
High fidelity modelling of traffic light 
control with XML logic representation 

Maik Halbach (1) and Jakob Erdmann (2),
(1) German Aerospace Center (DLR), Braunschweig, Germany

maik.halbach@dlr.de
(2) German Aerospace Center (DLR), Berlin, Germany

jakob.Erdmann@dlr.de

Abstract 

The paper describes a novel approach to modelling traffic light control in SUMO with 
control logic configured in xml inputs. It shows also, that this approach allows for high 
fidelity replication of a real-world traffic controller by comparing original and simulated 
switching behavior when confronted with the same traffic situations. The approach 
could process from a traffic engineer with limited programming knowledge. 

Contents 
1 Motivation .......................................................................................................................................... 46

2 Introduction ........................................................................................................................................ 46

2.1 Enhancements of the SUMO Software........................................................................................ 47

2.2 Structure of this paper ................................................................................................................ 47

3 XML modelling description ................................................................................................................. 48

3.1 SUMO Net preparation................................................................................................................ 48

3.2 Basic traffic light configurations .................................................................................................. 50

3.3 Define constants/parameters out of the TLD ............................................................................. 50

3.4 Define logical condition ............................................................................................................... 51

3.4 Phase logic modelling .................................................................................................................. 52

3.4.1 Example with constant time bounds .................................................................................... 52

3.4.2 Example with variable time bounds ..................................................................................... 57

3.5 Function definition ...................................................................................................................... 59

3.6 Tracking Phases ........................................................................................................................... 60

4 Replication study ................................................................................................................................ 61

4.1 Traffic light protocol .................................................................................................................... 61

4.2 TraCI Simulation .......................................................................................................................... 61

4.3 Results ......................................................................................................................................... 62

5 Conclusion .......................................................................................................................................... 62

6 Abbreviations ..................................................................................................................................... 63

7 Appendix ............................................................................................................................................. 64

SUMO User Conference 2022
https://doi.org/10.52825/scp.v3i.114
© Authors. This work is licensed under a Creative Commons Attribution 3.0 DE License 
Published: 29 Sept. 2022

45

mailto:maik.halbach@dlr.de
mailto:jakob.Erdmann@dlr.de
https://creativecommons.org/licenses/by/3.0/de/deed.en


Figure A: Example 1 – SUMO-xml ...................................................................................................... 64

Figure B: Example 2 – SUMO-xml ...................................................................................................... 65

Figure C: Stage following diagram – TLD ........................................................................................... 67

Figure D: confic.xml – SUMO ............................................................................................................. 67

8 References .......................................................................................................................................... 68

1 Motivation 

Traffic lights are an important element of traffic simulation and their accurate 
representation is necessary to achieve good agreements between real world traffic and 
simulation traffic. Even when new control concepts are to be tested, it is necessary to 
represent existing systems for a fair assessment of gains. 

The traffic simulation SUMO supports default traffic algorithms for fixed-timing control 
as well as adaptive traffic control based on detected time gaps. It also permits coupling 
with an external process for fine-grained control of traffic light switching via the TraCI 
API.1 When using TraCI, it is possible to model the traffic light logic within different 
programming Languages such as Python, C++, Matlab, and Java2. Both native and 
coupled approaches have their advantages and disadvantages. In this paper we 
introduce a new configuration approach that has advantages over the previous 
approaches: 

• High fidelity representation of control algorithms which differ from the default
algorithms

• No need for process coupling (simpler and faster)
• Simplified and standardized algorithm description mirroring existing standards

(compared to unconstrained TraCI code)
• Graphical analysis of operation and internal controller state with sumo-gui

Keywords: Simulation, traffic lights, adaptive control 

2 Introduction 

The paper describes a novel approach to modelling traffic light control in SUMO with 
control logic configured in xml inputs. We show that this approach allows for high 
fidelity replication of a real-world traffic controller by comparing original and simulated 
switching behavior when confronted with the same traffic situations. 

In the following, we explain the syntax and semantics of the new configuration langue. 
For this purpose, an exemplary control algorithm is introduced and presented in the 
typical format used by traffic engineers in Germany. We then show how to translate 
this algorithm into an xml configuration usable by SUMO. 

The figures C, 4, 7, 9, 10, 12, 15 represent a traffic light document (TLD). The 
translation of the TLD elements into a SUMO XML configuration are shown in figures 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

46



A, B, 1, 2, 3, 5, 6, 8, 11, 13, 14, 16, 18. The process of translating the TLD into the 
corresponding XML configuration is described in the following chapters. 

2.1 Enhancements of the SUMO Software 

To enable a high-fidelity modelling of traffic light control with xml logic representation, 
we implemented the new features in SUMO listed below. Further information about 
these features beyond the information in this paper, can be found in the SUMO 
documentation.3 

• Coordination of actuated traffic lights
• Type 'actuated' with custom switching rules
• Overriding phase attributes with expressions
• Storing and modifying custom controller variables at runtime
• Extended signal plan visualization

In the researching project SAVeNoW4 we used all listed functions to model the logic of 
a real traffic light controller in a SUMO xml-file. This paper uses an exemplary TLD 
which shows the most important controller design elements for a simplified 
intersection. The example controller is not completely efficient and realistic but it 
includes most of the functions typically needed for traffic light control modelling (phase 
logic and public transport prioritization).  

2.2 Structure of this paper 

First of all, we describe the SUMO Net preparation and the preparation of the additional 
xml files for the detectors and the traffic light. Than we describe basic traffic light 
configurations. We follow by describing the modelling of traffic light logics in the traffic 
light xml file. First the definition of constants/parameters, then how to identify important 
logic blocs for the basic timing attributes of sumo and also the basic function of every 
expressions. Afterwards we describe the definition in detail and also discuss alternative 
definition styles.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

47



3 XML modelling description 

3.1 SUMO Net preparation 

First of all, the SUMO Net and traffic light of the examined intersection has to be 
created. By default, every lane-to-lane connection is assigned its own “tls link index” 
to define its position within the signal state description string. To remove redundancy 
in the phase description and visualization, we define signal groups by assigning the 
same tls-link-index to all connections with the same signal behavior (in this, permissive 
green and protected green are counted as different signal behavior). (Figure 1, 
example link0, link2, link4; right frame), besides/apart from conditionally compatible 
the signal state description changes, so the link number has to be count up. By default, 
SUMO counts the link number clockwise. It is also possible to change the order of the 
link indices. An example can be seen in Figure 1. 

Figure 1: SUMO intersection tls-link-index 

 default  signal groups same tls-link-index 

The traffic light program in SUMO is defined as a list of phases numbered from 0 to n. 
We distinguish these phases by calling them “stages” and “interstages” depending on 
their role during the operation of the traffic light. Stages permit vehicle movements and 
their length may be adjusted in response to traffic conditions. The state of every signal 
stays constant while a stage is active. Interstages form the transition between stages 
and must ensure that traffic flowing in one stage has left the intersection space before 
a new stage begins. So, the states of signals could change from one interstage phase 
to the next. 

In the following program we assign to each sumo phase a name according to their 
stage number or the interstage (stage-to-stage transition) it belongs to (i.e. 1,2,3, 1.2, 
2.3, 3.1). (TLD: Figure C, SUMO-xml: Figure A, Figure B) These names serve as a 
visual aid when following the sequence of phases in the tracking diagram (chapter: 3.6 
Tracking Phases). 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

48



A signal plan can be generated for SUMO with the aid of an OCIT-file and the tool 
ocit2SUMO5. A signal plan may also be created visually in netedit (i.e. when the traffic 
light specification is only available as a pdf document). 

An additional preparation for the SUMO simulation is the definition of the detectors 
(induction loops). They are defined with the same name and also the same position 
(Figure 2, Figure 3) at each lane according to the TLD signal location plan (Figure 4). 

Figure 2: detector definition – SUMO det.add xml 
1   <additional> 

2  <inductionLoop id="DA1" lane="-E3_0" pos="-30" freq="30" file="cross.out"/> 

3  <inductionLoop id="DA2" lane="-E3_1" pos="-30" freq="30" file="cross.out"/> 

4  <inductionLoop id="DA3L" lane="-E2_0" pos="-10" freq="30" file="cross.out"/> 

5  <inductionLoop id="RPD" lane="-E3_0" pos="-50"      […]       vTypes="bus"/> 

6  <inductionLoop id="RPE" lane="E4_0"  pos="10"       […]       vTypes="bus"/> 

7   </additional> 

Figure 3: net - SUMO GUI

Figure 4: signal location plan - TLD

For the public transport prioritization, mostly “telegrams” (sent upon passing a specific 
location) are used. Here it is possible to use induction loops in sumo that are placed at 
the corresponding location and which are only triggered by specific vehicle types (i.e. 
bus) (Figure 2, line 5,6). All detectors are defined in an additional file. (Figure 2)  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

49



3.2 Basic traffic light configurations 

The next step is to declare the traffic light type of the example intersection as “actuated” 
to activate the core functionality of switching in response to traffic detectors. (Figure 5, 
line 2; type = “actuated”). The parameter coordinated has to be set to “true” in order to 
align the cycle second counter of the traffic light with the simulation time (Figure 5, line 
3). In coordinated mode, the cycle-second time range configured by the attributes 
earliestEnd and latestEnd will be aligned with all other traffic lights of the same 
cycleTime. The cycleTime attribute (Figure 5, line 4) denotes the duration of one 
switching cycle. The offset attribute (Figure 5, line 2) defines where within the cycle, 
the signal program will start, effectively shifting the initial cycle second. 

An optional next step is to assign the detectors related to the signal plan and the 
intersection (Figure 5, line 6-8). This permits using custom detector placement instead 
of detectors that would otherwise be generated in default locations on each incoming 
lane during initialization. To define a custom detector, a lane that is incoming to the 
traffic light is used as the key and the id of a custom detector is used as the value. Both 
custom and automatic detectors can later be observed when tracking operations 
visually (chapter: 3.6 Tracking Phases) 

Figure 5: basic traffic light configurations – SUMO xml 
2 <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

(abstract of Figure A) 

3.3 Define constants/parameters out of the TLD 

The parameter setting out of the TLD are defined in conditions with fixed values in the 
SUMO XML (Figure 6). This corresponds directly to a table of values as in TLD (Figure 
7). This simplifies re-use of an existing algorithm by only modifying its parameters to 
create another signal plan with different parameters for a different time of the day. 

Figure 6: Table of algorithm configuration constants – SUMO xml 
14  minal/maximal times  

15 <condition id="min_Stage_1" value="10"/> 

16 <condition id="max_Stage_1"   value="60"/> 

17 <condition id="tgrmin_FVA"  value="35"/> 

18 <condition id="tgrmax_FVA"  value="32"/> 

19 <condition id="max_pedestrian" value="75"/> 

20 

21  constants 

22 <condition id="k1" value="1"/> 

23 <condition id="k2" value="2"/> 

24 

25  time conditions 

26 <condition id="t01"  value="30"/> 

27 <condition id="t02"  value="65"/> 

28 <condition id="tb01" value="45"/> 

29 <condition id="tb02" value="80"/> 

(abstract of Figure A)

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

50



Figure 7: Table of algorithm configuration constants – TLD 

3.4 Define logical condition 

The logical condition out of the TLD (Figure 9) are defined in conditions (Figure 8). 

Figure 8: logical conditions – SUMO xml
59 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

60 <condition id="An" value="z:RPD + k1"/> 

61 <condition id="Ab" value="z:RPE + k2"/> 

62 <condition id="l2" value="a:DA3L"/> 

(abstract of Figure A) 

Figure 9: logical conditions – TLD 

All logic conditions here used functions to retrieve information from detectors 
previously assigned to the traffic light controller, but it is also possible to retrieve 
information from every detector loaded into the simulation. The function z:DETID 
retrieves the time (in seconds) since the last vehicle detection at the detector with id 
DETID. The function a:DETID returns a value of 1 if the given detector is occupied and 
0 otherwise. 

minal/maximal times  constants 

variable P1 constants P1 

min_Stage_1 10 k1 1 

max_Stage_1 60 k2 2 

tgrmin_FVA 35 
time conditions tgrmax_FVA 32 

max_pedestrian 75 time conditions P1 

t01 30 

t02 65 

tb01 45 

tb02 80 

name Logical condition comment 

l1 (ZD(DA1) >= 3) or (ZD(DA2) >= 3) FVA 

An ZD(RPD) + k1 Bus 

Ab ZD(RPE) + k2 Bus 

L2 Demand(DA3L) FVAL 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

51



3.4 Phase logic modelling 

We show two possible ways to model a phase logic. 

The approach of the first example can be used when all attributes that describe the 
time boundaries of a phase minDur, maxDur, earliestEnd and latestEnd have fixed 
values. 

52 <phase […] minDur="0" maxDur="40" earliestEnd="70" latestEnd="84"/> 
(abstract of Figure A) 

The advantage of this approach is the brevity of the XML definition. However, some 
TLD descriptions may be too complex to use constant values to describe time 
boundaries or it may be too hard to restructure the flow diagrams of the TLD and extract 
these constants.  
In this case it can be simpler to “blindly” transcribe all logic elements from the TLD and 
forgo the “simpler” XML definition. Hence, we also describe a second approach where 
the attributes minDur, maxDur, earliestEnd and latestEnd are replaced by complex 
conditions. This more general approach can be used to transcribe any TLD logic but 
the resulting XML configuration is lengthier and somewhat harder to understand. Good 
names for the employed conditions help to keep the descriptions readable and aids in 
debugging with the phase tracking dialog.  

3.4.1 Example with constant time bounds 

Figure 10 shows the phase logic of the first example as expressed in the TLD. 

Figure 10: Example 1 - TLD logic 

TLD SUMO-XML modelling 
Constant time bounds Figure10 Figure A 
Variable time bounds Figure13 Figure B 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

52



All shown TLD phase logics in this paper are similar to the CROSSIC Software notation 
(Open TRELAN). For readers familiar with the LISA+ notation, we show the main 
difference in flow diagram style in Figure 11. 

Figure 11: Phase x logic example 

3.4.1.1 Sumo phase definition 

Each phase (stage or interstage) can either be of fixed or variable duration. Whereas 
fixed phases may be fully described by the duration attribute, the attributes minDur, 
maxDur, earliestEnd, latestEnd are used to describe the time bounds for variable-
length phase. The attributes next, earlyTarget, finalTarget are used to define successor 
relationships among phase and the conditions for switching between them. All these 
attributes will be described in the following. 

3.4.1.2 Phase logic modelling 

The switching time for a phase of variable length may be restrained by upper and lower 
bounds with regard to its running duration and also with regard to a time window for 
coordination. For this purpose, the ‘phase’ element provides the following attributes: 

- minDur: minimum running duration (mandatory)
- maxDur: maximum running duration (optional)
- earliestEnd: earliest time within a cycle for ending phase (optional)
- latestEnd: latest end within a cycle for ending phase (optional)

These attributes correspond to standard control parameters in a typical TLD and in our 
example they take on the values of b1, b2, b4 and b10 (Figure 10). 

The possible reachable interstages are here in the blocs b3, b8, b9, b12 and b13 
(Figure 10). These blocs represent which interstages are used to skip in another phase 
and also define in which following phase the phase0/stage1 is able to switch. Attribute 
next defines in which possible following phases the phase0/stage1 could switch. 
EarlyTarget defines conditions which are checked upon entering the lower time bounds 
of minDur and earliestEnd. FinalTarget defines conditions which are checked when 
reaching the upper time bounds of maxDur or latestEnd. In Figure 10, the yellow blocks 
(b1, b2, b4, b10) define these time bounds. The remaining blocks from the earlyTarget 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

53



area (blue) and finalTarget area (red) in Figure 10 we have to define for possible paths 
through the logic. So, every question bloc in the earliestTarget area (Figure 10, blue) 
and finalTarget area (Figure 10, red) are defined as a condition with the same name 
like the bloc named in TLD Logic. (Figure 10) These conditions are necessary for later 
modelling. For later defining of b10 (in chapter 3.4.1.6) we have also to model the blocs 
b1, b2, b4, b10. (Figure 12) The function c: access the current cycle second of the 
operating signal plan.  

Figure 12: Example 1 bloc conditions – SUMO xml 
70    <condition id="b5" value="l1"/> 

71 <condition id="b6" value="l2"/>

72    <condition id="b11" value="M1 = 1"/> 

73 

74 <condition id="b1" value="min_Stage_1 >= c:"/> 

75 <condition id="b2" value="max_Stage_1 >= c:"/> 

76 <condition id="b4" value="t01 >= c:"/> 

77 <condition id="b10" value="t02 >= c:"/>

 (abstract of Figure A) 

For earlyTarget the starting point is in general minDur and/or earliestEnd. In our example 
it is earliestEnd, so b4. In the example earlyTarget is checked when minDur and 
earliestEnd is reached. For finalTarget the starting point is in general maxDur or 
latestEnd. In our example it is maxDur or latestEnd which has to be reached, so b2 or 
b10. Now every frame condition is described in general. In the following the detailed 
modelling of each frame condition will be described. 

3.4.1.3 MinDur maxDur 

The first values are the minDur and maxDur. In SUMO we could implement this in two 
ways. With a fixed value  

<phase […] minDur="10"[…] maxDur="60"[…]/> 

or we override the attributes with an expression 
32 <phase […] minDur="-1" maxDur="-1"[…]/>  

64 <condition id="minDur:0" value="min_Stage_1"/> 

65 <condition id="maxDur:0" value="max_Stage_1"/> 

(abstract of Figure A) 

Even if the minimum duration of a phase is constant, it may be advantageous to 
override the phase attribute in order to collect all configuration parameters in a single 
place within the XML configuration. This makes it easier to copy and re-use a 
configuration for another controller program.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

54



3.4.1.4 EarliestEnd latestEnd 

For the earliestEnd and latestEnd the same override approach as described for minDur 
and maxDur may be used. But also, a fixed value defined directly in the phase definition 
works. 
32 <phase […] earliestEnd="-1" latestEnd="-1" […]/> 

67 <condition id="earliestEnd:0" value="t01"/>  

68 <condition id="latestEnd:0"   value="t02"/> 

(abstract of Figure A) 

 EarliestEnd and latestEnd will be always compare with currently cycle second. 

3.4.1.5 Next 

Attribute Next defines possible successor phases for a given phase. It is typically used 
in stages to declare the first phase for each possible interstage sequences that target 
a successor stage. However, in some controllers it is also possible to branch of into 
different interstages from within an interstage.  It is possible to switch when any of the 
basic conditions ((minDur and/or earliestEnd) or maxDur or latestEnd) is reached. In 
the example we defined in next with phase indices 1 and 6 because these are the 
interstages/phases which transition after a switch to the stage 2 and stage 3.  
32 <phase name="stage1" […]  next="1 6"/> 
(abstract of Figure A) 

These transitions are shown in the stage-sequence-diagram (Figure C). If a phase 
does not use attribute next, the signal plan switches to the subsequent phase in the 
phase list after reaching max duration (with a wraparound to 0 at the end). To define a 
signal plan with a single phase that is permanent green phase one could write the 
index of the phase itself in the next attribute or specify only a minDur but no maxDur. 

3.4.1.6 EarlyTarget and finalTarget 

In our controller there are two ways to switch out of the phase0/stage1. The first way 
is by adapting to traffic measurement (elapsed time since detection). Effectively, the 
phase is ended when a defined condition evaluates to ‘true’ (or non-0). In the example 
we could exit the phase earlier as soon as minDur and erliestEnd are reached, then 
Sumo will check by order of the values of next the listed phases. The attributes 
earliestEnd check the including conditions of the mentioned phases. If a condition is 
true the signal plan switches in this phase. If none of the conditions are true, the signal 
plan remain in the phase 0/stage1. For earliestEnd here are two possible paths.  

path b5-b6-b9 
34    <phase […] name="INS1.2" earlyTarget="b5 and !b6 " […]/> 

(abstract of Figure A) 

and path b5-b6(f)-b7-b8 
42 <phase […] name="INS1.3" earlyTarget="b5 and b6" […]/> 

(abstract of Figure A) 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

55



We have only to model the questions blocks from the paths because they will change 
something on the operating decision. Here the logic conditions (Figure 8) and the 
conditions about the blocs (Figure 12) are used to define the paths. The possible paths 
must be written in the attribute earliestEnd for each phase which is possible to reach 
for the signal program (INS1.2/phase 1 and INS1.3/phase 6), as shown above.  
The path b5-b6(f)-b7-b8 has a special bloc b7 (Figure 10), in this bloc a variable is be 
written. It is not possible do it directly in the path. But when the path b5-b6(f)-b7-b8 is 
reached it is a unique path within the how logic, so we define an assignment to 
modelling that. If all blocs of the path get the right state, V will be assigned with the 
integer 12 and the path b5-b6(f)-b7-b8 is modelled completely. 
79 <condition id="V" value="0"/> 

80 
81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/>

(abstract of Figure A) 

It is also possible to model it when there are more than two paths for the earliestTarget. 

When defining latestEnd = cycle time - duration_interstage from the last phase, then 
each cycle will last for the give cycle duration. 

The second diagram path for leaving the state is via the finalTarget bloc. It is used 
when maxDur or latestEnd are reached. Here we have two possible pathways. The 
path begins at the starting element maxDur b2 and latestEnd b10. Sumo will check by 
order of the values of next Phase the attributes finalTarget and check the including 
conditions of the mentioned phases. If a condition is true the signal program switch to 
this phase. Here we have to define two paths to the interstage1.2:  

path 1: b2-b3 path 2: b10-b11(f)-b13 
34 <phase […] name="INS1.2" finalTarget="b2 or !b11"/> 

(abstract of Figure A) 

and one path to the Interstage1.3: 

path: b10-b11-b12  
42 <phase […] name="INS1.3" finalTarget="b10 and b11"/> 

(abstract of Figure A) 

Here we also only model the question blocs for the same reason as mentioned. If none 
of the condition evaluates to true, SUMO switches to the last value of the next attribute 
as a fallback. If next is not defined, it switches to the next phase in definition order. In 
a typical TLD this should not occur and at least one of the path conditions should 
evaluate to true.  

With this, every possible path in the logic is modeled and the SUMO controller can 
determine the switching conditions as described in the TLD.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

56



3.4.2 Example with variable time bounds 

For the second example we transcribe a TLD that does not express the time 
boundaries minDur (b1), maxDur (b2), earliestEnd (b4) and latestEnd (b10) with 
numerical constants (Figure 13). This means the XML definition cannot use attributes 
minDur, maxDur, earliestEnd and latestEnd as shown in the first example. In the 
following text we describe how to create the appropriate XML definitions.  

Figure 13: Example 2 - TLD logic 

First of all, we define a condition for every question bloc with the same bloc name as 
in the TLD logic. (Figure 14)  
Here we used two SUMO function which we want to describe shortly. Function g: 
accesses the current running green time of a link. function r: accesses the current 
running red time of a link. This could be used for example to define that a maximum 
waiting time for pedestrians is not exceeded.  

Figure 14: Example 2 bloc conditions – SUMO xml 
62 <condition id="b1" value="(g:0 >= tgrmin_FVA)"/> 

63 <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 
64 <condition id="b4" value="(c: >= t01 or tb01 > c:)"/> 

65 <condition id="b5" value="l1"/> 

66 <condition id="b6" value="(l2 and b11)"/> 

67 <condition id="b10" value="(c: >= t02 or tb02 > c:)"/> 

68 <condition id="b11" value="M1 = 1"/>  

(abstract of Figure B) 

In our example in bloc b2 (Figure 13) expresses that max_pedestrian has to be smaller 
or equal than the red time of fgd/link 10, here we have to swap both expressions (from: 
tr(fgd) <= max_pedestrian to max_pedestrian >= tr(fgd)), because the traffic light 
definition is processed in a xml file, for that reason we have to pay attention with the 
possible syntax of xml. The XML standard prohibits use of the ‘<’ character within an 
attribute value. The simplest solution is to reverse the inequality and use the permitted 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

57



‘>’ character. A less readable alternative would be to use the xml code ‘&lt;’ to encode 
the ‘<’ character. These two options are possible ways to implement the specific 
condition: 

63   <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 

(abstract of Figure B) 

or 

<condition id="b2" value="(g:0 >= tgrmax_FVA) or (r:9 &lt;= max_pedestrian)"/> 

Then we define the pathways for reachable interstage. 
70 <condition id="b3" value="(b1 and !b2)"/> 

71 <condition id="b8" value="(b1 and b2 and b4 and b5 and !b6)"/> 

72 <condition id="b9" value="(b1 and b2 and b4 and b5 and b6)"/> 

73 <condition id="b13" value="(b1 and b2 and b4 and !b5 and b10 and b11)"/> 

74 <condition id="b12" value="(b1 and b2 and b4 and !b5 and b10 and !b11)"/> 

(abstract of Figure B) 

The conditions were named like the interstage action bloc. Then we define conditions 
which will be used for the attribute earlyTarget of every reachable interstage 
76 <condition id="earlyTarget_INS_1_2" value="b3 or b8 or b13"/> 

77 <condition id="earlyTarget_INS_1_3" value="b9 or b12"/> 

(abstract of Figure B) 

Then every earlyTarget attribute is assigned the condition (defined above) which 
collects all paths by which this transition may be reached. 
32 <phase […] name="INS1.2" earlyTarget="earlyTarget_INS_1_2"/> 

40 <phase […] name="INS1.3" earlyTarget="earlyTarget_INS_1_3"/> 
(abstract of Figure B) 

While in stage 1, the conditions for each path are checked in every simulation step. If 
any of them evaluates to true (non-zero) the phase will switch. It works because every 
path is unique.  

Effectively, all checks that were modelled by attributes minDur, maxDur, earliestEnd, 
latestEnd and finalTarget in the first example, were moved into the earlyTarget check. 
for that reason, minDur was set “0” and maxDur to a very high value (maxDur may also 
be omitted for the same effect). 
31 <phase duration="99"[…] name="stage1" minDur="0" maxDur="1000000" […]/> 

(abstract of Figure B) 

In the example 1, the logic uses a special function which we describe below. 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

58



3.5 Function definition 

In the algorithm description within the TLD logic, function definitions are often use to 
structure repeating code. In our example we use a function for data preparation of the 
public transport prioritization.  

Figure 15: function – TLD logic 

A function definition requires a name (id) and the number of input arguments (nArgs). 
(Figure 16, line 83) This is followed by assignments which model all possible paths 
through the logic diagram of the TLD function. In our example we named the 
assignments/path like the last action bloc in each path (Figure b16, b19, b20, b21). In 
the value description of every assignments the input arguments are defined with a $ 
number argument. Then assignments for the output argument of the function are 
defined (Figure 16, line 88-91). The function now checks if a unique path is reached, 
depending on this a corresponding value is assigned to the function output $0. To call 
the function the expression ID:arg1,arg2,…,argN is used in a condition expression. 
(Figure 16, line 94) (Figure 15, b14). Note that there may be no spaces after a comma. 

Figure 16: function – SUMO-xml 
83   <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)"/> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and !(1 >= $4)"/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/> 

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/>

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92   </function> 

93 

94   <condition id="M1" value="function:An,t01,t02,Ab"/> 
(abstract of Figure B) 

Assignment definitions placed outside a function definition are evaluated and executed 
in every simulation step where switching is possible. They are executed in the order in 
which they are defined. Likewise, in a function all assignments are executed in 
definition order every time the function is evaluated.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

59



3.6 Tracking Phases 

A useful mode for observing and analyzing the switching behavior of a traffic light is a 
diagram that shows signal and detector states over time. Such functionality is often 
part of the software suite used by commercial traffic light design software. The sumo-
gui application which is part of the SUMO software package, provides the ‘Phase 
Tracker’ (Figure 17) dialog to display such a diagram. It was recently extended to 
optionally show internal controller variables along with detector states to aid in 
debugging controller operation. The dialog is accessed by right-clicking on a traffic 
signal and selecting the ‘track phases’ menu entry.  

With the parameter key show-conditions, the list of observed expression can be 
customized. 
11  <param key="show-conditions" value="b5 b6"/> 

(abstract of Figure A / Figure B) 

With the parameter key extra-detectors, it is possible to visualize in the tracking mode 
any additional detectors within the sumo simulation. In our example, this is used to 
track the state of additional induction loops used for the bus prioritization. It works for 
induction loops as well as laneAreaDetecors. 

12    <param key="extra-detectors" value="RPD RPE"/> 

(abstract of Figure A / Figure B) 

Figure 17: Tracking Phases:

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

60



4 Replication study 

4.1 Traffic light protocol 

Real-world traffic lights may supply a second-by-second record of their signal states, 
detector occupation, and public transport telegrams.  

Figure 18: Traffic light record:
2021-07-31-11-19-57 secOfDay:40796 lza:15 konr:156 diff:1836 values: 303 0 0 189 145 273 0 0 0 0 0 729 175 0 0 0 40 3630 3970 40 
2021-07-31-11-19-58 secOfDay:40797 lza:15 konr:156 diff:1857 values: 403 0 0 190 145 273 0 0 0 0 0 729 175 0 0 0 40 3620 3960 40 
2021-07-31-11-19-59 secOfDay:40798 lza:15 konr:156 diff:1775 values: 503 0 0 191 145 273 0 0 0 0 0 729 175 0 0 0 40 3610 3950 40 

This protocol is specific to a particular controller software version and also to the control 
algorithm itself. With the aid of controller software documentation and the TLD it is 
possible to interpret all elements of the record and to write a semantically identical 
record based on the outputs of a SUMO simulation. 

By preparing a simulation that replays the detector-states from a real-world controller 
record, and writing a corresponding simulation record, we can compare whether the 
simulated controller has the same switching behavior as the real-world controller for 
the recorded traffic situation. 

4.2 TraCI Simulation 

To simplify the replay-simulation, we have used the TraCI client functionality for setting 
artificial detector states. This avoids the need for creating vehicles which would trigger 
the detectors at the recorded times. 

The TraCI function inductionloop.overrideTimeSinceDetection was used to 
replicate the exact detection times from the real-world recording. 

Figure 19 example trigger a SUMO detector with TraCI (python) 

traci.inductionloop.overrideTimeSinceDetection("DA1",0)   #Demand  
traci.inductionloop.overrideTimeSinceDetection("DA1",-1)  #no Demand 

In our project, the real-world intersection (located in Ingolstadt) also participates in a 
network wide control scheme. This means it is supplied externally with integer values 
that may change over time and which are used in the controller logic. 

To emulate access to these variables, we have added virtual laneAreaDetectors in 
SUMO and supplied the values (x) from the real-world record via the function 
traci.lanearea.overrideVehicleNumber. 

Figure 20: example trigger a SUMO laneAreaDetectors with TraCI (python) 

traci.lanearea.overrideVehicleNumber("T6", X) #Value X 
traci.lanearea.overrideVehicleNumber("T6",-1) #No Value 

This way we can use the expression “a:DETECTOR_ID” to retrieve the recorded 
numerical values.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

61



Figure 21: implementation to retrieve the recorded numerical values in the traffic light 
control 

<condition id="T6" value="a:T6"/> 

<assignment id="t06" check="a:T6 != 0 " value="T6"/> 

Since the operating of the network wide control scheme has its own control logic based 
on parameters and detector states, it would have also been possible to replicate this 
logic within the custom switching rules. This, would make it necessary to include all 
detectors that participate in network control within the simulation.  

4.3 Results 

We simulated 60 minutes with the detector record data and compared the second-by-
second sequence of stages and interstages from the record with the corresponding 
sequence from the simulation. A matching sequence indicates that the simulation 
traffic light in SUMO has the same behavior as the recorded real-world traffic light.  

In our experiment the stages and interstages were reproduced with an accuracy of  
96%. While analyzing the real-world record we observed errors such as gaps and 
duplicate time steps and this is likely a source of the disagreement between both 
records. And some synchronizations situations from outside/external are not 
completely reproduced.  

Due to time constraints, we did not translate the logic modules for initializing the 
program at daybreak or for switching it off at nightfall. We also excluded the code for 
emergency vehicle prioritization. In our tests we therefore used a record sequence that 
did not feature these events. 

Unfortunately, we also could not test the code for bus prioritization because some of 
the functions referenced in the TLD were not made available by the vendor of the 
controller software in time for this publication.i For this reason, our tests also excluded 
bus approaches. 

Nevertheless, we are convinced that the omitted logic modules can be reproduced in 
SUMO as long as their behavioral description is available in full. 

5 Conclusion 

In prior versions of SUMO, it was only possible to model detailed adaptive traffic light 
control with an external TraCI client process and this route was only open to users with 
considerable experience in computer programming. With the configuration language 
presented in this work, it is possible to achieve a high-fidelity simulation given familiarity 
with traffic signal design documents and very limited programming knowledge.  

Nevertheless, replicating the described toolchain for replaying a controller record and 
generating a corresponding simulation record still requires programming experience. 

i GEVAS Software GmbH has graciously provided control flow diagrams for some of its functions already and we 
expect to replicate all features of bus prioritization eventually. 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

62



6 Abbreviations 

b logic bloc 

bx(f) bx is false  

bx-by-bz it defines a path of logic blocs 

by by is true 

cycle second the time within the current cycle (0 <= cycle second < cycle time) 

cycle time     the duration of a full cycle 

F false 

Fg Pedestrian  

FV Individual motorized Traffic 

INS interstage 

P1 Signal program 1 / Signal plan 1 

T true 

tgr  green time of the signal group 

TLD  traffic light document 

tr red time of the signal group 

TraCI  Traffic Control Interface (a SUMO API)

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

63



7 Appendix 

Figure A: Example 1 – SUMO-xml 
1<additional> 

2   <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

9 

10 

11 <param key="show-conditions" value="b5 b6"/>  

12 <param key="extra-detectors" value="RPD RPE"/> 

13 

14 <!-- minal/maximal times--> 

15 <condition id="min_Stage_1" value="10"/> 

16 <condition id="max_Stage_1" value="60"/> 

17 <condition id="tgrmin_FVA" value="35"/> 

18 <condition id="tgrmax_FVA" value="32"/> 

19 <condition id="max_pedestrian" value="75"/> 

20 

21 <!--constants--> 

22 <condition id="k1" value="1"/> 

23 <condition id="k2" value="2"/> 

24 

25 <!--time conditions--> 

26 <condition id="t01"  value="30"/> 

27 <condition id="t02"  value="65"/> 

28 <condition id="tb01" value="45"/> 

29 <condition id="tb02" value="80"/> 

30 

31 <!—link index: 0123456789 --> 

32 <phase duration="99" state="GrrrGgrrrr" name="stage1" minDur="-1" maxDur="-1" 

earliestEnd="-1" latestEnd="-1" next="1 6"/>  <!--0--> 

34 <phase duration="3" state="yrrrGgrrrr" name="INS1.2" 

earlyTarget="b5 and !b6" finalTarget="b2 or !b11"/> <!--1--> 

35 

36  <phase duration="10"state="rrrrGgrrrr" name="stage2"/>  <!--2--> 

37 

38  <phase duration="3" state="rrrryyrrrr" name="INS2.4"/>    <!--3--> 

39 <phase duration="1" state="rrrrrrrrrr" name="INS2.4"/>  <!--4--> 

40      <phase duration="2" state="rruurruuuG" name="INS2.4" next = "13"/>   <!--5--> 

41 

42 <phase duration="3" state="Grrryyrrrr" name="INS1.3" 

earlyTarget="b5 and b6" finalTarget="(b10 and b11)"/> <!--6--> 

43 <phase duration="1" state="Grrrrrrrrr" name="INS1.3"/> <!--7--> 

44 <phase duration="2" state="Gurrrrrrrr" name="INS1.3"/> <!--8--> 

45 

46 <phase duration="10"state="GGrrrrrrrr" name="stage3"/> <!--9--> 

47 

48 <phase duration="3" state="yyrrrrrrrr" name="INS3.4"/> <!--10--> 

49 <phase duration="1" state="rrrrrrrrrr" name="INS3.4"/> <!--11--> 

50 <phase duration="2" state="rrurrruuuG" name="INS3.4"/> <!--12--> 

51 

52 <phase duration="40" state="rrGgrrgGgG" name="stage4" minDur="0" maxDur="40" 

earliestEnd="70" latestEnd="84"/> <!--13--> 

53 

54 <phase duration="3" state="rryyrryyyr" name="INS4.1"/>    <!--14--> 

55 <phase duration="1" state="rrrrrrrrrr" name="INS4.1"/>   <!--15--> 

56 <phase duration="2" state="urrruurrrr" name="INS4.1"/>   <!--16-->   

57 

58 <!--logical condtion definition--> 

59 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

60 <condition id="An" value="z:RPD + k1"/> 

61 <condition id="Ab" value="z:RPE + k2"/> 

62 <condition id="l2" value="a:DA3L"/> 

63 

64 <condition id="minDur:0" value="min_Stage_1"/> 

65 <condition id="maxDur:0" value="max_Stage_1"/> 

66 

67 <condition id="earliestEnd:0" value="t01"/> 

68 <condition id="latestEnd:0"   value="t02"/> 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

64



69 

70 <condition id="b5" value="l1"/> 

71 <condition id="b6" value="l2"/> 

72 <condition id="b11" value="M1 = 1"/> 

73 

74 <condition id="b1" value="min_Stage_1 >= c:"/> 

75 <condition id="b2" value="max_Stage_1 >= c:"/> 

76 <condition id="b4" value="t01 >= c:"/> 

77 <condition id="b10" value="t02 >= c:"/> 

78 

79 <condition id="V" value="0"/> 

80 

81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/> 

82 

83 <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)" /> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and !(1 >= $4)"/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/>

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/> 

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92 </function> 

93 

94 <condition id="M1" value="function:An,t01,t02,Ab"/> 

95 

96   </tlLogic> 

97</additional>  

Figure B: Example 2 – SUMO-xml 
1<additional> 

2   <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

9 

10 

11 <param key="show-conditions" value="b5 b6"/>  

12 <param key="extra-detectors" value="RPD RPE"/> 

13 

14 <!-- minal/maximal times--> 

15 <condition id="tgrmin_FVA" value="35"/> 

16 <condition id="tgrmax_FVA" value="32"/> 

17 <condition id="max_pedestrian" value="75"/> 

18 

19 <!--constants--> 

20 <condition id="k1" value="1"/> 

21 <condition id="k2" value="2"/> 

22 

23 <!--time conditions--> 

24 <condition id="t01"  value="30"/> 

25 <condition id="t02"  value="65"/> 

26 <condition id="tb01" value="45"/> 

27 <condition id="tb02" value="80"/> 

28 

29 <!-- link index: 0123456789 -->

30 <phase duration="99" state="GrrrGgrrrr" name="stage1" minDur="0" maxDur="1000000" 

next="1 6" />                   <!--0--> 

31 

32 <phase duration="3" state="yrrrGgrrrr" name="INS1.2" 

earlyTarget="earlyTarget_INS_1_2"/> <!--1--> 

33 

34 <phase duration="10"state="rrrrGgrrrr" name="stage2"/> <!--2--> 

35 

36 <phase duration="3" state="rrrryyrrrr" name="INS2.4"/> <!--3--> 

37 <phase duration="1" state="rrrrrrrrrr" name="INS2.4"/> <!--4--> 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

65



38 <phase duration="2" state="rruurruuuG" name="INS2.4" next= "13"/>  <!--5--> 

39 

40 <phase duration="3" state="Grrryyrrrr" name="INS1.3" 

earlyTarget="earlyTarget_INS_1_3"/> <!--6--> 

41 <phase duration="1" state="Grrrrrrrrr" name="INS1.3"/> <!--7--> 

42 <phase duration="2" state="Gurrrrrrrr" name="INS1.3"/> <!--8--> 

43 

44 <phase duration="10"state="GGrrrrrrrr" name="stage3"/> <!--9--> 

45 

46 <phase duration="3" state="yyrrrrrrrr" name="INS3.4"/> <!--10--> 

47 <phase duration="1" state="rrrrrrrrrr" name="INS3.4"/> <!--11--> 

48 <phase duration="2" state="rrurrruuuG" name="INS3.4"/> <!--12--> 

49 

50 <phase duration="40" state="rrGgrrgGgG" name="stage4" minDur="0" maxDur="40" 

earliestEnd="70" latestEnd="84"/> <!--13--> 

51 

52 <phase duration="3" state="rryyrryyyr" name="INS4.1"/> <!--14--> 

53 <phase duration="1" state="rrrrrrrrrr" name="INS4.1"/> <!--15--> 

54 <phase duration="2" state="urrruurrrr" name="INS4.1"/> <!--16--> 

55 

56 <!--logical condition definition--> 

57 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

58 <condition id="An" value="z:RPD + k1"/> 

59 <condition id="Ab" value="z:RPE + k2"/> 

60 <condition id="l2" value="a:DA3L"/> 

61 

62 <condition id="b1" value="(g:0  >= tgrmin_FVA)"/> 

63 <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 

64 <condition id="b4" value="(c: >= t01 and tb01 > c:)"/> 

65 <condition id="b5" value="l1"/> 

66 <condition id="b6" value="(l2 and b11)"/> 

67 <condition id="b10" value="(c: >= t02 and tb02 > c:)"/> 

68 <condition id="b11" value="M1 = 1"/>  

69 

70 <condition id="b3" value="(b1 and !b2)"/> 

71 <condition id="b8" value="(b1 and b2 and b4 and b5 and !b6)"/> 

72 <condition id="b9" value="(b1 and b2 and b4 and b5 and b6)"/> 

73 <condition id="b13" value="(b1 and b2 and b4 and !b5 and b10 and b11)"/> 

74 <condition id="b12" value="(b1 and b2 and b4 and !b5 and b10 and !b11)"/>

75 

76 <condition id="earlyTarget_INS_1_2" value="b3 or b8 or b13"/> 

77 <condition id="earlyTarget_INS_1_3" value="b9 or b12"/> 

78 

79 <condition id="V" value="0"/> 

80 

81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/> 

82 

83 <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)" /> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:))and !(1 >= $4)/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/>

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/> 

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92 </function> 

93 

94 <condition id="M1" value="function:An,t01,t02,Ab"/> 

95 

96   </tlLogic> 

97</additional> 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

66



Figure C: Stage following diagram – TLD 

Figure D: confic.xml – SUMO 
Note, that the detectors det.xml has always to be loaded bevor the traffic light 
configuration which references the detectors is loaded.   
<configuration> 

 <input> 

   <net-file value="paper_net.net.xml"/> 

   <route-files value="paper_routes.rou.xml"/> 

   <additional-files value="paper_inductionloop.det.xml,paper_traffic_light_control.add.xml"/> 

 </input> 

</configuration>

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

67



8 References 

1  https://sumo.dlr.de/docs/TraCI.html#using_traci    
Web page of German Aerospace Center (DLR), accessed 11.04.2022 
2 https://sumo.dlr.de/docs/TraCI.html#resources 
Web page of German Aerospace Center (DLR), accessed 11.04.2022 
3 https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html 
Web page of German Aerospace Center (DLR), accessed 11.04.2022 
4 https://savenow.de/de/ 
Web page of SAVeNoW, accessed 11.04.2022 
5 https://github.com/DLR-TS/sumo-ocit 
Source code repository for import of OCIT data files, accessed 11.04.2022 

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

68

https://sumo.dlr.de/docs/TraCI.html#using_traci
https://sumo.dlr.de/docs/TraCI.html#resources
https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html
https://savenow.de/de/
https://github.com/DLR-TS/sumo-ocit



