
A comparison of SUMO’s count based and countless

demand generation tools

Michael Behrisch1 and Pauline Hartwig2

1 German Aerospace Center, Berlin, Germany

2
michael.behrisch@dlr.de

TH Wildau (University of the Applied Sciences), Wildau, Germany

paha2034@th-wildau.de

Abstract

There are already several tools available to generate traffic demand f or the microscopic simulation
suite SUMO. This paper f ocuses on setting up a simulation scenario f or the peak hour i n a small
conurbation when there are vehicle counts available f or the major streets. We describe tools which are part
of SUMO or available as open source and compare their results with the real traffic counts as well as with
the outcome of countless demand generation.

1 Introduction

Setting up a microscopic traffic simulation scenario is hard work. While it is easy to get started
with a network derived from OpenStreetMap, fixing the network to fit microsimulation purposes
and getting a proper traffic demand are two tasks which can consume considerable amounts of
time. Fortunately there are tools to support both tasks which can ease the work. While the
network adaption is still largely a manual process supported only by better editing facilities
in tools such as netedit, traffic demand generation can be done in an automated way and still
deliver good quality results. This paper focusses on several demand generation tools usable
with the SUMO simulation suite [2]. It does not cover ”traditional approaches” such as setting
up an origin destination matrix, generating trips from there and then doing traffic assignment.
These tools are described in detail in the available literature for an overview see [3].

We instead focus on the quick (and sometimes dirty) solutions to give people an immediate
but still somehow realistic travel demand for their area of interest assuming no additional input
beyond the OpenStreetMap network and a few counting locations (which are even optional for
some of the tools). The motivation is to replace as much of the manual work as possible why
still generating plausible routes, realistic counts and a good coverage of the network.

The paper is structured as follows. After describing the solution approaches of the various
tools with and without counting input and give a brief account on their strengths and weak-
nesses, we compare their results to the counting data we used as input and two additional
counting locations not used as input. Furthermore we address the problem of routes primally
running on the main network by evaluating the network coverage. We end with conclusions
and an outlook for further research.

The underlying scripts and results are all publicly available in the sumo scenario github
repository [1].

2 The scenario

The tools we evaluate need a realistic yet small use case such that all basic features can be
demonstrated but it is still feasible to do manual adaptions to the network and evaluate the data

SUMO User Conference 2021
https://doi.org/10.52825/scp.v2i.107
© Authors. This work is licensed under a Creative Commons Attribution 3.0 DE License 
Published: 29 Jun. 2022

125



Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

if needed. For these reasons (and also because of geographic proximity) we used the network
of the town Wildau (Germany, Brandenburg), which was extracted from OpenStreetMap using
the OSM WebWizard. Wildau is a small town in Brandenburg/Germany which has around
10000 inhabitants and a surface of 909 ha. The generated cutout as visible in Figure 1 includes
a total edge length of 104.06 km and 645 nodes and 1426 edges.

Figure 1: SUMO scenario

After the automated extraction from OSM the next step was to clean up the network mostly
for faulty or missing lane to lane connections at the junctions. This is a necessary step in most
simulation setups. If there is no knowledge of the local situation the easiest way to find the
wrong connections is to generate a large random demand and look for the junctions which
jam first. This already gives a usable network for our purposes. Since we strived for more
realism, the maximum speed and the allowed vehicle classes have been adapted too (especially
concerning bicycles).

The generated demand only covers the afternoon peak hour (15:00 to 16:00). The reference
data for the number of (passenger) cars has been collected at nine counting points provided by
local authorites and one manual counting point as visible in Figure ??. The initial approach
(and baseline for our studies) was a manually generated flow file, which includes routes based
on assumptions about the local demand situation. The number of vehicles using the different
routes had been scaled using Excel based optimization tools to adapt them to the counts. This
resulted in a total demand of 2254 vehicles in the initial route set.

3 Countless tools

The easiest way to generate a demand would be if the user needed no extra data or could at
least enter just a single number as the expected population or the total amount of vehicles per
hour. We call these tools countless and evaluated them first for two reasons. First they are
obviously easier to use and second while their output is not perfect it may still serve as a base
for optimization in further steps.

126



Figure 2: Counting locations

3.1 randomTrips.py

The tool randomTrips.py is part of the core SUMO suite and probably for most people the first
contact with demand generation, because it also works behind the scenes in the osmWebWizard
tool. As the name says it randomly generates trips (origin destination pairs of edges) and with
the right options also completes them to full routes and validates them for drivability (mostly
connectivity) within a network.

The selection process can be tailored heavily to prefer edges with more lanes, higher speeds
or greater length but in our experiments we stuck to the defaults for most of these values.
The subsequent route generation is done using a hidden call to the duarouter which runs a
shortest path calculation to find the route set and discards all disconnected pairs of origin and
destination.

To adapt the traffic volume two major parameters have been changed, first the fringe factor
(increases the probability that journeys will end / start at a boundary edge), and the period
(how often new vehicles are generated). Already the first runs showed that randomTrips is able
to generate a better network coverage than the manual routes which only focussed on counting
locations. This is not surprising since a random choice will obviously cover more than just the
major streets.

Subsequently, the value of the ”period” was reduced in order to generate more traffic. The
procedure was repeated until the first heavy jams occured at the junction Bergstrasse / Dorfaue.
In the second step, the boundary edges were examined, which initially showed a low level of
utilization. In order to be able to adapt this, the ”fringe factor” was increased. The value was
increased until there were no more vehicles teleported in combination of the ”period”. In the
end, with the values f = 7 and p = 1.850, a relatively good distribution picture of the traffic
was generated.

Using the option ”random” (to modify the random seed and hence the sequence of generated
start and end points) several different demands have been generated to get an average result for
the evaluation. To calculate the total counts on the edges with counting locations the meanData
mechanism of SUMO has been used which gives aggregated data for the whole network.

Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

127



3.2 SAGA

SumoActivityGen (SAGA) is a tool which takes only the extracted OpenStreetMap file as input
and tries to generate the complete demand automatically. Public transport, motorized vehicles
and pedestrians are generated here. The time span comprises a complete daily cycle. The route
generation is based on possible work routes. The tool “looks” where workplaces, houses, etc.
are located and determines the routes based on this information from OSM. The tool was used
on Wildau, however the ”raw” network was used imported by OSM WebWizard. To let SAGA
generate any demand at all for the small network we decided to start it with the ”single-taz”
option because it otherwise tries to generate demand only between districts (in the case of
Wildau between the city itself and the surrounding ones) but not inside the district.

To calculate the total counts on the edges with counting locations we again used the mean-
Data mechanism of SUMO focussing on the peak afternoon hour. The total number of vehicles
generated by SAGA was much less than in the manual demand file, details will be dicussed in
section 5.

3.3 randomActivitygen

A tool similar to SAGA is ”randomActivityGen”. It serves as a randomizing wrapper to
”activitygen” which is part of the core SUMO suite. It takes the SUMO network and the
number of inhabitants as input and generates random work and home locations to induce a
traffic demand.

When evaluating this tool, it became apparent that the number of vehicles generated was
very low. The number of inhabitants was initially given as 10000, which is close to real pop-
ulation. whereby the number was increased to 50,000 when called up again. The number of
vehicles increased slightly, but the traffic generated was still implausible. This is probably due
to the fact that the tool does not take into account surrounding cities / factors. Due to its close
location to Berlin, Wildau has a high proportion of through traffic / commuter traffic, which
means that the traffic flows would have to be correspondingly higher.

4 Tools using traffic counts

4.1 dfrouter

In addition to the tools already used, other methods were also used. First, the ”dfrouter”
was implemented, which receives defined (induction) loops with the relevant edge IDs and a
vehicle file in semicolon-separated format with the number of vehicles as input. The basic idea
behind this tool is that incoming and outgoing flows can be recorded almost completely using
induction loops. With the help of the information, the dfrouter rebuilds the number of vehicles
and routes. This is done in four processing steps. First of all, it must be specified in the loop
file whether it is a source, target or intermediate detector. In the next step, routes between
the detectors are calculated, whereupon the flow rates are generated. To generate the flows
dfrouter starts at every source with the demand measured there and distributes it according to
the downstream detectors untila sink detector is reached.

Except for determining manually which detectors are considered sources and sinks there is
no easy way to influence the behavior of the process so the results are basically stemming from
a straight invocation of the tool. The dfrouter generated the routes and vehicles as output files
and the result has been evaluated again by running them through a scenario and measuring
edge usage using meandata files.

Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

128



4.2 flowrouter

In a second method, the ”flowrouter” was used, which works in a similar way as the ”dfrouter”.
The flow router tries to find a number of routes that maximize the overall flow in the graph
theoretic sense. So it treats the measuremnts as capacities for the edges and maximises the
number of vehicles in the network which travel from source to sink edges. The input remained
the same, but instead of individual routes, “flows” are generated for the vehicles. The traffic
flows received were evaluated using a further output file and transferred to Excel. It must
be mentioned here that both tools mainly use the edges covered by detectors (and the ones
connecting them) and do not generate any traffic into the secondary network.

4.3 cadyts

Another option for route selection within a network, which is based on counting data and route
alternatives, is offered by the ”cadyts” tool. Cadyts performs 100 iteration steps in which the
probabilities of the route selection from the route files are tried to match the counting data.
For this purpose, the results of the previous iteration are evaluated in each iteration step and
the probabilities are adjusted if necessary, in order to get close to the counting data. In order
to be able to execute cadyts, however, duaIterate must be executed first. DuaIterate creates
an alternative route file for each iteration (the number of iterations depends on the time slot),
which is then passed on to cadyts. There are a variety of parameters to be adjusted when using
duaIterate as well as cadyts to influence the calculated user equilibrium. Due to the limited
time the calibration work could not be finished and as a result the deviations were still very
high.

4.4 routesampler

In a further attempt, the “routesampler” was used to assign the counting data to the corre-
sponding edges so that the randomly selected routes match the counting data. In contrast to
the other tools the routesampler already receives a route file as input together with the usual
”counting data”. Its algorithm chooses iterativela routes from the route file to match the count-
ing data. While the usage of an exisiting route file sounds like a severe limitation it is possible
to use the output file from ”randomtrips” as input for the model and still get proper results.
This route file can be used together with a counting file in the meandata format (which has
been generated manually) to start the calibration. By calling up the changed batch file again
(now with the ”routesampler”), the new scenario was generated and could be evaluated using
a new output file. The result was that the routesampler can match the counting data, which
were given as input.

5 Results

The results were evaluated with respect to two different indicators which are the precision of the
fit (denoted by the root mean squared error of the measured counts in relation to the simulated
values) dureing the peak hour and the coverage of the network (total length of streets used by
simulated cars divided by overall length of car edges in the network).

With the help of the root mean square it became clear that the routesampler was the most
suitable tool to achieve the counting data and a plausible route distribution. A python script
was created for the evaluation of the individual tools, which calculates the root mean square of
the counting data. Here, the count data were considered with the output data of the edges and

Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

129



the quadratic deviation was calculated. In the end, the sum of the squared deviations was cal-
culated. The lower the value, the better the tools were. During the evaluation the routesampler
and the manual route data achieved the lowest values, which means that these methods were
the best during the test. On the other hand, SAGA and randomActivityGen were not suitable
for generating demand due to their high values. However, the value of randomActivityGen with
50.000 inhabitants was slightly lower than 10.000 inhabitants.

manual route-
sampler

random-
trips

dfrouter flowrouter cadyts random-
Ac�vityGen 

10.000 

random-
Ac�vityGen 

50.000 

SAGA
0

50

100

150

200

250

300

350

RMSE vehicle count on all coun�ng points

Figure 3: Root mean squared error of the vehicle counts

manual routesampler randomtrips dfrouter flowrouter cadyts randomAc�vi-
tyGen 10.000 

randomAc�vi-
tyGen 50.000 

SAGA
0

10

20

30

40

50

60

70

80

90

100

network coverage in percent 

Figure 4: Percentage of the street network covered by vehicle traffic

The conclusion is that the routesampler is the best way to simulate the demand however
the route distributions (main and secondary network) are balanced.

Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

130



6 Future Work

In the future it is planned to expand the simulation on github. On the one hand with the local
public transport and on the other hand with the bicycle and pedestrian traffic. Furthermore,
the presented tools are to be further tested and evaluated with the help of this paper. Here it is
conceivable to change the parameters, in which it is possible to find better results. The paper
is an invitation to work with the tools interactively. Maybe some users find other methods to
work with them or have some ideas for new definitions for parameters.

Furthermore the results should be used to foster automatic creation of realistic scenarios.
The manual steps which were still necessary for instance when calibrating the randomTrips
scenario could be partly automated at least the step of increasing the traffic until the first
teleports (i.e. heavy jams) occur. It is probably not possible to automate the choice of the
fringe factor though because it deponeds more onthe surrounding network than on the chosen
network itself.

Last but not least further insights in the process of the user equilibrium would allow to do
a joined process between duaIterate/cadyts and the routeSampler or do a better comparison of
both tools and processes in the future.

7 Acknowledgments

We want to thank the city and the administration of Wildau as well as the University for
providing the necessary data to perform this study. Furthermore this project has been initiated
by a student project together with Ewald Bader and Andesson Wafo who contributed to the
first scenario.

References

[1] SUMO scenarios. https://github.com/DLR-TS/sumo-scenarios. Accessed: 2022-06-17.

[2] P. Alvarez Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation using sumo. In The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE, 2018.

[3] Dieter Lohse and Werner Schnabel. Grundlagen der Straßenverkehrstechnik und der Verkehrspla-
nung: Band 2-Verkehrsplanung. Beuth Verlag, 2011.

Behrisch and Hartwig | SUMO Conf Proc 2 (2021) "SUMO User Conference 2021" 

131

https://github.com/DLR-TS/sumo-scenarios

	Introduction
	The scenario
	Countless tools
	randomTrips.py
	SAGA
	randomActivitygen

	Tools using traffic counts
	dfrouter
	flowrouter
	cadyts
	routesampler

	Results
	Future Work
	Acknowledgments



