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Abstract 
User equilibrium (UE) and system optimal (SO) are among the essential principles for 

solving the traffic assignment problem. Many studies have been performed on solving the 
UE and SO traffic assignment problem; however, the majority of them are either static (which 
can lead to inaccurate predictions due to long aggregation intervals) or analytical (which is 
computationally expensive for large-scale networks). Besides, most of the well-known micro/
meso traffic simulators, do not provide a SO solution of the traffic assignment problem. To this 
end, this study proposes a new simulation-based dynamic system optimal (SB-DSO) traffic 
assignment algorithm for the SUMO simulator, which can be applied on large-scale networks. 
A new swapping/convergence algorithm, which is based on the logit route choice model, is 
presented in this study. This swapping algorithm is compared with the Method of Successive 
Average (MSA) which is very common in the literature.  Also, a surrogate model of marginal travel 
time was implemented in the proposed algorithm, which was tested on real and abstract road 
networks (both on micro and meso scales). The results indicate that the proposed swapping 
algorithm has better performance than the classical swapping algorithms (e.g. MSA). Furthermore, 
a comparison was made between the proposed SB-DSO and the current simulation-based 
dynamic user equilibrium (SB-DUE) traffic assignment algorithm in SUMO. This proposed 
algorithm helps researchers to better understand the 
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impacts of vehicles that may follow SO routines in future (e.g., Connected and Autonomous 
Vehicles (CAVs)). 

1 Introduction 
One of the most critical factors in the transportation planning process is solving the traffic 

assignment problem (Bamdad Mehrabani et al., 2021). Traffic assignment determines the routes that 
are used by vehicles based on certain behavioral principles, such as, for example, each vehicle seeks 
to minimize its own travel time. Many of the current traffic assignment algorithms are based on the 
two behavioral principles of Wardrop (Wardrop, 1952): (1) Wardrop’s first principle: under user 
equilibrium (UE) conditions, no vehicle can unilaterally reduce its travel time by shifting to another 
route; (2) Wardrop’s second principle: under system optimal (SO) conditions, traffic should be 
arranged in congested networks such that the average (or total) travel time is minimized. The first 
principle (UE) assumes that each vehicle attempts to minimize its own travel time (selfish routing). In 
contrast, in the second principle (SO), it is considered that each vehicle selects a route that minimizes 
not only its own travel time but also the entire network’s travel time. 

Traffic assignment methods can be broadly classified into two categories: 1) static traffic 
assignment (STA) and 2) dynamic traffic assignment (DTA) (Saw et al., 2015; Tsanakas, 2019). In 
STA, the traffic demand is static with respect to time and is typically used for strategic transportation 
planning. In DTA, the traffic demand is not static and varies over time, and the arrival time at a link is 
different from the departure time. Although the computational expenses of DTA are higher than those 
of STA, DTA attracts researchers owing to the several limitations of STA, for example, 1) limitations 
of static models because of the use of volume delay functions (such as no overtaking effects and no 
representation of the phenomenon of congestion spillback), 2) limitations in modeling of signal 
synchronization, 3) limitations in modeling of lane-based effects (such as high-occupancy vehicle 
lanes), and 4) limitations in modeling intelligent transportation system-related applications, such as 
traveler information systems (Chiu et al., 2011). 

Different models exist in the literature to solve the DTA. The most important models are listed in 
Table 1. 

Analytical models of DTA use analytical formulations to predict the propagation of traffic in a 
network (network loading). Traffic propagation models, which are used in analytical models, are 
typically based on extensions of the Lighthill–Whitham–Richards (LWR) model (Lighthill & 
Whitham, 1955; Richards, 1956). LWR is a macroscopic one-dimensional traffic model that uses 
traffic density and speed for traffic flow propagation (Li, 2016). The traffic flow propagation during 
dynamic network modeling can be based on the cell transmission model (Ziliaskopoulos, 2000) or 
link transmission model (Yperman, 2007). Although the mathematical closed-form is available for the 
analytical solution algorithm (thus, they are highly accurate), in practice, they cannot model certain 
phenomena (such as individual vehicles and vehicle interaction) in detail due to their macro-scale 
nature. Also, applying analytical assignment problems to large-scale networks may be highly time-

Table 1: Different approaches of DTA 

Model Approach 

Analytical Based Model 
Mathematical Programming 

Optimal Control Formulations 
Variational Inequality-Based 

Simulation-based Model Micro Simulation 
Meso Simulation 
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consuming and complex to solve (Gawron, 1998). Simulation-based traffic assignment models use a 
traffic simulator to replicate the traffic flow dynamics (propagation) and spatio-temporal interactions 
(e.g., vehicle movements), which are based on micro/meso traffic flow simulation models (Saw et al., 
2015). In addition, a traffic simulator is used as part of the search process to determine the optimal 
solution (Peeta & Ziliaskopoulos, 2001). They typically conduct several iterations to obtain optimum 
values (no closed-form is available). Compared to the analytical model, the simulation-based model 
appears to be more practical because of its ability to explain traffic flow propagation in more detail. 

In the near future, several road users (e.g., connected and autonomous vehicles (CAVs)) are 
expected to follow Wardrop's second principle (SO) routines (Bagloee et al., 2017; Mansourianfar et 
al., 2021; J. Wang et al., 2019). It is important to provide a simulation-based dynamic system optimal 
(SB-DSO) traffic assignment model as a powerful tool to evaluate the impacts of such users. The 
dynamic system optimal (DSO) traffic assignment problem has been thoroughly studied in the 
literature. However, most of these works are based on an analytical model (e.g., (J. Liu et al., 2020; 
Ngoduy et al., 2021; Shen et al., 2006; Shen & Zhang, 2009; Tajtehranifard et al., 2018; Wie et al., 
1990)) and very few studies utilize a simulation-based model which either are only microscopic or 
only mesoscopic (Ameli et al., 2020a; Hu et al., 2018; Mansourianfar et al., 2021; Peeta & 
Mahmassani, 1995; Sbayti et al., 2007; Yang & Jayakrishnan, 2012). Nevertheless, previous studies 
have demonstrated the superior performance of the simulation-based dynamic traffic assignment (SB-
DTA) model (Ameli et al., 2020a), but many open-source (e.g., simulation of urban mobility 
(SUMO)) and commercial (e.g., Aimsun) traffic simulation software products do not provide SB-
DSO traffic assignment algorithms. Therefore, this study contributes to the literature by proposing a 
SB-DSO traffic assignment algorithm based on a new swapping/convergence method that implements 
a logit route choice model for SUMO. The proposed algorithm can be applied on both micro and 
meso models of traffic flow which replaces the travel time of a link with a surrogate model of 
marginal travel times (MTT) to shift from DUE to DSO. To better understand the performance of the 
proposed algorithm, three case studies were conducted. A comparison was made between the 
proposed SB-DSO and the current simulation-based dynamic user equilibrium (SB-DUE) traffic 
assignment in SUMO. The remainder of this paper is organized as follows. The notations and 
abbreviations used in this paper are presented in section 2. In section 3, the literature is reviewed, 
followed by the research methodology (SB-DSO framework) in section 4. The proposed algorithm is 
applied to three case studies in section 5, and the conclusions are presented in Section 6. 

2 Notations and Abbreviations 
The list of all abbreviations used in this paper is included in Table 2. The notations used to present 

the proposed SB-DSO solution algorithm are listed in Table 3.  

 

 

 
 

Table 2: The list of abbreviations in the paper 

Abbreviation  Meaning   Abbreviation   Meaning 

ADT Average Distance Travelled MSWA Method of Successive Weighted 
Average 

AS Average Speed MSAR Method of Successive Average Ranking 
ATL Average Time Loss MTT Marginal Travel Time 

CAV Connected and Autonomous 
Vehicles O-D Origin-Destination pairs 

DSO Dynamic System Optimal SA Simulated Annealing 

DTA Dynamic Traffic Assignment SB-DSO Simulation-Based Dynamic System 
Optimal 

DUE Dynamic User Equilibrium SB-DUE Simulation-Based Dynamic User 
Equilibrium 

DNL Dynamic Network Loading  STA Static Traffic Assignment 
GA Genetic Algorithm SO System Optimal 

LWR Lighthill–Whitham–Richards TTT Total Travel Time 
MSA Method of Successive Average UE User Equilibrium 
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3 Literature Review 
The Simulation-based DTA problem is split into two parts: 1- a simulation-based dynamic 

network loading (DNL) model and 2- an algorithm for finding the equilibrium solution (Ameli et al., 
2020b). The DNL process explains the traffic flow dynamics and determines “how flows propagate 
with time through the network along the selected paths” (Jaume Barceló, 2010). A traffic simulator is 
used as the dynamic network-loading model in the simulation-based solution of the DTA problem. 
Whereas the second part determines the path used by the vehicles and the proportion of demand at 
each instant in time allocated to this determined path.  

To find the equilibrium solution in simulation-based methods, usually, an iterative scheme is 
employed. These iterative methods start from an initial solution and update the path flow distribution 
for each iteration based on a path swapping algorithm. The reassignment process of vehicles in each 
iteration confirms whether the algorithm is in a descent direction or not. In other words, the algorithm 
forces vehicles at each iteration to follow a more efficient path than the previous iteration. Also, at the 
end of each iteration, a convergence criterion (or error) is calculated to check the algorithm's 
termination.  

This approach was initially developed by Mahmassani and Peeta (Mahmassani & Peeta, 1993, 
1995) and Peeta and Mahmassani (Peeta & Mahmassani, 1995). They incorporated a mesoscopic 
traffic simulator, DYNASMART (Jayakrishnan et al., 1994) (as the DNL model), in an iterative 
search solution framework to calculate the (marginal) travel times under the assumption of 

Table 3: Notations 

Indices 
𝑐 Index for travel times (cost) 
𝑓 Index for traffic flow 
𝑖 Index for iteration steps 
𝑘 Index for path 
Sets 
𝐺(𝑉, 𝐴) traffic network 
𝐴 set of links  (𝑎 ∈ 𝐴) 
.𝑉 set of nodes (𝑣 ∈ 𝑉) 
𝐽(𝑅, 𝑆) set of vehicles (𝑗 ∈ 𝐽) 
𝑅 set of origin nodes (𝑟 ∈ 𝑅) 
𝑆 set of all destination nodes  (𝑠 ∈ 𝑆) 
I set of simulation iterations (𝑖 ∈ 𝐼) 
𝑃𝑗,𝑖

𝑟−𝑠 set of alternative paths for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
Variables, parameters, and elements 
.𝑐𝑎

′ empty network travel time 
.𝑐𝑎

𝑖 travel time of link 𝑎 in iteration 𝑖 
.𝑐�̅�

 𝑖 marginal travel time of link 𝑎 in iteration 𝑖 
.𝐶𝑘

𝑖 travel time of path 𝑘 in iteration 𝑖 
.𝑝𝑗,𝑖

  𝑟−𝑠 selected path for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
.𝑝𝑗,𝑖

∗,𝑟−𝑠 adjusted selected path for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
.𝑝𝑟𝑘,𝑗

𝑖  probability of selecting path 𝑘 by vehicle 𝑗 in iteration 𝑖 
.𝑅𝑆𝐷𝑛

𝑖 relative standard deviation of average travel time in the last n elements of 𝑖𝑡ℎ iteration 
.𝑎𝑣𝑖′ the average travel time of the entire network in iteration 𝑖′ 
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information availability for advanced traveler information system operations. The Method of 
Successive Averages (MSA) is used as the path swapping algorithm, and the convergence criterion is 
based on the differences in the number of vehicles assigned to various paths over successive iteration. 
The local approximation of MTT is evaluated by summing the link MTTs along the path according to 
the time-dependent link traversal times.  

There are many studies in the literature based on the solution algorithm of Peeta and Mahmassani 
(Peeta & Mahmassani, 1995). For instance, Sbayti et al. (Sbayti et al., 2007) used MSA to solve the 
SB-DTA (with both DUE and DSO) in large-scale networks. They presented two new implementation 
techniques to address the disadvantages of MSA. Similar to Peeta and Mahmassani, the 
DYNASMART simulator was used to calculate the time-dependent link travel times, turn penalties, 
and link marginals. In addition,  Yang and Jayakrishnan (Yang & Jayakrishnan, 2012) attempted to 
address the disadvantages of MSA in SB-DTA problems by implementing a gradient projection 
method. This study used the PARAMICS software in the DNL process. However, the travel times 
(generated by PARAMICS) are not directly fed into the route assignment procedure (the proposed 
gradient projection algorithm). As the proposed gradient projection algorithm requires an analytical 
function that represents link costs as traffic loads, link performance functions are used to calculate the 
path travel times in the path assignment process. An SB-DTA procedure was developed by Hu et al. 
(Hu et al., 2018) using a dynamic traffic simulator called DynaTAIWAN. The dynamic traffic 
simulator is used to simulate traffic flow distributions based on vehicle properties and routes 
(calculating the link travel time in each iteration). Four different vehicle class types (car, bus, 
motorcycle, and truck) and four different behavioral rules, including the pre-specified-path driver, UE 
driver, SO driver, and real-time information driver, are considered in the solution procedure. The 
MSA is applied to update the vehicles’ path in each iteration. In a similar study, Mansourianfar et al. 
(Mansourianfar et al., 2021) developed an SB-DTA algorithm for mixed UE and SO users. They used 
the Aimsun traffic simulator instead of DynaTAIWAN to calculate the travel times. To address the 
shortages of MSA, they examined the method of successive weighted average (MSWA), which gives 
higher weights to later auxiliary flow patterns. This study proposes a new hybrid convergence 
criterion to find the mixed equilibrium solution. Another study that tried to overcome MSA's 
drawbacks is Ameli et al. (Ameli et al., 2020b). They study two new solution methods for the SB-
DUE problem: a new extension of simulated annealing (SA) and an adapted genetic algorithm (GA). 
A comparison is made between the proposed meta-heuristic algorithms (SA and GA) and the classic 
methods (MSA, MSA ranking (MSAR)), and a gap-based algorithm). The results show that meta-
heuristic algorithms dominate classical methods. However, it should be pointed out that all of the 
proposed meta-heuristic algorithm uses MSA as part of their solution. Also, this study implements a 
microscopic traffic simulator named Symuvia, which does not have meso modeling features for a trip-
based dynamic simulation. Adopting the MATSIM software, Lämmel and Flötteröd (Lämmel & 
Flötteröd, 2009) developed an agent-based microsimulation DTA model. They replaced the travel 
time (based on which agents evaluate their routes) with the MTT to achieve SO. The results indicate 
that a simulation-based system leads to an acceptable approximation of the SO mathematical solution. 
There is also another group of studies on sustainable optimal DTAs (Chen et al., 2021; Lu et al., 
2016). For instance, Lu et al. (Lu et al., 2016) solved an eco-system optimal DTA problem based on 
analytical and simulation-based models. Their study aimed to determine the SO ecological routes that 
minimize total vehicular emissions. The proposed simulation-based model combines macroscopic and 
microscopic traffic descriptions (mesoscopic) based on Newell's (Newell, 2002) simplified kinematic 
wave model and a simplified car-following model. In addition, this study introduces a novel 
approximation for path marginal emissions based on path MTT. Although the numerical examples of 
this study demonstrate the effectiveness of the model, it adopted a simplified car-following model 
(Newell) and not the commonly used car-following models, such as Krauß et al. (Krauß et al., 1997) 
and Gipps (Gipps, 1981).  
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As mentioned earlier, the traffic simulator software can be regarded as DNL of DTA (W. Wang et 
al., 2018); therefore, the available DTA solution methods in the most widely used and well-known 
micro/meso traffic simulator packages are presented in Table 4.  

 

Table 4 and the literature review revealed that, thus far, no study has proposed an SB-DSO 
algorithm using common traffic simulators (that can address the traffic flow propagation during 
dynamic network modeling with high accuracy in both micro and mesoscale simulations). Therefore, 
this study developed a new SB-DSO algorithm by implementing the SUMO traffic simulator, in 
which a new swapping algorithm (based on logit route choice model) and a new convergence criterion 
are incorporated.  

4 Methodology 
The simulation-based solution of the DTA problem does not include any closed-form analytical 

solution and typically relies on an iterative procedure. SUMO traffic simulator provides several tools 
and options for solving traffic assignment and route choice problem of vehicles (simulation-based 
approach). duaIterate.py (DLR, 2021) is the solution tool for the SB-DUE problem for micro and 
meso levels in SUMO. This study proposes a new solution framework for the SB-DSO problem based 
on duaIterate.py. The main difference between the proposed algorithm and the current algorithm of 
duaIterate.py is that the proposed algorithm replicates the travel time by a surrogate model of MTT. 
Also, a new swapping algorithm and convergence criterion are presented and tested against classical 
methods. Figure 1 illustrates the proposed solution framework for the SB-DSO problem. As shown in 
Figure 1, the framework consists of two parts: path selection procedure and DNL. For the path 

Table 4: Micro/Meso traffic simulation packages and their available DTA solution methods 

Simulator Developer Scale Available DTA Methods 

Aimsun J Barceló & Ferrer, 1997 Micro/Meso Stochastic Route Choice 

DUE 

CONTRAM Taylor, 2003 Meso 
CORSIM US-DOT, 1995 Micro 

DRACULA R. Liu, 2010 Micro 
DTALite Zhou and Taylor, 2014 Agent-based 
Dynameq Mahut, 2001 Micro 

DynaMIT Ben-Akiva et al., 1997 Meso Converge to observed 
flows 

DynaSMART Jayakrishnan et al., 1994 Meso 

Instantaneous information 
Predictive information 

DSO 

DUE 

DynusT Y. C. Chiu et al., 2011 Meso 
INTEGRATION Van Aerde et al., 1996 Micro/Meso 

MATSIM Dobler and Nagel, 2016 Agent-based 
PARAMICS Smith et al., 1995 Micro 

PTV Vissim Fellendorf, 1996 Micro/Meso 
Stochastic Assignment 

SUMO Lopez et al., 2018 Micro/Meso (Stochastic) DUE 
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selection procedure, duarouter, which is an available algorithm in SUMO for the calculation of the 
shortest path, is used. For the DNL procedure, the SUMO traffic simulator is used.  

Consider 𝐺(𝑉, 𝐴) as the directed traffic network, which includes a set of links 𝐴 (𝑎 ∈ 𝐴) and a set 
of nodes 𝑉 (𝑣 ∈ 𝑉). 𝐽(𝑅, 𝑆) represents the set of vehicles (demand file: usually imported to sumo by 
𝑇𝑟𝑖𝑝𝑠.𝑋𝑀𝐿 file) between the origin and destination pairs where 𝑅 (𝑟 ∈ 𝑅) and 𝑆 (𝑠 ∈ 𝑆) denote the 
set of all origin nodes and the set of all destination notes, respectively. Hence, 𝑗𝑟−𝑠 is a vehicle that 
travels from origin 𝑟 to destination 𝑠. The problem is stated as the assignment of 𝐽(𝑅, 𝑆) to 𝐺(𝑉, 𝐴). 
The equilibrium condition is computed by iteratively calculating the shortest routes and travel times. 
At each simulation iteration 𝑖 ∈ 𝐼, first, a routing algorithm (Dijkstra, astar, Contraction Hierarchies 
(CH), or CHWrapper) is applied by duarouter to the road network to determine the set of alternatives 
paths, 𝑃𝑗,𝑖

𝑟−𝑠, for each vehicle 𝑗𝑟−𝑠  (at each iteration, a new alternative path set is generated for each 
vehicle). The k-shortest paths are calculated using the previous simulation corresponding link MTT, 
𝑐�̅�

  𝑖−1. Next, a route choice model (Gawron, Logit, or Lohse) is applied to the set of alternative paths, 
𝑃𝑗,𝑖

𝑟−𝑠, to select a path, 𝑝𝑗,𝑖
  𝑟−𝑠 (𝑝𝑗,𝑖

  𝑟−𝑠 ∈ 𝑃𝑗,𝑖
𝑟−𝑠). Then, a swapping algorithm is implemented to reassign a

Figure 1: Framework of the SB-DSO traffic assignment 
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fraction of vehicles at each iteration (not all vehicles change their route necessary during successive 
iterations), ensuring the improvement of the selected path over iterations. Finally, the adjusted 
selected path of each vehicle, 𝑝𝑗,𝑖

∗,𝑟−𝑠 (known as trips.rou.XML file in SUMO), is sent to SUMO to
perform the traffic simulation and consequently calculates the current travel time of each link, 𝑐𝑎

𝑖  
(known as edgedata output in SUMO). The travel times written in this step, 𝑐𝑎

𝑖 , are used as an input in 
the next iteration step. By performing such a process iteratively, the total travel time (TTT) is 
minimized (SO condition).  

4.1 Route Choice Model 
In SUMO, it is possible to choose different route choice models among available alternatives, 

which are Gawron, Logit, or Lohse. In this study, the logit model is selected as the route choice 
model. Thus, the proposed algorithm computes the stochastic SB-DSO solution. The logit model is 
applied to each vehicle’s set of alternative routes, 𝑃𝑗,𝑖

𝑟−𝑠, in which the k-shortest paths for the subject
vehicle are available. The travel times are considered as the cost for each alternative path. The travel 
time of each path is equal to the sum of the travel times of the corresponding links from the previous 
simulation. The logit model formulation is as follows  

𝑝𝑟𝑘,𝑗
𝑖 =

exp (−𝜃𝐶𝑘
𝑖 )

∑ exp (−𝜃𝐶𝑘
𝑖 )𝑘

1

 (1) 

𝐶𝑘
𝑖 = ∑ 𝛿𝑎,𝑘

𝑖

𝒂 ∈ 𝑨
𝑐𝑎

𝑖  (2) 

𝛿𝑎,𝑝
𝑖 = {

1 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑖𝑠 𝑜𝑛 𝑝𝑎𝑡ℎ 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 
where 𝑃𝑟𝑘,𝑗

𝑖  is the probability of selecting path 𝑘 by vehicle 𝑗 in iteration 𝑖 ; 𝐶𝑘
𝑖  is the travel time 

(cost) of path 𝑘 in iteration 𝑖; and 𝜃 is the logit model scale parameter. Given the multiple alternative 
routes with slightly different travel times, it may be reasonable to select a route other than the strictly 
shortest route (to avoid congestion on that route). Hence, the scale parameter 𝜃 assigns a probability 
for each route alternative. With a high value of theta, logit always selects the route with the least 
travel time, whereas with a low value of theta, logit selects all the routes with almost equal 
probability.  

It should be mentioned that although this study works on the stochastic solution of the traffic 
assignment problem, it is possible to reach the deterministic solution by the same proposed algorithm 
(by replacing the route choice model with All-or-Nothing assignment) in SUMO.  

4.2 Calculation of Marginal Travel Times 
Previous studies have proven that the SO condition can be achieved by replacing the path travel 

time with the path MTT (Hu et al., 2018; Mansourianfar et al., 2021; Patriksson, 2015; Rahman et al., 
2015). There are two ways to calculate the path MTT (Ameli et al., 2020a; Mansourianfar et al., 
2021): 1) global approximation, which represents the changes in the total system travel time caused 
by an additional vehicle that is added to the path at a certain time interval, and 2) local approximation 
(Ghali & Smith, 1995; Peeta & Mahmassani, 1995), which represents the changes in the path travel 
time caused by an additional vehicle that is added to the route at a certain time interval. This approach 
considers the path MTT as a summation of the corresponding link MTTs. Although it has been proven 
that such a local approximation may lead to overestimation of the path MTT (Qian et al., 2012; Shen 
et al., 2007) it is a practical approximation in large-scale networks (Mansourianfar et al., 2021). On 
the other hand, because the global approximation of MTT is computationally expensive and is not 
practical for large-scale DTA, this study implements the local approximation of MTT. To achieve the 
local approximation of path MTT, first, the MTT of each link should be calculated; then, the MTTs of 
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the corresponding links in each path are summed up. Numerous formulations exist in the literature to 
approximate the MTT of the links; however, it may be inappropriate to compare these formulations 
numerically as they use their own traffic flow propagation method and assumptions (Doan & 
Ukkusuri, 2015; Qian et al., 2012; Zhang & Qian, 2020). In addition, the traffic simulators (as the 
DNL model) used in each study are different. Sheffi (Sheffi, 1985) formulated the link MTT as 
follows and defined it as the “marginal contribution of an additional traveler on the 𝑎𝑡ℎ link to the 
TTT on this link.” In other words, MTT is the derivative of the travel time with respect to flow: 

𝑐�̅�(𝑓𝑎) = 𝑐𝑎(𝑓𝑎) + 𝑓𝑎  
𝑑𝑐𝑎(𝑓𝑎)

𝑑𝑓𝑎
 (4) 

This formulation is the sum of the two components. The first component, 𝑐𝑎(𝑓𝑎), is the travel time
experienced by the additional traveler when the total link flow is 𝑓𝑎. This component can be explained
by the average travel time on link 𝑎 . The second component is the multiplication of 𝑑𝑐𝑎(𝑓𝑎)

𝑑𝑓𝑎
, the 

additional travel time burden that the additional traveler inflicts on each of the other travelers, by the 
number of travelers that already exist on the link (𝑓𝑎). Therefore, the effect of one additional user on
all the other travelers is considered by the second component. 

Given that SUMO provides the average travel time of each link, it is not possible to calculate the 
additional travel time that one vehicle inflicts on the link. An alternative approach to compute the link 
MTT is to calculate the average travel time in successive iterations (with a different number of 
vehicles assigned to each link in each iteration) and compute the difference in link average travel 
time. Using this method, the average inflicted additional travel time on the link can be calculated. 
Therefore, in this study, we developed a surrogate model of MTT to achieve SO as follows: 

𝑐�̅�
 𝑖 =  𝑐𝑎

𝑖−1 + 𝑓𝑎
𝑖−1

𝑐𝑎
𝑖−1 − 𝑐𝑎

𝑖−2

𝑓𝑎
𝑖−1 − 𝑓𝑎

𝑖−2
                                                                                                                           (5)

where 𝑐�̅�
 𝑖 is the surrogate MTT of link 𝑎 at simulation step 𝑖; 𝑐𝑎

𝑖−1 and 𝑐𝑎
𝑖−2 are, respectively, the 

travel time (cost) of link 𝑎 at simulation steps 𝑖 − 1 and 𝑖 − 2; and 𝑓𝑎
𝑖−1 and 𝑓𝑎

𝑖−2 are, respectively, the
traffic flow of link 𝑎 at simulation steps 𝑖 − 1 and 𝑖 − 2. The first term of this equation represents the 
average travel time of link 𝑎 and the second term represents the average inflicted additional travel 
time on the link. In other words, the second term of this model indicates the extent to which adding 
one vehicle to a link leads to an increase in the travel time of the vehicles that are already in the link. 
In this way, instead of feeding only the average travel time that each vehicle would experience along a 
route, the additional cost that it imposes on the total travel time by selecting the route is added. Hence, 
the additional travel time that other vehicles must “pay” (on average) is addressed if the subject 
vehicle selects that route. 

4.3 Swapping Algorithm 
Most studies that implement simulation-based traffic assignment methods employ a swapping 

algorithm to reach the optimum value and avoid oscillating. The core idea of swapping algorithms is 
that not all vehicles should necessarily change their path in each iteration; instead, only a fraction of 
vehicles is in the reassignment process. Thus, a proper direction for the next iteration is obtained. 
Most of the previous studies apply the MSA as their swapping algorithm. The conventional MSA is 
calculated as: 

𝑓𝑖 = (
𝑖

𝑖 + 1
) 𝑓𝑖−1 + (

1

𝑖 + 1
) 𝑦𝑖  (6) 

In which 𝑓𝑖  is the path flow distribution of iteration 𝑖 , 𝑦𝑖  is the auxiliary path assignments 
obtained by all-or-nothing assignment, and 𝑖 is the number of iterations. In the primary iterations, the 
value of step size is too large, thus the travel time of vehicles does not reduce after several iterations. 
While in the last iterations the value of step size is too small, which leads to slow convergence speed. 
Therefore, previous studies provided several heuristic algorithms (Ameli et al., 2020b) or extensions 
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of MSA (like Method of Successive Weighted Averages (MSWA) (H. X. Liu et al., 2009) or MSA 
Ranking (MSAR) (Sbayti et al., 2007)) to address the disadvantages of MSA. However, most of the 
previous studies implement these extensions in combination with deterministic traffic assignment (all-
or-nothing assignment which is highly sensitive to the small changes in traffic flow).  

This study proposes a new swapping algorithm for stochastic traffic assignment problems which is 
based on the logit route choice model. The new swapping algorithm is as follows:  
𝑝𝑗,𝑖

∗,𝑟−𝑠 = {
𝑝𝑗,𝑖

𝑟−𝑠  𝑖𝑓 𝑥 ≥  𝜌𝑖 

𝑝𝑗,𝑖−1
∗,𝑟−𝑠    𝑖𝑓 𝑥 < 𝜌𝑖

 (7) 

Where 𝑝𝑗,𝑖
∗,𝑟−𝑠 is the adjusted selected path by vehicle 𝑗 in iteration 𝑖; 𝑝𝑗,𝑖

𝑟−𝑠 is the selected path by 
vehicle 𝑗  in iteration 𝑖  from current logit model; 𝑝𝑗,𝑖−1

∗,𝑟−𝑠  the adjusted selected path by vehicle 𝑗  in 
iteration 𝑖 − 1; 𝑥 is a random variable between 0 and 1; and 𝜌𝑖 is the sequence of step size in each
iteration which can be considered as the probability of keeping the previous adjusted selected path. In 
this study 𝜌𝑖 is predetermined 𝜌𝑖 =

𝑖

𝛾
 ; where 𝑖 is the iteration number, and 𝛾 is a scale parameter. 𝛾 is

a real number that determines the speed of convergence. With a low value of 𝛾, the speed of the 
convergence is fast, but few alternative paths are tested by each vehicle. On the other hand, with a 
high value of 𝛾, the convergence speed is slow, while several alternative paths (which are available in 
the path set) will be tested by each vehicle. Therefore, for stochastic assignments, it can be argued that 
higher values of 𝛾  are preferable. However, for large and medium scale networks, it is 
computationally expensive to wait for high number of iterations. In this study the value of 𝛾 is set to 
100 and 50 for small scale and medium/large scale networks, respectively. This swapping algorithm 
prevents some vehicles, in successive iterations, from changing their routes, allowing them to follow 
the path they have chosen in the previous iteration. This ensures that the algorithm leads to the 
improvement of the selected path by each vehicle. For convenience of description, we name this 
swapping algorithm as “PSwap” (Probabilistic Swapping). PSwap is tested against the revised version 
of MSA in which the auxiliary path is obtained by the logit route choice model. In order to better 
understand the differences between two swapping algorithms, figure 2 shows the (maximum) fraction 
of vehicles that could change their routes per iteration. 

4.4 Convergence Criterion  
Many studies in the past have provided different convergence criteria for the SB-DTA algorithm 

termination. As no closed-form is available for the simulation-based solutions, it is impossible to 
mathematically prove the algorithm's convergence. Therefore, all of the convergence criteria only 
provide some point where the algorithm can be terminated. A common approach in previous studies 
for the calculation of convergence criterion (error) is to calculate the maximum difference between 
the route flows of two iterations (e.g. (Peeta & Mahmassani, 1995)). However, previous studies 

Figure 2: Maximum Fraction of vehicles that change their route per iteration 
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pointed out that, this criterion does not guarantee the equilibrium condition since applying any 
swapping algorithm yield smaller route flow changes in successive iterations by default (Taale & Pel, 
2015). Another common approach presented by previous studies is to calculate the relative gap 
between the current travel times of vehicles in each iteration and the least experienced travel times 
(Ameli et al., 2020b; Mansourianfar et al., 2021). However, the value to which the gap converges is 
not known beforehand, thus it is difficult to determine if convergence is reached (Taale & Pel, 2015).  

As in equilibrium condition, no driver can unilaterally reduce his/her travel time by shifting to 
another route, when the standard deviation of average travel times between successive iterations is 
low, it implies that all remaining alternatives have “almost” the same travel time so the actual DUE 
criterion (or it's DSO equivalent) are basically fulfilled. Therefore, this study considers the relative 
standard deviation of average travel time (in the entire network) as convergence criteria: 

𝑅𝑆𝐷𝑛
𝑖 =

√
1

𝑛
∑ (𝑎𝑣𝑖′ − 𝑎𝑣̅̅̅̅ 𝑛

𝑖 )2𝑖
𝑖′=(𝑖−𝑛)+1

𝑎𝑣̅̅̅̅ 𝑛
 (8) 

𝑎𝑣̅̅̅̅ 𝑛 =
∑ 𝑎𝑣𝑖′

𝑖
𝑖′

𝑛
 (9) 

Where 𝑅𝑆𝐷𝑛
𝑖  is the relative standard deviation of average travel time in the last 𝑛 elements of 𝑖𝑡ℎ 

iteration; 𝑎𝑣𝑖′ is the average travel time of the entire network in iteration 𝑖′; and 𝑎𝑣̅̅̅̅ 𝑛 is the mean of
𝑎𝑣𝑖′ in the last 𝑛 iterations. This criterion evaluates the dispersion of average travel times in last 𝑛
iterations. Low values of 𝑅𝑆𝐷𝑛

𝑖  represent that average travel time does not vary over successive 
iterations; thus, a decent point for termination is found. The proposed algorithm is considered being 
converged (after the minimum number of 10 iterations) if the value of 𝑅𝑆𝐷𝑛

𝑖 , become constant and 
less than 𝜀 (fixed at 0.05 for micro simulations and 0.005 for meso simulations).  

5 Test Networks 
The proposed algorithm was studied in three different networks (Figure 3): (a) small-size Braess 

like network, (b) medium-size abstract Random network, and (c) large size Sioux Falls network.  

Figure 3: Test Networks 
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The Braess and Sioux Falls networks are commonly used as benchmarks in the literature. A 
random network was implemented to evaluate the performance of the algorithm in random unknown 
cases. In the following sections, the results of traffic simulations for the test networks are presented. 
For each network, four scenarios are simulated: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-
DUE-PSwap, (4) SB-DUE-MSA. The TTT in different iterations of each scenario is given first. The 
TTT is considered as the sum of travel times of all vehicles in the network and the waiting times of 
the vehicles which cannot insert into the network during the simulation. Then, traffic-related measures 
(including TTT (s), average speed (AS) (m/s), the average distance traveled (ADT) (m), and average 
time loss (ATL) (s)) of each scenario are evaluated. Finally, to have a better understanding of the 
differences between the proposed SB-DSO and the current SB-DUE, the traffic volume in the best 
iterations is illustrated.  

5.1 Braess Network   
In this study, a network similar to the Braess network (Figure 2 (a)) was simulated in four 

scenarios to evaluate the changes in TTT when the vehicles follow the proposed SB-DSO and DB-
DUE. The microsimulation is performed with the demand of 1000 vehicles/h, departs from node A to 
destination B. Three routes are available for each vehicle. Each route includes a high-speed link (link 
1 or 4), a low-speed link (link 2 or 3), and/or a high-speed shortcut (link 5). To analyze the behavior 
of the proposed algorithm (SB-DSO), the convergence patterns of the algorithms are presented in 
Figure 3 (value of TTT in successive iterations), while figure 4 shows the convergence pattern of the 
SB-DUE algorithm. For the sake of comparison, the fraction of vehicles that change their route per 
iteration is illustrated in figure 6.  

Figure 4: Convergence patterns for Braess network (SB-DSO)

Figure 5: Convergence patterns for Braess network (SB-DUE)

Mehrabani et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

132



Figures 4 and 5 show that MSA is dominated by PSwap. The TTT percentage difference (for the 
best iteration) between PSwap and MSA for the SB-DSO algorithm and SB-DUE algorithm are equal 
to 49.19% and 55.74%, respectively, which suggests the superior performance of the PSwap. The 
summary statistics for the system performance under different scenarios (best iterations) are reported 
in Table 5.  

As expected, for both swapping algorithms, the SB-DSO has lower TTT than SB-DUE.  The 
Percentage TTT saving of SB-DSO over SB-DUE varies from 3.91% (for PSwap) and 16.30% (for 
MSA). In addition, an analysis of the data in Table 5 suggests that vehicle compliance with DSO 
routines increases vehicle AS and decreases vehicle ATL.  

Figure 7: Volume of the Braess network

Table 5: Simulation Results for Braess Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 120130 8.69 1002.99 49.30 

SB-DSO-MSA 236430 5.40 1007.10 160.82 

SB-DUE-PSwap 125030 8.36 1006.01 56.74 

SB-DUE-MSA 282490 4.85 1009.28 184.00 

Percentage difference between PSwap and MSA (DSO) = 49.19% 
Percentage difference between PSwap and MSA (DUE) = 55.74% 
Percentage difference between DSO and DUE (PSwap) = 3.91% 
Percentage difference between DSO and DUE (MSA) = 16.3% 

Figure 6: Fraction of vehicles that change their route per iteration (Braess Network) 
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To examine the superior performance of SB-DSO in more detail, the volume of the Braess 
network in SB-DSO-PSwap and SB-DUE-PSwap scenarios are illustrated in Figure 7. This figure also 
shows the traffic volume difference between these two scenarios. Figure 7 (c) demonstrates that when 
vehicles follow the SB-DSO, they not only use high-speed links (links 1, 5, and 4) to reach their 
destination, but they also use both high-speed and low-speed links simultaneously. In contrast, in the 
SB-DUE scenario, most vehicles tend to use high-speed links.  

5.2  Random Network 
A Random network was generated in SUMO (Figure 2 (b)) using netgenerate. This network 

consists of 278 edges and 100 junctions. Each edge has a minimum length of 200 and a maximum 
length of 1000 meters. The number of lanes is either one or two for each edge. A random traffic 
demand of 7200 vehicles was generated for a one-hour simulation. These vehicles were randomly 
distributed to the network. Similar to the previous test network, four scenarios were evaluated for the 
Random network: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-DUE-PSwap, and (4) SB-DUE-
MSA. The microsimulation is performed for the scenarios, all of which converged after 17 iterations. 
The convergence pattern of the SB-DSO and SB-DUE algorithms are displayed in Figure 8 and 
Figure 9, respectively. Besides, the fraction of re-routing vehicles per iteration for each scenario is 
given in figure 10.   

Figure 8: Convergence patterns for Random network (SB-DSO)

Figure 9: Convergence patterns for Random network (SB-DUE)
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For both SB-DSO and SB-DUE, the value at convergence for PSwap is lower than MSA. Also, 
PSwap has better performance in terms of stability of the convergence and the TTT average value. 
The TTT percentage difference between PSwap and MSA for SB-DSO and SB-DUE are equal to 
7.95% and 10.53%, respectively, which supports that PSwap has superior acting. The results of the 
optimum iteration for each scenario are presented in Table 6. 

As expected, the TTT value decreased by 2.15% (PSwap) and 4.90% (MSA) in the SB-DSO 
scenario compared to that in the SB-DUE scenario. In addition to the reduction in TTT, we observed a 
decrease of 3.5% (PSwap) and 11% (MSA) in ATL. However, the ADT by vehicles in the SB-DSO 
scenario shows a slight increment over the SB-DUE scenario. This suggests that vehicles do not 
necessarily select routes that have the shortest distance in the SB-DSO scenario but rather select those 
that reduce the travel time of the entire network (TTT). 

Table 6: Simulation Results for Random Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 7981776 8.77 6850.82 578.09 

SB-DSO-MSA 8671176 8.52 6571.42 677.58 

SB-DUE-PSwap 8157456 8.70 6787.33 599.06 

SB-DUE-MSA 9118296 8.51 6581.33 761.72 

Percentage difference between PSwap and MSA (DSO) = 7.95% 
Percentage difference between PSwap and MSA (DUE) = 10.53% 

Percentage difference between DSO and DUE (PSwap) = 2.15% 
Percentage difference between DSO and DUE (MSA) = 4.90% 

Figure 11: Volume of the Random network

Figure 10: Fraction of vehicles that change their route per iteration (Random Network)
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Figure 11 shows traffic volume in the Random network in different scenarios. The comparison of 
Figures 11 (a) and Figure 11 (b) reveals that in the SB-DSO scenario, the number of medium-volume 
links is slightly more than that of the SB-DUE scenario. This indicates that in the SB-DSO scenario, 
the traffic volume is distributed throughout the entire network. In contrast, in the SB-DUE scenario, 
only a limited number of short links are used. A similar result can be obtained by observing Figure 8 
(c). In Figure 8 (c), the red highlighted links represent the links used by vehicles in the SB-DSO 
scenario and not in the SB-DUE scenario, while the green highlight indicates the links in which there 
is no difference in traffic volume between the two scenarios.  

5.3 Sioux Falls Network 
The latest case study in this article is the Sioux Falls network (Figure 3 (c)). The total number of 

simulated vehicles was 36000 which were distributed on different origins and destinations based on 
the demand pattern of LeBlanc’s study (LeBlanc et al., 1975). In order to check the performance of 
the proposed algorithm on the mesoscale, the meso simulation feature of SUMO is implemented for 
this test network. As in the previous test networks, four scenarios were analyzed. The SB-DSO-
PSwap and SB-SO-MSA scenarios converged after 35 iterations (Figure 12), while the SB-DUE-
PSwap and SB-DUE-MSA scenarios converged after 25 iterations (Figure 13). The fraction of re-
routing vehicles per iteration is also given in figure 14.  

Figure 12: Convergence patterns for Sioux Falls network (SB-DSO)

Figure 13: Convergence patterns for Sioux Falls network (SB-DUE)
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Similar to previous test networks, PSwap has a better value at convergence than MSA. For the SB-
DSO-PSwap scenario, the value at convergence is 11.64% lower than that of SB-DSO-MSA. For the 
SB-DUE algorithm, we can see a similar behavior where the TTT percentage difference between SB-
DUE-PSwap and SB-DUE-MSA is 4.1%. The results of the meso simulations are presented in Table 
7, which provides traffic-related measures for the Sioux Falls network.  

The simulation results indicate that the proposed SB-DSO traffic assignment leads to a reduction 
of 12.84% (PSwap) and 5.4% (MSA) in TTT and 8.86% (PSwap) and 15% (MSA) in ATL. In 
addition, the AS in SB-DSO was improved compared to that in SB-DUE (6% and 8.15% increase in 
AS for PSwap and MSA, respectively). However, ADT has increased in the DSO condition ( 16% and 
14.7% increment of ADT for PSwap and MSA, respectively).  

Table 7: Simulation Results for Sioux Falls Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 97488027.9 12.75 9726.57 479.54 

SB-DSO-MSA 110334105.4 12.75 9833.79 505.72 

SB-DUE-PSwap 111853402.2 11.98 8164.91 526.21 

SB-DUE-MSA 116637655.1 11.71 8384.31 595.16 

Percentage difference between PSwap and MSA (DSO) = 11.64% 
Percentage difference between PSwap and MSA (DUE) = 4.1% 
Percentage difference between DSO and DUE (PSwap) = 12.84% 
Percentage difference between DSO and DUE (MSA) = 5.4% 

Figure 15: Volume of the Sioux Falls network

Figure 14: Fraction of vehicles that change their route per iteration (Sioux Falls Network)
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Figure 15 shows the volume on the Sioux Falls network for the proposed SB-DSO-PSwap and the 
current SB-DUE-PSwap, categorized based on both colors and width, where thicker links indicate 
higher volume. Focusing on the difference between the two traffic assignment methods, Figure 15 (c) 
shows that vehicles are distributed among the entire network in SB-DSO scenarios and do not intend 
to use specific short links that minimize their own travel time (avoiding selfish routing). Instead, they 
select unused links, minimizing the travel time in the entire network. In other words, the presence of 
short minor roads may have a significant impact on SB-DSO versus SB-DUE. This is not because the 
network can handle more load but because shorter roads provide opportunities for selfish shortcuts 
that are prone to jamming.  

6 Conclusion 
SO and UE traffic assignments are among the most important traffic assignment methods and have 

been extensively investigated for several years. Although recent studies suggest that several road 
users (e.g., CAVs) are soon expected to follow the SO principle, most traffic simulation packages do 
not provide it. In addition, the majority of available SO solutions for CAVs are either static or 
analytical which have their own drawbacks. On the other hand, the available simulation-based 
methods are based on the MSA (or its extensions) algorithm, which has its own drawbacks. Therefore, 
this study proposes a new SB-DSO traffic assignment algorithm that replaces the travel times of links 
with a surrogate model of the MTT. The logit route choice model is incorporated in the solution 
algorithm. At each iteration, the route choice model is applied to the path set of each vehicle. A new 
swapping algorithm (Called PSwap) is presented, which is based on the logit route choice model to 
address the disadvantages of MSA (that uses an all-or-nothing assignment). The swapping algorithm 
prevents all vehicles from changing their routes in successive iterations. The proposed algorithm is 
tested on two classical case studies (Braess and Sioux Falls network) and a random network to assess 
its performance (both micro and meso scale). For each test network, four scenarios have been 
simulated: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-DUE-PSwap, and (4) SB-DUE-MSA. The 
results of the simulations show that MSA is dominated by PSwap in all of the scenarios. Also, a 
comparison of the proposed SB-DSO (scenarios 1 and 2) and current SB-DUE (scenarios 3 and 4) 
traffic assignment algorithm is provided. We observed remarkable decreases in the TTT when 
vehicles followed the SB-DSO. The maximum percentage of TTT reduction was for the Braess 
network (16.3%), followed by 12.84% and 4.9% for Sioux Falls and Random networks, respectively. 
In summary, the proposed SB-DSO-PSwap has the least amount of TTT. These results indicate that if 
road users (such as CAVs) follow SO routines in the future, a significant reduction in travel time and 
pollution of the entire network can be obtained, which, accordingly, reduces several costs.  

One of the most critical factors in the superiority of SB-DSO over SB-DUE is the presence of 
short minor roads, as these routes provide opportunities for selfish routing. Therefore, the proposed 
algorithm may not necessarily improve the TTT in networks where short minor roads (or alternative 
routes) are not present. Also, it should be pointed out that the number of teleporting vehicles has a 
considerable impact on the results of the TTT. Therefore, it is not appropriate to evaluate the 
performance of the algorithm if the number of teleporting vehicles is very high.  

The proposed algorithm is freely available under the EPLv2 license on GitHub (Eclipse, 2022) by 
setting --marginal-cost, --marginal-cost.exp, and --convergence-steps options in duaIterate.py. As the 
MTTs in the proposed algorithm are calculated based on a local approximation, it may lead to its 
overestimation. Therefore, it is recommended to remove the second term of the MTT equation in case 
of inappropriate results (by removing --marginal-cost.exp option). This tool helps researchers and 
decision-makers in evaluating the effect of SO-seeking users (e.g., CAVs) on the road network in 
terms of traffic and environment-related issues. Beyond solving the SB-DTA problem by a new 
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swapping algorithm, proposing a surrogate model for MTT is helpful in many road network 
management applications, such as providing marginal cost-based tolls.  

Future studies should estimate the global approximation of MTTs. In this study, the examined 
scenarios were scenarios in which all vehicles followed either DSO or DUE rules; therefore, it is 
suggested that a mixed traffic algorithm should be developed in future research. In addition, owing to 
the importance of the demand level in traffic assignment, researchers are encouraged to assess the 
impact of different demand levels on the proposed SB-DSO traffic assignment algorithm. Another 
direction for future research is the comparison of environmental-related measures in DSO and DUE 
conditions.  
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