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Abstract 
Virtual traffic environments allow for evaluations of automated driving functions as well as 

future mobility services. As a key component of this virtual proving ground, a traffic flow 
simulation is necessary to represent real-world traffic conditions. Real-world observations, such 
as historical traffic counts and traffic light state information, provide a basis for the representation 
of these conditions in the simulation. In this work, we therefore propose a scalable approach to 
transfer real-world data, exemplarily taken from the German city Ingolstadt, to a virtual 
environment for a calibration of a traffic flow simulation in SUMO. To recreate measured traffic 
properties such as traffic counts or traffic light programs into the simulation, the measurement 
sites must first be allocated in the virtual environment. For the allocation of historical real-world 
data, a matching procedure is applied, in order to associate real-world measurements with their 
corresponding locations in the virtual environment. The calibration incorporates the replication 
of realistic traffic light programs as well as the adjustment of simulated traffic flows. The 
proposed calibration procedure allows for an automated creation of a calibrated traffic flow 
simulation of an arbitrary road network given historical real-world observations. 

1 Introduction 
The release of a fully functional automated driving system implies a high effort in testing and 

development. As real-world tests are time-consuming, expensive, not replicable and potentially 
dangerous, testing is primarily shifted towards a virtual environment. In order to replace real-world 
tests by virtual experiments, there are high demands towards a realistic representation of the real 
world in simulation. Therefore, the approach has been pursued to couple a submicroscopic vehicle 
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simulation and a microscopic traffic simulation, e.g. [1]–[4]. In the approach, traffic simulation 
provides a temporally and locally realistic traffic system for an autonomous vehicle under test. 
Submicroscopic simulation controls the specific behavior and interactions of the involved traffic 
participants only in the direct environment of the tested vehicle. For achieving valid, realistic traffic 
surroundings, the traffic system must be accurately calibrated with real-world data. Therefore, traffic 
properties like traffic counts as well as traffic light programs must be obtained and assigned to the 
simulation, in order to recreate realistic traffic conditions. In order to prove simulation validity and 
especially enable the comparison of simulated and real-world results, an accurate representation of the 
real world conditions is inevitable. 

The main contribution of this work is a scalable calibration process of a microscopic traffic 
simulation using the microscopic traffic simulator SUMO [5]. We present a tool chain, which enables 
real-world data acquisition for a requested time interval, the allocation of these measurements in the 
virtual world as well as the calibration of traffic flows and traffic lights. The validation of this 
comprehensive approach takes into account the comparison of simulated measures to the 
corresponding real world observations as well as the ability of the calibrated traffic lights to cope with 
the provided traffic demand. The developed tool chain allows for an application of the calibration 
method to any arbitrary traffic simulation in SUMO given necessary historical data. As our focus is 
mainly on the replication of a historical traffic scenario, we will not take into account calibration of 
driver models. 

Section 2 provides an overview on related work regarding map association, traffic light emulation 
and traffic assignment. In Section 3, the allocation of real-world data and the calibration procedure are 
described in detail. The evaluation of the procedure is presented in Section 4. Section 5 summarizes 
the main contributions and provides an outlook regarding future work.  

2 Related Work 
The proposed approach to calibrate the traffic flow simulation in SUMO using real-world 

observations can mainly be separated into three predominant tasks. The first task consists of the 
representation of the virtual road network and allocation of real-world data to the virtual world. In a 
next step, traffic light programs must be created and implemented to the simulation. In a last step, 
traffic must be assigned based on observed traffic measurements. The following literature review 
addresses these relevant steps. 

2.1 Map association 
The allocation of real-world data in the virtual environment can be broken down to a map-

matching problem. According to Quddus et al. [6], map-matching procedures can be classified to four 
different categories. Geometric map-matching algorithms take into account geometric information of 
a road network by neglecting logical connections between roads. Bernstein and Kornhauser [7] 
distinguish point-to-point matching, point-curve-matching and curve-to-curve matching as 
representatives of geometric map-matching algorithms. In contrast to geometric algorithms, 
topological map-matching techniques consider the geometry as well as the linkage of network 
elements. The third category of map-matching algorithms, probabilistic algorithms, create an elliptical 
or rectangular confidence region around a coordinate to be matched. For the determination of the 
corresponding network element, the confidence region is superimposed on the network. Advanced 
map-matching algorithms apply several methods like Kalman Filter or an Extended Kalman Filter, a 
flexible state-space model in combination with a particle filter, a fuzzy logic model or an 
implementation of Bayesian inference. 
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2.2 Traffic light emulation 
In the literature, there are two approaches for the creation of simulated traffic lights. The first 

approach treats the emulation of existing traffic light programs for a realistic representation in 
simulation [8]–[14]. Besides, the second concept is the optimization of existing traffic light programs 
in order to improve certain measures, e.g. traffic flow, using reinforcement learning or evolutionary 
algorithms [15]–[18]. As our purpose is on building a detailed representation of the real world, we 
only provide an overview on literature on the first approach to estimate and emulate traffic light 
programs.  

Schönfelder et al. [8] reconstruct traffic light programs of fixed-time traffic light cycles using 
camera data from probe vehicles approaching an intersection with a known cycle time. The procedure 
requires only few and less quality input data for high accuracy results. Axer and Friedrich [9], [10] 
provide an approach for the estimation of traffic light programs and the cycle durations of fixed-time 
as well as traffic actuated traffic lights based on sparse simulated floating car data (FCD). Besides, 
Wang and Jiang [11] use recorded FCD trajectories of vehicles passing a signalized intersection to 
derive traffic light programs and cycle times. Rostami-Shahrbakaki et al. [12] apply a machine 
learning approach for determining signal timings of traffic lights based on FCD of connected vehicles. 
They achieve high accuracy in estimating cycle time at low percentages of connected vehicles (~ 5 -
 10 %). For detecting green time durations, higher penetration rates of connected vehicles (~ ≥ 15 %) 
are necessary to obtain higher precision estimations. The patent of Wolf et al. [13] introduces a 
procedure using a genetic algorithm to emulate future traffic light signals from historical signal timing 
information accessed by an interface to the traffic light backend. Weisheit [14] applies a Support 
Vector Machine on historical signal timing data for predicting future traffic light states. 

2.3 Traffic assignment 
For the assignment of traffic to a simulation network, trip-based as well as activity-based 

methods are applied. The four-step model [19] describes a trip-based approach, which divides a 
simulated region into several traffic assignment zones. These zones serve as origins and destinations 
of trips in the network. The first step of the model represents the trip generation, in which the 
frequency of originating and arriving trips is determined for each zone by different trip purposes 
based on socio-economic statistical measures. In the second step, called trip distribution, trip 
interchanges between zones are defined in order to meet the frequencies of the first step. The result of 
the second step is an origin-destination (OD) matrix incorporating the number of trips from each 
origin to every destination in the network. There are various methods to improve an OD matrix based 
on observed traffic counts. Van Zuylen and Willumsen [20] introduce information minimization and 
entropy maximization for estimation of an OD matrix using traffic counts. Further procedures apply 
generalized least squares [21], [22], a Bayesian estimator [23] and maximum likelihood estimation 
[24]. The third step of the four-step model implies the transportation mode choice for each trip. 
Finally, the last step incorporates the route assignment for each trip according to the mode-specific 
network. For route assignment, Wardrop introduces two concepts regarding the optimization 
objective. The user equilibrium defines the state, in which all vehicles are assigned to their individual 
fastest route. Besides, the system optimum describes an equilibrium, in which the total travel times 
are minimal. 

Activity-based models consider traffic assignment on a person- and household-related level 
rather than on a zone-based level such as the four-step model. The route for each person is affiliated 
with certain activities and comprises all trips over an entire day. Apart from general socio-economic 
statistical data, household surveys are an essential basis in order to realistically represent individual 
travel behavior. Lobo et al. [25] introduce an activity based approach for a simulation of Ingolstadt 
called InTAS. The city is divided into several districts. According to regional statistics regarding the 
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number of inhabitants, commuters, workplaces, education possibilities and demography, traffic is 
assigned to the network. However, the traffic assignment does not use traffic counts to generate the 
demand. Additionally, the traffic lights in the network are created manually instead of using real-
world data. 

3 Methodology 
As introduced in the previous section, calibration of a traffic flow simulation is split up to map 

association tasks, traffic light program emulation and traffic flow calibration. For the calibration of 
the traffic flow simulation in SUMO, we use a network comprising the entire city of Ingolstadt, 
Germany, with an extent of about 10 km by 10 km. It covers more than 12000 edges, including urban, 
rural and highway roads, as well as 5600 junctions with 120 traffic light actuated intersections. The 
network is based on an import from OpenStreetMap converted to a SUMO network. Figure 1 depicts 
a section of the road network. 

Figure 1: Section of the road network of Ingolstadt 
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The following Figure 2 provides an overview on the necessary steps for the calibration 
purpose, which will be explained in detail in the following sections.  

3.1 Map association 
A key part of the calibration procedure of the traffic simulation is the linkage between real 

observations and their representation in the virtual world. For the map association tasks, we apply a 
framework based on a parsed representation of the SUMO network towards a GeoDataFrame, 
introduced by the Python library geopandas [26]. The framework enables map-matching tasks, which 
exceed SUMO basic functionalities, by not only applying geometrical matching, see section 2.1, but 
also considering the logical connections and properties of the map, e.g. lane successors, lane types etc. 
The application range of the framework is not only limited to matching tasks related to the calibration 
of a traffic simulation. Furthermore, the framework can also be used for applications such as vehicle 
trajectory matching or public transport routing. We plan to provide the developed framework as an 
open-source Python package.  

For the calibration of the simulation, real signal groups of traffic lights must be mapped to 
the inbound lanes and in a second step to the succeeding connecting lanes of traffic light actuated 
junctions in SUMO. Signal groups provide signal state information for multiple associated lanes. 
Furthermore, loop detectors are allocated to the corresponding lanes given their geographical 
positions. For both applications, allocation is based on a reference topology representing all inbound 
lanes for each traffic light actuated intersection in Ingolstadt including associated stopping lines, 
signal groups as well as possible maneuvers. Besides, the geographical positions of all loop detectors 
can be extracted from the reference map.  

In order to assign signal groups to the SUMO network, in a first step, each traffic light 
actuated junction from SUMO must be identified in the reference topology by simply comparing the 
geometrical centers of the respective junctions considering small deviations (~10 m) of both maps. As 
signal group association in the reference topology is stored as an attribute of inbound lanes, the 
attribute in SUMO is linked to connecting lanes within a junction. For the association of signal groups 
to SUMO, the inbound lanes of the respective junction in the SUMO network must be derived and 
matched to the inbound lanes from the reference. To prevent errors in the allocation process, the 
number of inbound roads and lanes of each traffic light actuated intersection must be the same for 
both maps. Therefore, these numbers are extracted and compared for the inbound roads and lanes. As 
there are deviations between the reference and the SUMO network, corresponding lanes from each 

Figure 2: Overview on the calibration procedure 
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map do not generally match geometrically. Therefore, the matching of the junction geometries is 
performed in two steps. In the first step, the inbound roads of the topology are matched with the 
inbound roads of the SUMO map. Once the pairing is done on the road level, the lanes within each 
individual pair of roads are matched between both maps. In order to complete this two-step matching, 
detailed information regarding the association between individual lanes belonging to the same roads is 
required. 

For the SUMO network, the number of inbound roads and lanes can be determined directly 
by the unique road identifier. The intersection reference map also provides information on which 
lanes form the associated roads. In order to group inbound lanes from an older version of the 
reference map without any knowledge on inbound roads given the number of inbound roads from 
SUMO, additionally hierarchical agglomerative clustering is applied. A comparison of both 
techniques shows that the clustering produces the same groups of inbound lanes given in the reference 
map with knowledge about inbound roads. In case of different numbers of inbound roads or lanes due 
to deviations of both maps, these differences are logged for a manual inspection of both maps and for 
corrections, which are essential to any of the following steps to allocate signal group information in 
SUMO. For an association of the inbound roads of both maps, the aggregated geometric centers of the 
stopping lines of all lanes of each inbound road are compared. The pairing between the two maps is 
carried out by minimizing the Minkowski distance (p-norm) between each pair of inbound roads from 
both maps. The Minkowski distance enables an emphasized weighting of shorter distances by 
applying an exponent, e.g. squaring, in order to weight larger distances with an exponentially higher 
value. Finally, for the allocation of inbound lanes, all lanes within each pair of inbound roads are 
considered and again the overall Minkowski distance between the inbound lanes of both the junction 
in the reference topology and in the SUMO network is minimized. The overall distance is selected as 
the quality parameter of the matching process as large deviations occur between lanes of the SUMO 
and the reference map. Furthermore, the application of the overall distance enables an optimal 
matching for the combination of all corresponding lanes rather than only for several specific lanes. 
Figure 3 shows the results of the clustering and pairing procedure for an exemplary intersection in the 
SUMO network and the reference map. 

Figure 3: Clustering of inbound roads (blue and yellow ellipses) and pairing of inbound lanes (colored 
symbolic markers) 
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In Figure 3, the symbolic markers represent the geographical positions of the centers of the 
stopping lines of the inbound lanes. The inner markers are derived from the SUMO network and the 
outer markers result from the reference map. The color of the markers indicates the association to 
inbound roads, i.e. markers with equal color indicate the ends of all lanes from a single road. 
Furthermore, equal symbols having equal colors provide information on related pairs of inbound lanes 
comprehending both maps. 

For the placement of loop detectors, a similar procedure of grouping and pairing is applied. 
Loop detectors are grouped by their inbound road. For the aforementioned older version of the 
reference map without information on inbound roads, detectors are grouped by using the 
agglomerative hierarchical clustering on the geographical positions. After grouping, the detectors are 
matched to their nearest SUMO inbound lanes by minimizing the Minkowski distance of the whole 
group. In contrast to the intersection matching, detectors are also matched and paired if the number of 
detectors and the number of inbound lanes differ. In case of more detectors than lanes, multiple 
detectors are placed on the same lane according to their geometrical position. 

3.2 Traffic light emulation 
In order to cover the strong influence of traffic control on traffic behavior, a realistic 

representation of traffic light programs is inevitable. Real traffic light programs in Ingolstadt are 
controlled traffic adaptively and incorporate features like green phase prolonging as well as public 
transport prioritization. For the proposed approach, average green times observed in reality are 
represented as fixed-time traffic light programs in the simulation. The individual effects on traffic of 
green phase prolonging and public transport prioritization are ignored, but their impact is still 
considered as average green time adaptions. Furthermore, different traffic light programs over a day 
are taken into account by hourly generating specific traffic light programs for each traffic light. 
Therefore, we provide an approach recreating these programs based on the same historical signal 
timing data used in [13]. Signal timing data can be requested for any traffic light actuated intersection 
in Ingolstadt for a defined time interval via an interface to the traffic light backend. The data are 
available for 75 traffic lights and contain the temporal intervals of green and red phases for each 
signal group of every specific traffic light with a resolution of one second. All remaining traffic lights 
in the network cannot be calibrated and are therefore adapted manually with static traffic light 
programs in order to cope with the traffic demand. 

A realistic estimation of the traffic light programs requires determining the switching order 
and mean green time durations of all signal groups. For each signal program, one signal group is 
declared as the reference. For the requested time interval, this reference signal group is the first in the 
data to switch to a green state on the condition that all other signal groups have switched to red at 
least in the time step before. Next, the most common switching order, in which all signal groups have 
switched to green at least once and which starts with the reference signal group, is determined. 
Furthermore, the mean green and red time as well as the overall green time during the one-hour 
interval are calculated for each signal group. Incomplete signal timing phases in the recordings are 
ignored in the calculation. Based on the number of occurrences ni in the most common order as well 
as the mean green time �̅�𝑡g,i and the proportion of the green time in the whole one-hour interval ptotal,i, 
the cycle time tcycle,i  for the emulated traffic light program is estimated for each signal group i 
individually according to equation 1. 

tcycle,i = 
ni ∙ �̅�𝑡g,i

ptotal,i

(1)
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Based on the individual cycle time estimations, the overall cycle time tcycle for the emulated 
traffic light program is calculated as the mean of all tcycle,i weighted by ptotal,i. 

tcycle = 
∑(tcycle,i ∙ ptotal,i)

∑ ptotal,i

(2) 

The weights are applied to estimate a general cycle time, which takes into account the 
relevance of certain signal groups for the whole cycle with respect to the green time in the entire one-
hour interval. In order to fit into the determined cycle time, the emulated green times tg̃,i  of each 
signal group are adopted based on their average green times �̅�𝑡g,i and red times �̅�𝑡r,i. 

t ̃g,i =
�̅�𝑡g,i

(�̅�𝑡g,i + �̅�𝑡r,i)
∙ tcycle

(3) 

The signal switching order is created by applying the emulated green times under 
consideration of average overlaps of green times in the whole interval. If there is no overlap between 
two consecutive signal groups, a clearing time of 6 s is included in between.  

For the implementation of the estimated traffic light programs in SUMO, all inbound lanes, 
which are linked with the relevant signal groups, must be associated to the SUMO map as explained 
in the map association section. As a result, the related inbound lanes of the reference topology and the 
SUMO net are available. As traffic light state information in SUMO is stored as an attribute of 
connecting lanes within each intersection, the succeeding connections of each inbound lane are 
determined. Furthermore, the feasible maneuvers for each connection are compared to the maneuvers 
linked to the signal groups in order to achieve a unique allocation of connections to a related signal 
group from reality. The generation of the necessary SUMO additional file, which incorporates the 
traffic light program, requires an iteration through one cycle of each traffic light. Yellow phases are 
accounted as a part of the red signal in the historical traffic light data. The yellow light duration is 
implemented after switches from green to red light according to German legislation [27]. For every 
change in state of any signal group, a new line in the SUMO additional file is created covering its 
duration as well as the current states of the corresponding connecting lanes.  

3.3 Traffic assignment 
For the calibration of simulated traffic flows, a two-step procedure is considered, which 

covers the determination of an initial pool of routes from OD relations and further calibration based 
on observed link counts. In order to obtain regional traffic flows, according to the first two steps of 
the four-step model [19], an initial OD matrix for Ingolstadt is determined based on statistical 
information. The initial OD matrix includes regional statistics from Ingolstadt regarding the 
distribution of inhabitants and workplaces in different municipalities as well as information on the 
attractiveness of municipalities with respect to free-time opportunities, shopping areas and 
educational establishments. Furthermore, we access aggregated data from Audi regarding residences 
and working time models of all 44000 Audi employees in Ingolstadt [28] considering data protection 
requirements that ensure no transparency of individual residences. The data from Audi are highly 
accurate and cover a significant number of trips in Ingolstadt having 136000 inhabitants [29]. As there 
are no local distributions regarding other trip purposes than work, their temporal distributions and trip 
lengths, as well as modal split, also Germany-wide statistics [30] are included. Finally, statistics of 
commuters traveling from and to Ingolstadt every working day are considered. Aggregating all this 
information, a procedure is established to create OD matrices taking into account the Ingolstadt 
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municipalities, different trip purposes that are work, business, free-time, shopping and education, the 
temporal distribution of these trip purposes as well as the length of each trip with respect to the modal 
split. Modal split is separated to vehicles, public transport, bicycles and pedestrians. As a result, the 
procedure generates one OD matrix for every hour of an average working day and each mode of 
transport. The elements of each OD matrix can be converted to SUMO trips and routes using built-in 
executables od2trips and duarouter according to the route assignment of the four-step model. As the 
pool of resulting routes strongly affects the quality of the calibration outcome, the selection of roads 
in traffic assignment is weighted based on the road priority. Nevertheless, the pool of resulting routes 
is inaccurate due to statistical deviations from real local conditions and daily traffic characteristics 
making further traffic calibration inevitable. The calibration is conducted only for vehicle routes, as 
no further observation data regarding the other modes are available. 

The pool of routes generated from statistical data is used as a basis for an hourly traffic 
assignment based on observed traffic counts in the next step of the calibration. The real-world counts 
are aggregated for each road with induction loop detectors. Additionally, the number of vehicles that 
would pass the same roads in the routes generated from statistical data is calculated. For the 
calibration, routes are copied two times and then successively removed until no further improvement 
can be achieved. The difference between the evaluated counts from routes and the observed counts for 
each road serves as a quality measure for the calibration. High values of the quality measure indicate a 
large error. This removal of routes is carried out in two steps. In a first step, only routes, which 
exclusively pass roads with an overestimation with respect to the observed counts, i.e. the worst 
quality measure, are removed at random. This procedure is repeated until no more routes meeting the 
criterion are found. In this step of the route selection, all routes are removed that pass only locations 
with an overestimation of traffic. In the second step, routes are also excluded if they have a positive 
impact on the overall error. This leads to a balancing of over- and underestimation of the error across 
all roads. The second step is repeated iteratively until any removal would lead to an increasing overall 
error value. The final set of routes contains anything between zero to three copies of each route taken 
from the initial pool of routes generated from statistical data. Since calibration is conducted on an 
hourly basis, routes for each hour are temporally shuffled inside the interval to prevent copied routes 
to start at the same point in time. 

4 Results 
For a validation of the calibration process, simulated observations are compared to their 

corresponding real-world counterparts. The results of the simulation are therefore analyzed in 
comparison to the input measurements. The evaluation has the objective to verify the functionality of 
the proposed calibration process. In the following, the quality of map association, traffic light 
emulation as well as traffic assignment is assessed.  

4.1 Map association 
For the map association of the signal groups to the virtual environment, all of the 75 

considered traffic light actuated intersections can be fully matched showing the same number of 
inbound roads and lanes as well as the corresponding maneuvers for traffic light emulation. 18 
intersections require slight manual changes in the SUMO network beforehand regarding inbound 
lanes or maneuvers in order to match the logic of the reference topology. 

The association of the detectors between the two maps ends up with more errors than the 
intersection association due to geometric divergences between the two maps. Furthermore, the 
application of the agglomerative hierarchical clustering of detectors is error prone due to the missing 
number of clusters and strongly varying distances between detectors. Without knowledge on inbound 
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roads, detectors are misplaced to outbound roads on occasion. Therefore, only the results of the 
method incorporating knowledge about inbound roads are presented. From the 529 detectors available 
in the road network, all are placed in the network. 210 of the 529 detectors must be replaced manually 
due to misalignment, while 319 are assigned correctly. In case of an equal number of detectors in a 
group of inbound lanes, the association of the detectors to the corresponding lanes works without 
errors as every lane gets occupied by one detector in the pairing process. Misalignments result from a 
higher number of lanes on a road than to be matched detectors in combination with map deviations. 
Shifted groups of detectors are paired with the closest set of inbound lanes, which may result in a 
shifted placement on the lanes. All in all, the 529 detectors are placed on 254 roads. For future 
simulation setups, the use of high definition map data is suggested as this makes an accurate 
geometric matching of detector locations to the simulation map possible. 

4.2 Traffic light emulation 
In the described approach, traffic light programs are reconstructed as fixed-time programs 

based on average green and red time durations of the different signal groups. In reality, traffic lights 
in Ingolstadt apply green phase prolonging for traffic adaptive control and public transport 
prioritization resulting in a discrepancy between real and simulated traffic lights. However, simulated 
traffic lights implicitly take into account the impact of these effects on the average green times. For 
the validation, emulated and real traffic lights are compared regarding the percentage of green time of 
each signal group with respect to the cycle time of the corresponding traffic light. In order to cover 
varying switching behavior of the real traffic lights along with cycle time deviations, the green time 
ratio of each real signal group is determined over the whole one-hour interval in which the calibration 
takes place. It is assumed that similar green time ratios lead to a comparable impact on the traffic. 

Validation of emulated traffic lights is conducted for one defined week from Monday to 
Friday. Figure 4 indicates the distributions of absolute green time ratio errors in percent between 
emulated and real signal groups. All weekdays are aggregated and evaluated hourly for time intervals 
from 7 a.m. to 8 a.m., 9 a.m. to 10 a.m., 4 p.m. to 5 p.m. and 6 p.m. to 7 p.m.  

Figure 4: Distributions of absolute errors of the ratio of green time duration with respect to the cycle time 
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The determined median values of the deviation between simulated and observed green time 
ratios lie between 1.6 % and 1.9 %. The values indicate that the emulated traffic light programs are 
capable to adapt a realistic traffic light behavior for different time intervals. The distributions of errors 
in peak traffic hours from 7 a.m. to 8 a.m. and 4 p.m. to 5 p.m. range from 0 % to 10 %. In time 
periods with a lower traffic demand between 9 a.m. and 10 a.m. as well as 6 p.m. and 7 p.m., the 
proportion of public transport, which strongly influences the switching order and green time duration, 
is larger compared to the other hours. This increased variety of real traffic light programs leads to a 
wider distribution of the error value. 

In the calibration process of traffic volumes in microscopic traffic simulation, traffic lights 
are often tuned to match the calibrated demand. In this publication, the traffic lights are created from 
real-world data together with the traffic counts. Inaccuracies in the calibration procedure will 
therefore quickly show in the simulation, since an overestimation of traffic volumes or an 
underestimation of the capacities at signalized intersections will lead to unrealistic congestions. 
However, the calibrated simulation shows that the emulated traffic lights are able to cope with the 
traffic demand even in peak hours without leading to excessive congestion or deadlock situations in 
the simulated network. This capability further indicates a realistic representation of traffic lights in 
Ingolstadt. 

4.3 Traffic assignment 
Traffic volumes generated by the proposed approach are validated by a comparison of 

simulated traffic counts with their real counterparts both aggregated on road level. In reality, there 
exist only measurements at specific loop detector locations so that only the counts of these 
measurement points from reality and simulation can be compared. Although these data are used for 
calibration of the simulation, there is no further available data for the validation purpose of traffic 
flows. 

For the validity analysis of the simulated traffic counts, the absolute value of the relative 
error erel is calculated according to equation (4): 

erel =  
|countreal −  countsim|

countreal
, 

(4) 

where countreal  represents the real-world traffic count and countsim  is its simulated 
counterpart both aggregated road-wise for each of the 254 roads containing detectors. 

The proposed calibration approach uses detector counts of one hour to calibrate routes 
starting within the corresponding hour in order to meet the counts again. Consequently, the procedure 
leads to an offset of routes, which start in the corresponding hour but cannot finish during the one-
hour interval. The issue especially arises in peak traffic, as the higher number of vehicles potentially 
leads to more congestion, which increases travel time and causes incomplete trips. Therefore, 
simulated traffic counts are evaluated in a prolonged timespan, which enables all generated vehicles 
to complete their journey through the network. Figure 5 shows the relative errors for one week from 
Monday to Friday which are separated hourly in time spans from 7 a.m. to 8 a.m., 9 a.m. to 10 a.m., 
4 p.m. to 5 p.m. and 6 p.m. to 7 p.m. 
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All distributions presented in Figure 5 show median values between 13 % and 18 %. The 
error distribution of values of peak traffic in the afternoon between 4 p.m. to 5 p.m. shows similar 
results compared to the hours from 9 a.m. to 10 a.m. and 6 p.m. to 7 p.m. with lower demand. Only 
the distribution for peak traffic in the morning from 7 a.m. to 8 a.m. reveals higher error values. There 
are mainly two reasons for the remaining errors, which result from the calibration, compared to 
reality, i.e. corrupt input data and rerouting. The calibration procedure balances the over- and 
underestimation of routes passing the detector loops in order to achieve an overall error of 0. 
However, the observed traffic counts show several unrealistically low values, which strongly 
influence the calibration. Given an exemplary road network with three junctions linking three 
successive main roads in a line each containing detectors, unrealistically low detector counts of the 
road in between the two other roads would induce the traffic assignment algorithm to adjust an 
underestimation of the two roads with correct detector counts and an overestimation of the road with 
the lower counts. This would lead to a balanced overall error but reveals in an increased absolute 
error. Especially in peak traffic hours, overestimation of traffic exceeds the capacity of a share of 
roads resulting in congestion and deadlock situations. In order to cope with the overestimation 
induced by inaccurate input data, the rerouting probability of SUMO vehicles is adapted to 20 %, 
which enables 20 % of the vehicles to take different routes than assigned to reach their destinations. In 
comparison, Lobo et al. [25] apply a more than four times higher rerouting probability to handle 
congestion in the network.  

The absolute values of the observed traffic counts vary over a wide range. However, absolute 
errors of small traffic count values add to higher percentage deviations than equal absolute errors of 
high counts. Therefore, GEH analysis is applied additionally in order to assess the calibration 
performance under consideration of a non-linear weighting of errors. The GEH statistic is given by 

GEH =  �
2 ∙ (countreal  −  countsim)2

countreal  +  countsim
. 

(5) 

Figure 6 depicts the distributions resulting from GEH analysis regarding a clearing period. 

Figure 5: Distributions of absolute relative errors of simulated traffic counts aggregated to road level after a 
clearing period 
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Figure 6 reveals wider distributions of the GEH statistic in peak traffic hours from 7 a.m. to 
8 a.m. and 4 p.m. to 5 p.m. than for the remaining hours with less traffic. The median GEH values 
between 2.4 and 4 indicate a good performance of the calibration procedure.  

In order to tackle the issue regarding the offset of routes when starting the simulation under 
initial conditions without any traffic, additionally, the impact of a one-hour warm-up phase without a 
clearing period is investigated. The warm-up on the one hand fills up the network at the beginning of 
each analyzed interval. On the other hand, the overlapping traffic is originally calibrated for the 
previous time interval. Figure 7 displays the resulting distributions of the absolute value of relative 
errors of the traffic counts for the previously specified time intervals regarding a warm-up phase. 

Figure 6: Distributions of GEH analysis of simulated traffic counts aggregated to road level after a clearing 
period 

Figure 7: Distributions of absolute relative errors of simulated traffic counts aggregated to road level with a 
previous warm-up phase 
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With an initial warm-up phase, small deviations between traffic in peak hours and traffic 
with lower demand are visible. Compared to Figure 5, the slightly higher error values when 
considering a warm-up phase might result from different traffic volumes in the corresponding two 
consecutive time intervals, which increase the observed error. Hence, the traffic from 9 a.m. to 
10 a.m. shows similar characteristics compared to the previous hour from 8 a.m. to 9 a.m. and 
therefore yields the lowest error. In order to improve the presented calibration method, the temporal 
offset should be considered by a partial overlap of calibrated routes beyond the corresponding hour.  

5 Conclusion 
In this work, a scalable approach for the calibration of a microscopic traffic simulation based 

on real-world observation data for a requested time interval was presented. Therefore, information of 
traffic lights and loop detectors for this time interval was assigned to the virtual world. The inbound 
roads and lanes to intersections were associated correctly to the map by a robust determination of 
inbound roads and pairing of lanes. However, the detector placement was error prone affected by map 
inaccuracies and the number of lanes exceeding the number of detectors. Traffic light programs were 
emulated as fixed-time traffic lights and implemented to the simulation. Simulated traffic lights were 
evaluated regarding the ratio of green times with respect to the cycle times showing median errors 
between 1.6 % and 1.9 %. Furthermore, emulated traffic lights proved the ability to cope with the 
calibrated traffic demand. For the calibration of traffic flows, a two-step procedure was introduced. In 
a first step, an initial pool of routes was generated based on OD relations determined from statistics. 
In a second step, the routes in the pool were copied twice and subsequently removed in order to meet 
the observed traffic counts in the network. The procedure exhibited an offset of a share of routes 
calibrated with traffic counts of a one-hour interval, which could not be completed within the interval. 
Considering a clearing period for vehicles to finish their trips, the evaluation resulted in median 
absolute error values between 13 % and 18 % with respect to observed traffic counts.  

In the future, we will apply a time component to the traffic flow calibration in order to shift 
calibrated routes to the corresponding previous hour. Further improvement can potentially be 
achieved by a more comprehensive and diverse initial pool of routes. Additionally, different 
optimization algorithms like Cadyts [31]–[33] can be applied for a comparison of traffic flow 
calibration procedures. In order to increase the accuracy of the simulation, fixed-time traffic lights 
must be replaced by a traffic adaptive traffic light control using rule-based or data-driven techniques. 
Finally, individual driver behavior has a strong impact on the whole traffic system. Therefore, we will 
analyze and calibrate driver models with real-world data to achieve a more accurate representation of 
the real world. 

We plan to publish the simulation of Ingolstadt as an open-source project to make it available 
for further applications especially regarding testing and development of automated driving. 
Furthermore, we intend to publish the code framework for map-matching to the SUMO network as a 
Python library based on geopandas [26], which provides a broad range of possible matching 
applications. 
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