cycles for two reasons: (i) The 22 measured drive cycles are
statistically not significant enough to represent the driving behavior of the Kräherwald test case
during one day. (ii) To validate single profiles, the ego-vehicle’s exact environment (e.g ambient
traffic and traffic signals) needs to be modeled as encountered during measurement campaign.
Unfortunately, neither MATSim nor SUMO are capable to model surrounding vehicles in such a
manner. Furthermore, radar and LIDAR data are required to collect necessary data.
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3.3 Discussion and implications for final c o ncept choice

This section summarizes all quantitative results of the preceding sections, places them into the 
context of the key requirements postulated in Section 1 and complements them with qualitative 
remarks on the approaches’ large-scale feasibility and automation capability.

With respect to city-wide SAEV fleet simulation (KR1), MATSim has advantage over SUMO 
in scalability and computational performance on the one hand and existing fleet simulation 
functionalities on the other hand. The enrichment and tool-coupling approach also benefit from 
MATSim’s capabilities in this regard, as the modeled fleet c onstraints a s  w ell a s  t he i mpact of 
different dispatching and routing algorithms do equally reflect i n  t hose s o l utions. R egarding indi-
vidual vehicle states (KR2), MATSim and SUMO prove equally capable. Provided minute-wise 
drive cycle enhancement, the enrichment procedure should fare well in this regard as well since 
downtime phases are not altered considerably. Larger enrichment segments, however, increase 
the chance of annihilating idling periods or inserting additional ones.
The approaches’ capability to derive reasonable velocity profiles ( KR3) h as e xtensively been 
analyzed in the previous section. Given similar traffic conditions, aggregated trip statistics (e.g. 
average velocity, traveled distance and time) are well captured by each approach. However, as 
highlighted in Subsection 3.1, even for a given ego-vehicle the traffic conditions differ considerably 
between the different approaches due differences in traffic dynamics and network interpretation. 
A central task in future work therefore relates to the model calibration in terms of (real-world-
observed) congestion patterns. Unfortunately, MATSim (and therefore the enrichment approach 
as well) has some shortcomings in spatial congestion modeling. Another deficit o f  M ATSim is 
its incapability to model realistic velocity and acceleration profiles d ue t o  i ts s implified queuing 
model. A satisfying solution that solely relies on MATSim without further enhancement is 
therefore not conceivable. The velocity profiles o btained f rom t he e nrichment p rocedure closely 
resemble real world measurements. However, it is not straight forward to transfer this approach 
to autonomous driving applications, since it depends on measurements as input data. A major 
drawback for the enrichment approach is therefore its missing sensibility to different driving

Table 3: Approaches’ suitability to model detailed SAEV driving profiles
(Xsuitable, o limited suitability, - not suitable, * no statement possible)

pure enriched pure MATSim-SUMO
key requirements MATSim MATSim SUMO tool-coupling

KR1: large-scale, multi-modal SAEV fleet
simulation with sensitivity to: X X - X
- range & charging constraints X X o X
- dispatching, routing & pricing strategies X X o X

KR2: vehicle states X X X X
KR3: realistic velocity profiles with sensitivity to:

- human/ autonomous driving -/- X/o o/* o/*
- congestion rates o o X X
- transport infrastructures o - X X

KR4: further time series such as
- height/ occupancy profiles o/X -/o o/* o/X

KR5: feasibility in terms of:
- data availability X o o o
- robustness against critical error X X - -
- automation capability X X o o
- computational resources X X o X
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styles or platooning effects. SUMO in contrast, enables the deduction of detailed drive cycles 
whose drive dynamics prove too artificial t o  r eflect fo r hu man dr iv ing, bu t ma y be  reasonable 
enough for autonomous driving. In contrast to MATSim, SUMO provides many features to 
tweak driving dynamics in a methodological manner. Another strong point of SUMO is that 
the simulated vehicles react sensitive to diverse transport infrastructures and are able to mimic 
different driving maneuvers such as stop&go-patterns or zip merging. Unfortunately, SUMO 
does not account for reduced velocities in narrow curves. Nanoscopic traffic simulation tools 
such as CarMaker19 would be required to address these kind of topics. The same applies for 
road gradients: road slope can technically be modeled in each simulation scenario (KR4) but 
requires access to accurate height data. These data, however, relate to the Earth’s surface 
only and consequently produce invalid results for road tunnels. And even with slope modeled, 
the latter has so far no impact on the vehicles’ driving behavior. Slope only influences energy 
consumption in a subsequent vehicle simulation. Nonetheless it has to be emphasized at this 
point, that numerous car-following models exist for SUMO. Some may address those issues 
already. At this point, those options have not been adequately tested nor investigated yet.

Apart from those quantitative KPI, all simulation approaches differ considerably in practical 
feasibility and automation capability (KR5). With regard to the key requirements KR1-KR4, 
the MATSim-SUMO tool-coupling approach seems to be the most promising solution to deduce 
representative SAEV drive cycles as summarized in Table 3. However, its automation capability 
remains questionable due to the high effort in setting-up the network. SUMO networks are 
very detailed and therefore require additional data which OSM does not provide, e.g. detailed 
elevation information, traffic light positions and control. SUMO’s autogenerated networks are 
sometimes misleading as the underlying OSM attributes are non-existing or error-prone and/or 
the data are too complex to be interpreted correctly by the default import functionalities. This 
is shown by (a) faulty turning lanes, (b) poorly guessed traffic light positions, (c) poorly joined 
complex junctions and (d) uncoordinated traffic light initialization. Manual editing represents a 
most time consuming task. A further serious drawback for all SUMO related approaches is their 
proneness to artificial d e a dlocks. T hose g r idlocks a re c reated f or e xample b y  t wo i mpeding cars, 
where the left likes to turn right and vice versa. Those gridlocks do not naturally resolve in 
SUMO, but can only be counteracted by enabling further options such as time to teleport or 
ignoring junction blockers. However, those options do not help if the ego-vehicle selected for drive 
cycle derivation is affected, as this vehicle then cannot complete its daily trajectory. MATSim in 
contrast, encounters no data-availability or automation problems due to its simplified network 
representation. Taken all pros and cons into consideration, the MATSim-SUMO tool-coupling 
seems most promising despite its automation challenges.

4 Conclusion
This contribution presents different approaches to simulate 24h driving cycles for SAEVs. The 
approaches are evaluated for a set of test cases. From this, a sequential tool-coupling of meso-
and microscopic traffic simulation was found to be most promising with respect to the key 
requirements defined i n  S ection 1 .  S AEV d r iving p rofiles ar e de rived as  fo ll ow s: De pending on 
different fleet c onfigurations an d pr ic ing co ncepts, SA EV  fle ets  are  imp lemented and  simulated 
in MATSim on a large-scale, multi-modal network. Based on the simulation results, all SAEV 
trajectories are analyzed with respect to their daily use patterns, such as driven distance,

19https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
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operating time or number of served trips. Next, representative fleet v ehicles a re automatically 
identified a nd p ost-processed t o b e  s imulated i n S UMO. To t his e nd, t he t ime-dependent travel 
demand of all roads in close proximity to the actual target trajectory is recorded in MATSim 
and transfered to the SUMO model. To reduce network setup effort, only the trajectories of 
the chosen vehicles (and their close neighborhood) are modeled in SUMO. Besides, each vehicle 
tagged as SAEV in MATSim simulation is featured with autonomous driving characteristics in 
SUMO. The ego-vehicle’s speed profile i s t hen d erived f rom S UMO simulation.

At present, this tool-coupling approach works for test cases only as the procedure involves 
manual network matching and cleaning efforts. Its application to city-wide scenarios necessitates 
tool-chain automation which, however, constitutes a most challenging task. Further research is 
therefore required to implement the tool-chain in such a way that – starting from an existing, 
calibrated MATSim model – the SUMO model is setup, simulated and evaluated without further 
human intervention. To this end, the following aspects are addressed in future work:
(a) Dealing with inconsistencies in MATSim and SUMO. A sequential tool-coupling requires
aligning both frameworks in (i) network representation, (ii) route choice, (iii) traffic dynamics
on a macroscopic level and (iv) traffic performance. Otherwise, the travel demand transfer
from MATSim to SUMO leads to severe gridlocks in the more congestion-prone microscopic
traffic simulation and SAEVs cannot serve their appointed customers in time. Consequently, the
frameworks’ discrepancies need to be analyzed in more detail to derive alignment measures.
(b) Automated network modeling in SUMO. To solve the bottleneck of tool-chain automation,
methods and algorithms need to be elaborated to solve network cleaning, traffic light location
and control issues in an automated fashion. As time-dependent traffic volumes on all intersection
are known from MATSim simulation, approaches are elaborated that (i) detect and eliminate
artificial bottlenecks in the SUMO network that fail to handle the appointed traffic flow and (ii)
mirror the decision makings of an actual traffic planner to initialize traffic lights.
(c) Automated travel demand transfer. Another obstacle for tool-chain automation represents
the travel demand transfer from MATSim to SUMO simulation. This issue is solved by a robust
network matching concept with dynamic meso-micro borders.
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