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Abstract

Nowadays, smart mobility applications could benefit from environment perception, en-abled by
evolving sensor technology and processing capabilities available for traffic entities. On the application
level, in many cases, information about detected objects is required in-stead of the raw sensor data.
Developing and evaluating the impacts of such applications can be done in co-simulation frameworks,
which combine the modeling of different domains such as application, communication, and traffic.
Eclipse MOSAIC is a suitable solution for this task, combining the traffic simulation of Eclipse
SUMO with other simulators, such as the integrated Application Simulator, or OMNeT++ and
ns-3 for modeling commu-nication. However, a model for perceiving surrounding traffic entities,
such as vehicles, traffic signals, and traffic signs, is only available to a limited extent. In this
paper, we introduce an object-level perception module to the MOSAIC Application simulator. It
takes advantage of state-of-the-art spatial indexing methods to get rapid access to traffic objects,
especially moving objects, within a defined field of view. We furthermore evaluate the computational
performance of the indexing techniques as well as the integration with the traffic simulator SUMO
using TraCI and Libsumo. With the aid of this model, novel connected applications that analyze or
share surrounding objects, e.g. for an improved traffic state estimation, can now be evaluated with
Eclipse MOSAIC.

1 Introduction

Safety, efficiency, sustainability - connected vehicles and associated applications are promised
to improve future mobility for more than a decade now. In order to evaluate the impact of these
applications by simulation, we developed the framework Eclipse MOSAIC (formerly VSimRTI),
which combines simulators from the different domains of applications, traffic, communication,
and others, needed for holistic modeling of Intelligent Transport Systems (ITS) [4, 11].

From the view of the distributed applications, especially the MOSAIC Application simulator
plays an essential role as it covers the most important participants in a traffic scenario. For
this purpose, it models several entities, which are connected, and which are equipped with
an application logic. First of all, Vehicles are considered as moving entities, whereas their
movements and states are simulated in a vehicle simulator like PHABMACS [10] or Carla [2],
or a traffic simulator like Eclipse SUMO [9] and synchronized to the Application Simulator. Due
to the bidirectional coupling, applications in the Application Simulator could control probable
state changes, which then influence the behavior in the vehicle or traffic simulator. Pedestrians
are another kind of moving entity. As stationary entities, Traffic Signals are usually also directly
related to the vehicle and traffic simulators, due to their close and also pre-defined interaction
with the moving participants such as vehicles. Additional stationary entities are Charging
Stations, Road Side Units (RSUs) and (novel) Traffic Signs. These entities might be part of
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physical infrastructure on or beside streets, but are not necessarily related to the vehicle and
traffic simulator since their interaction might be  part of  the conducted re search and require a
dedicated implementation. Cloud/Edge Servers and Traffic Management Ce nters (which are
specialized Servers) are also stationary, but usually not part of road infrastructure. They realize
interaction with other entities by communication.

With evolving sensor technology and processing capabilities, more and more data are han-
dled by the traffic en tities, en abling no vel mo bility ap plications. Nowadays, ra dar, cameras,
and even LiDAR have found a permanent place in vehicles for the detection of traffic objects
in the surrounding area of the vehicle. The perceived information supports safety applications,
but also efficiency co uld be nefit. One  example is est imating the  traffic state  on th e r oad by
considering surrounding vehicles, e.g., estimating the density on roads. Furthermore, parking
space solutions could be imagined with direct detection by vehicles. Not only vehicles could
be equipped with the perception technology, but also stationary entities like traffic si gnals or
RSUs at certain intersections, or gantries on highways. All in all, there are many constellations
of how traffic entities could perceive each ot her. For the simulation system, perception implies
new interaction possibilities between entities.

On the one hand, common research in the field of s imulated perception sensors has mainly
been motivated by the implementation and validation of Advanced Driver Assistance Systems
(ADAS) [6, 8, 12]. This results in detailed models trying to closely mimic the behavior of
the physical sensors. Hence a vehicle simulator might be the best choice for realization. Yet,
generating such sensor data with a vehicle simulator and handling them in application models
is computationally expensive and might be only applied, when needed. On the other hand,
there are many applications, which rely on pre-processed data like Object Information instead
of Raw Data like sensor images. The object-related data may contain the positions, dimensions,
and directions of other traffic en tities. In turn, research questions, about how such applications
improve traffic effi ciency, might be i nve stigated in l arg e-scale scen arios. To e nab le this  is the
main goal of this paper.

Accordingly, this paper presents a Perception Model on Object-Level in the MOSAIC Ap-
plication Simulator to be used in combination with large-scale traffic si mulations. The imple-
mentation aims for a generic solution with a consistent interface for applications supporting the
seamless exchange of different s imulators such a s Carla, PHABMACS, and SUMO, which are
all coupled to MOSAIC. Yet, it uses most of the features of the traffic and vehicle simulators
themselves. Specifically f or t his p aper, t he implementation d etails a re p resented on t he basis
of SUMO and in turn on SUMOs Traffic Control Interface (TraCI ) and th e newer and faster
solution Libsumo, as well as the available Context Subscriptions to retrieve relevant object
information. These objects will then be maintained by the Application Simulator in a spatial
index for fast search of objects in sight of view. Currently, the solution supports the most
relevant case that vehicles perceive vehicles, meaning moving participants perceive moving par-
ticipants, which implies the highest requirements for the spatial search. We choose a simplified
perception model for the start. Error models or occlusion of traffic ob jects are not in  the scope
of this paper but will be part of further work.

The paper is structured as follows. At first, Section 2 discusses data structures and methods
for fast handling (update and search) of spatial objects. Section 3 presents how the new percep-
tion module is integrated into Eclipse MOSAIC. Specifically, i t c overs t he implementation in
the Application Simulator, but also the interfaces for coupling SUMO. In Section 4, the imple-
mentation is evaluated regarding performance. In fact, we implemented several solutions, which
are compared in different s cenarios. Finally, Section 5 concludes the paper and gives an outlook
for ideas of further integration and also of using the perception module for investigations.
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2 Spatial Search

In the context of mobility simulation, all objects have a specific location on a 2-dimensional
plane (ignoring the altitude). Those objects are static or can move on the plane. Perceiving
other objects (e.g. from the viewpoint of a vehicle) requires an algorithm to find all objects
within a given area. On a 2-dimensional plane, the problem of finding localized objects within
a range can be solved using spatial search algorithms. There mainly exist two different types
of spatial search:

� Finding the k-nearest neighbors given an arbitrary point in the search space.

� Finding a set of objects or points within a given range, which could be a rectangle, a
circle, or any other geometrical shape.

In order to model a perception module supporting moving objects, it requires us to find all
vehicles (or any other object) within the sight of any other vehicle. Therefore, an algorithm for
a spatial range search needs to be considered.

In a very näıve approach, this could easily be solved by checking all simulated objects in a
loop. This approach, however, would become increasingly slow with large object quantities, as
for every vehicle all other existing vehicles (and objects) need to be considered. This always
results in a complexity of O(n2) for n objects. Much faster approaches employ some form of
spatial index to speed-up queries. In general, spatial indexes work by grouping spatially close
objects in some form. A common approach is to use spatial trees, such as K-D-trees, R-trees[5],
or Quad-trees. These data structures allow a fast search of localized objects, resulting in a
complexity of O(log(n)). A major problem with these kinds of data structures is, however, that
they are fast at finding points, but not at updating the structures when objects are moving.
Furthermore, the issue of moving objects can be solved by using a grid-based data structure,
which stores the objects in cells spanned across the map.

The choice of the best suited spatial index highly depends on the type of data, the amount
of data, the dimensionality of the data, and the dynamics of the use case. Therefore, a lot
of research has been conducted to compare different spatial indexes on different datasets. For
example, Kothuri et al.[7] conducted an in-depth comparison of Quad-trees and R-trees on
spatial data and concluded that index building and update operations are faster in Quad-trees,
while query operations perform faster on R-trees on average. In search of a well-suited spatial
index for our purposes, we will further describe and evaluate those approaches.

2.1 Range Search in Spatial Trees

Trees are a simple yet effective structure to find specific data points in a given set. For example,
binary search trees are used to find one-dimensional data, such as objects in a hash table. For
spatial data, e.g. localized objects within a 2-dimensional plane, a special kind of tree is required
to gain similar results. All existing tree-like structures used for spatial search follow the branch-
and-bound principle, which arranges data points within certain bounds on different levels. These
bounds can be used during a search in the tree to discard branches that lay outside the range
to search in.

An R-tree groups nearby points and creates bounding rectangles around those. This pro-
cedure is repeated within each bounding rectangle, representing a second level of the search
tree. Depending on the number of points existing in the search space, this is done multiple
times resulting in m levels. During search for a range (or single point), only those bounding
rectangles of the first level which contain the search range are considered for deeper search.
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A K-D-tree shows a very similar structure. Instead of bounding rectangles, a median line
on one axis through the search space is calculated, dividing the set of points into two halves.
This is again done for each of the two halves but using the other axis. The whole process
is executed several times depending on the number of points, resulting in different levels and
branches to be used during search. The main disadvantage compared to the R-tree is, that no
items can be added or removed without re-building the entire tree.

In a Quad-tree, the search space is divided into four quadrants. This is again done recur-
sively for each quadrant, depending on the number of points inside. This results in a tree with
nodes having zero or four children each. Similar to the R-tree, insert and remove operations can
be implemented efficiently. However, if the resulting tree is quite unbalanced (i.e. the points
in the search space are unevenly distributed), the complexity of all operations search, insert,
remove, can increase up to O(n). Therefore, the Quad-tree requires a suitable configuration
of the size of the quadrants (tile size), which is determined from the initial bounds the tree is
covering.

root

NE SE SW NW

NE SE SW NWNE SE SW NW

NE SE SW NW

Search
Query

Figure 1: Example of a Quad-tree with a split size of 4. Only those quad-tiles which intersect
with the search query are considered.

All tree variants described above are optimized on search, but lack on updating the objects in
the search space. The K-D-tree requires a complete re-build when adding or removing objects,
and the R-tree requires the bounding rectangles to be continuously updated when objects are
moving. The Quad-tree, however, uses fixed tile sizes and could be a good candidate as it gives
room for improvements that are suitable for our use cases. Therefore, we propose to use a
Quad-tree like structure, with the additional properties (see Fig. 1):

� Each node of the Quad-tree stores multiple objects. Only if a maximum number of
objects per node (split size) is exceeded, the node is split and all objects are distributed
into four child quad tiles. Also, if all child quadrants of a node together contain less than
a minimum number of objects per node (join size), all child nodes are joint. The actual
values for split size and join size might depend on the expected total number of objects
present in the search space.

� The previous improvement also supports moving objects. Therefore, we check if the moved
object is still within the bounds of its tile. Only if it is outside, the object is completely
removed from the tree and added again.

2.2 Range Search Using Spatial Grid

A different approach to index spatial data is using a  grid-like structure instead of t rees. In this
case, the search domain is split by a grid into equally sized cells. To address cells by given
coordinates, the x and y-coordinates are converted accordingly. The formula for this conversion
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depends on the size of the grid and the area bounding the spatial data to search for. Adding
or moving data points can be done in O(1) time, as the cell address can be derived from its
coordinates. To find data, all cells intersecting with the search range need to be considered, and
all data points within those cells need to be checked (see Fig. 2). Therefore, the performance of
this index depends on the grid size and the number of data points in each cell. One disadvantage
of this data structure is memory consumption, as cells are always allocated even if they do not
contain any data points. This could be problematic, especially in large-scale scenarios. When
using range queries, the size of the search area (e.g. a rectangle or circle) affects the number
of cells to be considered. It is advised to use range queries not larger than one cell, limiting
queries to four grid cells at maximum.

Figure 2: Searching spatial items using a grid index with a cell size of 50. Objects in cells are
selected according to the search query.

2.3 Finding Traffic Objects in Sight of View

To model a perception facility, we define a field of view for every vehicle. All other traffic
objects within this field of view should be detected by this model with the aid of the previously
described methods for spatial search. Any occlusion or error models are neglected here but
could be added as an additional filter. The field of view is defined by a sight distance h and a
view angle γ, resulting in a circle around the center of the vehicle bound by two vectors (see
Fig. 3). The perception is done in two steps:

1) An axis-aligned minimum bounding rectangle (MBR) around the field of view is calcu-
lated. Using the sight distance h as the radius of a circle around the center position of the
vehicle, vectors b and c are calculated using the opening angle γ. Furthermore, any of the
four additional vectors a⃗0, a⃗1, a⃗2, and a⃗3 with a length of h in both directions of both axes are
considered, if they lie within the opening angle γ (see Fig. 3). Based on these vector points,
the MBR can be easily calculated and is then used to query a range search in the given spatial
index.

2) For all items returned by the spatial range search we check if they are inside the field of
view of the vehicle. For each traffic object m at relative location m⃗, we use the dot product with
vectors b⃗ and c⃗ to determine if object m lies inside or outside the bounds (Eq. 1 and 2). This
approach has the advantage, that it does not rely on trigonometric functions during requests and
can therefore be executed faster. However, this method only works for viewing angles < 180◦.
An additional check by comparing the magnitude of m⃗ with the sight distance h reveals if the
object m is visible or not (Eq. 3).
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c⃗ · m⃗ ≥ 0 (1)

m⃗ · b⃗ ≥ 0 (2)

|m⃗| ≤ h (3)

Figure 3: Field of view as a circle bound by two vectors b⃗ and c⃗ derived from sight distance h 
and a view angle γ. Left: Determining an axis-aligned minimum bounding rectangle (MBR,
red) to use as search query. Right: Using vectors b⃗ and c⃗, and the sight distance h from the 
center of the vehicle, it can easily be checked if traffic ob jects at  m⃗  or  n⃗  are visible.

3 Implementation in Eclipse MOSAIC

The implementation of a perception module in the simulation framework Eclipse MOSAIC
affects various c omponents. To c omprehend o ur d esign d ecisions, we g ive a  b rief overview of
the concepts used in the MOSAIC framework. MOSAIC includes a middleware written in Java,
which couples various simulators with each other. This middleware, the runtime infrastructure
(RTI), uses interactions to exchange data among all coupled facilities. The coupling of an
individual simulator is following the federate and ambassador principle, in which the actual
simulator is wrapped by a federate interface that exchanges information with the ambassador.
The ambassador is therefore coupled directly with the RTI by implementing and employing
provided interfaces. A strict separation of the federate and ambassador is not mandatory,
as a simulator that is already written in Java can be directly integrated into an ambassador
implementation.

Modeling of smart mobility applications for different e ntities i s d one i n t he Application
Simulator bundled with Eclipse MOSAIC. The movements of individual vehicles are usually
modeled in a vehicle or traffic simulation, e. g. wi th PHABMACS or  Ec lipse SU MO. In  order
to provide a perception module for individual applications, the Application Simulator requires
positions of all perceivable objects, especially vehicles in the traffic si mulation. The following
subsections briefly d escribe b oth t he a pplication s imulator a nd t he S UMO c oupling, before
continuing with the actual implementation of the perception module.
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3.1 The MOSAIC Application Simulator

Eclipse MOSAIC supports applications for several entities such as vehicles, pedestrians, traffic
signals, RSUs, servers, traffic management centers, and charging stations. The MOSAIC Ap-
plication Simulator, therefore, provides an API to easily integrate custom application models.
It allows, for one thing, using various facilities available on the respective unit (see Fig. 4). For
example, applications have access to a communication module for building and sending V2X
messages. Additionally, vehicles are provided with a navigation module to calculate routes on
the road network. Furthermore, application code can read vehicle data, such as position, speed,
heading, or sensor data, such as the distance to its leader. This information is usually derived
from the traffic or vehicle simulator coupled with MOSAIC, e.g. SUMO. Additionally, many
vehicle-actions can be triggered, e.g. stopping or re-routing the vehicle, or changing speed and
lanes.

MOSAIC  
RTI ApplicationAmbassador

SumoAmbassador

veh_0 App
A

App
B

veh_1 App
A

App
C

Communication 
Module

Navigation 
Module

Vehicle 
Data
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Data

Vehicle
Functions

Database

Unit
Simulator

Event
Module

Event
Manager

Ve
hi
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Eclipse SUMOTraCI /  
libsumo

Figure 4: Overview of the Application Simulator bundled with Eclipse MOSAIC.

3.2 Coupling Traffic with Eclipse SUMO

In the context of MOSAIC, the traffic simulation of SUMO is used to handle the movements
of individual vehicles. A coupling interface is used to realize the integration since MOSAIC
is written in Java and SUMO in C++. In the current version, the Traffic Control Interface
(TraCI) is used for this purpose. This socket-based protocol allows exchanging information
between SUMO and any other application. The protocol is well-documented and could be
easily adapted by the contributors of MOSAIC and is used for many years. However, the main
issue of this coupling method is its performance, as it hardly depends on the I/O capabilities
of the machine SUMO is running on. To reduce I/O overhead, SUMO uses the concept of
subscriptions, which allows the client to define in advance which data from which vehicles
should be sent via TraCI after each simulation step. This indeed reduces much of the protocol
overhead, but the requested data still must be sent via the socket.

The SumoAmbassador, which implements the TraCI client on the MOSAIC side, could
already be configured in a way, that only vehicles equipped with MOSAIC applications are
subscribed. This is helpful in many use cases, especially in those with low penetration rates.
However, when thinking of perception, the position of all entities (i.e. vehicles) is again required
to insert them into the search space, which would require basic position data for all vehicles to
be subscribed.
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As an alternative to TraCI , recent developments introduced Libsumo as a second method
to integrate SUMO into Java- or Python-based programs. This library makes use of the SWIG
framework to create bindings for different p rogramming l anguages, s uch a s J ava, a llowing to
integrate SUMO as a native library using the Java Native Interface (JNI). With this method
being used, data is not sent via a socket anymore but is read directly from the memory. This
integration method has been adopted by the MOSAIC coupling implementation of SUMO,
enabling faster simulations, especially when subscribing to many vehicles.

The requirements to use the perception module by MOSAIC applications include, that the
positions of all present vehicles must be known at any time. This implies that the coupling
implementation of SUMO with MOSAIC has to request basic data for all vehicles, such as
position, heading, and speed. To achieve this, basic subscriptions for all vehicles are used in the
TraCI implementation or read directly from SUMO using the Libsumo implementation. In that
context, SUMO already comes with a feature that could solve the problem of object perception
already without the need for dedicated spatial indexing and search in the MOSAIC Application
Simulator. With context subscriptions, any client can subscribe for data of all surrounding
vehicles for a given ego-vehicle. Additionally, SUMO can already filter surrounding vehicles by
defining a  field-of-vision, which is  expected to  give equal results as  our own perception model.
This indeed would reduce the amount of data to read, as only (single and context) subscriptions
for equipped vehicles would be required. However, the main goal is to provide a unified API
in the application simulator regardless of the traffic or  ve hicle simulator us ed. Th erefore, we
decided to implement two solutions: 1) makes use of context subscriptions and the field-of-vision
filter in SUMO, and 2) implements our own perception module which is fed with basic position
data of all vehicles in the simulation. In Section 4.2 the solution of using context subscription
is directly compared with our perception module, which is described in the following.

3.3 Perception Module

The perception module is integrated into the MOSAIC Application Simulator in a way, that
each application has access to it. As a result, every entity can request surrounding objects in
its field o f v iew. Next to vehicles that p erceive other t raffic participants, thi s allows modeling
road side units or traffic si gnals having access to  a sensor de tecting other tr affic obje cts. The
API usage from inside an application can be read in Listing 1.

The spatial index itself, be it Grid or Quad-tree, is only instantiated once and can be
accessed globally by all active perception modules. To avoid unnecessary update calls, e.g. if
the perception is called rarely or not used at all, the index is only updated on request (lazy
loading pattern). To achieve this, we provide a parameter spatialIndexUpdateInterval to
define how long (in simulation time) the index is used for requests without being u pdated. Each
spatial search request comes with a PerceptionRange parameter, which provides a bounding
rectangle as the search range query. The result of the index is then filtered by the perception
module according to its field of view (see Section 2.3).

The actual implementation of the spatial index variants Grid and Quad-tree can be found
in the Eclipse MOSAIC repository [1]. The implementations are interchangeable (see Fig. 5) as
the best-performing index might be chosen dependent on scenario size or view range. A hash
table is used for both implementations to fast update the actual traffic ob jects in  th e index.
The index itself is updated once the location of all traffic ob jects has been ch anged. If  the grid
cell index of the moved object has not changed, or it is still within the bounds of its current
quad-tile respectively, then no update operation for that particular object is performed.
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Listing 1: Activating and using the perception module in a MOSAIC application.

1 public class PerceptionApp extends AbstractApplication {

2

3 @Override

4 public void onStartup () {

5 getOs().getPerceptionModule ().enable(

6 new SimplePerceptionConfiguration (60.0, 200.0)

7 );

8 }

9

10 @Override

11 public void onVehicleUpdated(VehicleData previous , VehicleData updated) {

12 List <VehicleObject > vehicles =

getOs().getPerceptionModule ().getPerceivedVehicles ();

13 // do something with the perceived vehicles

14 }

15

16 }

To optimally perform in different scenarios the Quad-tree can be parametrized. A quad-tile
is not split until more objects than splitSize are stored in that particular tile. If splitSize
is exceeded, four more quad-tile are created and all objects are spread over these according to
their positions. To avoid unnecessary split and join operations, the parameter joinSize defines
when four quad-tiles are joined together. This parameter must be lower than splitSize to
function. Furthermore, the maxDepth parameter is used to determine how many levels of split
quad-tiles can exist at maximum. If the maximum depth is reached, a quad-tile can hold more
than splitSize objects.

Parameters for the Grid index only adjust the width and height of each cell. Therefore, the
actual size of the grid (number of cells) varies with the scenario boundary. The four corners of
the bounding rectangle of the search query are used to find the minimum and maximum row
and column indexes. All objects of the cells within these bounds are collected and filtered to
fit into the search range query.
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Figure 5: Class structure of the perception integration in the MOSAIC Application simulator.
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4 Evaluation

In this section, we compare the performance of the spatial indexes implemented in MOSAIC.
In addition, we also compare our solution with built-in features in SUMO to find out which
implementation is more suitable for specific use cases. For our experiments, we employ various
simulations with MOSAIC coupling the traffic simulation of SUMO. For the actual simulation
of the traffic, we defined two simulation scenarios of different sizes. Firstly, we use a full-day city
scenario with several million vehicles in total, in order to measure the performance on a large
scale. Secondly, we use an inner-city scenario with several hundreds of vehicles with varying
traffic demand, which is a more common size for a mobility simulation.

The Berlin scenario contains traffic demand with around 1,8 million trips during 24 hours
within the whole city of Berlin, Germany. The traffic demand was generated by extracting
80% of vehicle trips from the MATSim Open Berlin [13]. Routes for these trips have been
iteratively calibrated using the duaIterate.py script1. This scenario is furthermore planned
to be published under an open-source license on GitHub [3].

The Charlottenburg scenario covers a smaller area of Berlin. It was created by cutting
out traffic from the Berlin scenario using the cutRoutes.py script1. The simulation duration
was reduced to 12 hours including the morning peak only. In total, this scenario contains 67 000
vehicle trips, with 900 vehicles being present simultaneously at maximum (see Fig. 6).
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Figure 6: Traffic volumes modelled for each simulation scenarios.

Each simulation scenario was configured to run with MOSAIC in order to examine the
different spatial index implementations. The perception module in MOSAIC can only be used
by applications mapped to individual vehicles. We therefore configured a mapping to deploy
a simple application that solely requests the surrounding vehicles within its field of vision in
every simulation step (= every second) (see Listing 2). The field of vision was configured with
a 200m range and an opening angle of 60◦.

Listing 2: Mapping configuration to deploy a perception module on 10% of the vehicles.

1 {
2 "prototypes": [ {
3 "name": "DefaultVehicle",

4 "applications":[

5 "org.eclipse.mosaic.app.tutorial.vehicle.PerceptionApp"

6 ],

7 "weight": 0.10

8 } ]

9 }

1This script is delivered with the SUMO installation [9].
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4.1 Performance of Spatial Indexes

For the performance evaluation of the different index implementations, we defined the following
configurations to compare against each other:

� Trivial - No spatial index. A view check is done for all existing vehicles in a for-loop.

� QuadTreeXX - Quad-tree implementation with a configuration of a maximum depth of
12, and a maximum number of vehicles per leaf/tile of [10, 20, 30, or 40].

� GridYYY - Grid-based index implementation having different cell sizes. The cell size is
either [50, 100, 250, or 500] m in length and height.

For these experiments, 10% of the vehicles are equipped with the perception module. Each
equipped vehicle requests the vehicles in its field of vision in every simulation step. During
simulation, we measure the duration of every call of the atomic operations update, search, and
remove. We furthermore store the current number of vehicles present in the simulation for each
measurement, in order to find a relation between duration and index size.
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Figure 7: Individual and accumulated durations of search or update operations on each spatial
index implementation in the Charlottenburg scenario.
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For a first comparison, we run the Charlottenburg scenario with the nine different index
configurations. Results can be found in Figure 7. Not surprisingly, the search queries require
a lot of time in the trivial approach compared to Grid or Quad-tree. Even in situations with a
low number of vehicles (e.g. less than 200), a spatial index is already much faster. In general,
Grid and Quad-tree show very similar performance results. Search and update performance of
the Grid is slightly better than the Quad-tree. Having a look at the individual configurations
show, that both, lower tile capacity in the Quad-tree and very small cell sizes in the Grid, have
disadvantageous effects on the performance. Best results can be achieved by using a Quad-tree
with a maximum capacity of 20 or 30 vehicles per tile, or a Grid with a medium-large cell size
of 100 or 250 m. Choosing a cell size also most likely depends on the viewing range, as it affects
the number of cells in the Grid to be initially chosen for the range check. However, we did not
investigate the effects of the viewing range on the performance of the Grid. In comparison to
the total simulation time of 240 seconds, the overhead of 4–7 seconds produced by the spatial
index is minimal and does not require further examination.

In a second series of experiments, we configured the Berlin scenario with the Quad-tree and
Grid implementation, and again an equipment rate of 10%. Since this massive scenario already
requires several hours to complete, we skipped the Trivial approach. Figure 8 shows that the
Grid can outperform the Quad-tree in large-scale scenarios. Search operations with the Grid
are 30% faster, update operations show 10% better performance. The total overhead of the
index for search and update operations compared to a total simulation time of roughly nine
hours is found to be at 5% for the Grid, and 6% for the Quad-tree.
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Figure 8: Durations of update and search operations in the Berlin scenario.

4.2 Performance of Coupling with SUMO

The following experiments help to understand the overhead that comes with the coupling of the
traffic simulation of  SUMO. Th is comparison in cludes two as pects. Fi rstly, th e two different
coupling interfaces using TraCI or Libsumo are compared with each other. Secondly, our
implementation of the perception module is compared with the built-in features provided by
the interfaces of SUMO (i.e. context subscriptions), as explained in Section 3.2. We, therefore,
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define the following simulation runs, which will furthermore be executed using the two different
coupling methods:

� No Perception - As a baseline, basic vehicle data is subscribed for [5, 10, 20, 40, 60, 80,
or 100]% of the vehicles, which are equipped with any application. No perception index
is used at all. This allows measuring the total overhead each of the subsequent solutions
requires.

� MOSAIC Perception - Basic vehicle data is subscribed for all vehicles in the simulation.
[5, 10, 20, 40, 60, 80, or 100]% of the vehicles are equipped with a perception module
using a QuadTree20 as a reference for a spatial index implementation.

� SUMO Context Subscriptions - Basic vehicle data is subscribed only for equipped
vehicles. Additionally, context subscriptions are used for equipped vehicles to retrieve
vehicles within the field of vision. The perception module in MOSAIC uses the results
of these context subscriptions rather than building its own spatial index. The equipment
rate is either [5, 10, 20, 40, 60, 80, or 100]%.

The following experiments include simulations of the Charlottenburg scenario. The equip-
ment rate is varied from 5, 10, 20, 40, 60, 80, to 100%. As a coupling method, TraCI is
compared to Libsumo to find the performance improvement this new coupling method comes
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Figure 9: Total simulation duration using TraCI and Libsumo coupling under different equip-
ment rates in the Charlottenburg scenario.
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with. Figure 9 shows, that with an increasing equipment rate, the simulation time of all variants
also increases. The solution which uses the spatial data structures in MOSAIC (i.e. MOSAIC
Perception) exhibits a certain time overhead at all equipment rates. The main reason here is
the required subscriptions of all vehicles in the simulation, which need to be transferred to MO-
SAIC, in case (a) TraCI via TCP. Using SUMOs context subscriptions to obtain surrounding
vehicles (i.e. SUMO Perception) shows a large benefit at lower equipment rates, but inferior
scalability compared to MOSAIC Perception at higher equipment rates. Eventually, in the
100% case the SUMO Perception variant requires twice the time as running SUMO without
any context subscriptions, and almost ten times as long as the 5% case.

Using the new Libsumo coupling interface on the other hand can improve simulation time
significantly (see case (b) in Fig. 9). The simulation time of the MOSAIC Perception case can
be reduced almost by a factor of three. Again, the difference between a low and high equipment
rate is minimal in the MOSAIC Perception case and only depicts the overhead produced due
to application handling and utilizing the spatial index. Comparing with the SUMO Perception
variant, it is already enough to deploy 20% of the vehicles to find better performance with
the MOSAIC Perception. Still, the SUMO Perception case increases simulation time with the
equipment rates.

4.3 Evaluation Summary

In various conducted experiments, we investigated two aspects of the perception module im-
plementation in MOSAIC. For one thing, a detailed examination of the index implementations
Grid and Quad-tree and their configuration options showed, that both variants work well with-
out producing much computational overhead. The Grid performs slightly better, especially in
large scenarios with several thousands of vehicles being simulated in parallel. Here we found,
that middle-sized cells of 100 to 250m work best. The ideal cell size, however, is expected to
depend on the view range and angle as this affects the number of cells being selected during
search. Nevertheless, the Quad-tree implementation still shows good performance even with a
large amount of moving objects in the index, for both update and search operations.

Another aspect is the interaction with SUMO. The amount of data captured from SUMO
during simulation has an immense influence on the overall performance of the simulation, es-
pecially since the perception module implementation in MOSAIC requires the positions of all
existing vehicles. Here we found, that using TraCI results in large overhead, which can mostly
be eliminated by using the new Libsumo interface.

However, we also found that the built-in feature of SUMO, which is able to obtain surround-
ing vehicles as well, shows decreased performance on higher equipment rates. A deeper look
into the actual MOSAIC simulation using a profiler revealed, that most of the additional time
comes not only with the additional results from context subscriptions to read. The simulation
call itself, using Simulation.simulateUntil() requires more than twice as much time as soon
as context subscriptions are added for 40% of the vehicles. Additional time is then spent read-

Experiment Total Simulate
Step

Read single
subscriptions

Read context
subscriptions

MOSAIC
overhead

40% Single subscriptions 187 s 107 s 58 s 0 s 22 s
40% Single subscriptions
+ 40% Context Subscriptions

478 s
(+ 156%)

259 s
(+ 142%)

60 s
(+ 3%)

133 s
(+∞%)

26 s
(+ 18%)

Table 1: Increase of simulation duration due to use of context subscriptions in Libsumo.
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ing the context subscription results using Vehicle.getAllContextSubscriptionResults().
Detailed results of this brief analysis can be found in Table 1.

5 Conclusion and Outlook

Extracting object information from raw sensor data (e.g. Camera) and feeding them into smart
mobility applications can help to improve safety and traffic efficiency. Co-simulation frameworks
such as Eclipse MOSAIC may be used to develop and test such applications. In order to enable
object detection on an application level, the integrated models need to provide information
about surrounding objects. Such objects can be stationary (e.g. traffic signs, traffic signals),
or moving (e.g. vehicles, pedestrians). Obtaining moving objects within a field of view of a
stationary or other moving traffic participant requires a fast method to prevent low-performing
simulations.

In this paper, we solved this problem by introducing a perception module to the Application
Simulator of MOSAIC. For finding moving objects within a given range (e.g. inside the field of
view of another vehicle), we implemented and evaluated different spatial index implementations
based on a grid or Quad-tree. We evaluated the implementation with large-scale simulation
scenarios in combination with the traffic simulation of Eclipse SUMO, with a view to the
computational performance. The perception method using a grid to find surrounding objects
worked best, with varying performance depending on the size of the included cells. Using a
Quad-tree instead resulted in slightly but not significantly slower simulations. The modeling of
perception in MOSAIC required reading basic data (e.g. position) for all moving objects (here
vehicles) from SUMO during the simulation. This led to a bottleneck when the socket interface
TraCI was still used to exchange data. In the course of this paper, we improved the integration
of SUMO by implementing the Libsumo interface. Evaluations showed, that with Libsumo the
simulation time could be improved by a factor of three in the presented scenarios. Only with
the use of Libsumo feasible simulation times are possible in combination with our perception
module implementation.

In following work, we want to use object perception for improving traffic efficiency. Here
we believe that object detection through cameras in vehicles could be used to pre-process and
pre-estimate traffic states on road segments. Such pre-estimated data could be shared and
used to improve overall traffic state estimation, which is currently only achieved by collecting
floating-car-data from a large fleet of vehicles.

In the current implementation of the perception module only moving objects have been
considered. This work will be published with the next release of Eclipse MOSAIC and is already
integrated into the source code repository in [1]. Future work will also allow the perception of
stationary objects, such as traffic signs and signals. Furthermore, additional models which filter
the set of surrounding objects due to occlusion are subject to ongoing work. The traffic scenario
used in the evaluation section of this paper is planned to be published under an open-source
license on GitHub soon [3].
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